
C H A P T E R

1
Another Pleasant

Valley Saturday
Understanding What Computers Really Do

It’s All in the Plan

’’Quick, Mike, get your sister and brother up, it’s past 7. Nicky’s got Little
League at 9:00 and Dione’s got ballet at 10:00. Give Max his heartworm pill!
(We’re out of them, Ma, remember?) Your father picked a great weekend to go
fishing. Here, let me give you 10 bucks and go get more pills at the vet’s. My
God, that’s right, Hank needed gas money and left me broke. There’s an ATM
over by Kmart, and if I go there I can take that stupid toilet seat back and get
the right one.’’

’’I guess I’d better make a list. . . . ’’

It’s another Pleasant Valley Saturday, and thirty-odd million suburban
homemakers sit down with a pencil and pad at the kitchen table to try to make
sense of a morning that would kill and pickle any lesser being. In her mind,
she thinks of the dependencies and traces the route:

Drop Nicky at Rand Park, go back to Dempster and it’s about 10 minutes to
Golf Mill Mall. Do I have gas? I’d better check first—if not, stop at Del’s Shell
or I won’t make it to Milwaukee Avenue. Milk the ATM at Golf Mill, then
cross the parking lot to Kmart to return the toilet seat that Hank bought last
weekend without checking what shape it was. Gotta remember to throw the
toilet seat in the back of the van—write that at the top of the list.

1

CO
PYRIG

HTED
 M

ATERIA
L

2 Chapter 1 ■ Another Pleasant Valley Saturday

By then it’ll be half past, maybe later. Ballet is all the way down Greenwood
in Park Ridge. No left turn from Milwaukee—but there’s the sneak path
around behind the mall. I have to remember not to turn right onto Milwaukee
like I always do—jot that down. While I’m in Park Ridge I can check to see
if Hank’s new glasses are in—should call but they won’t even be open until
9:30. Oh, and groceries—can do that while Dione dances. On the way back I
can cut over to Oakton and get the dog’s pills.

In about 90 seconds flat the list is complete:

Throw toilet seat in van.

Check gas—if empty, stop at Del’s Shell.

Drop Nicky at Rand Park.

Stop at Golf Mill teller machine.

Return toilet seat at Kmart.

Drop Dione at ballet (remember the sneak path to Greenwood).

See if Hank’s glasses are at Pearle Vision—if they are, make sure they
remembered the extra scratch coating.

Get groceries at Jewel.

Pick up Dione.

Stop at vet’s for heartworm pills.

Drop off groceries at home.

If it’s time, pick up Nicky. If not, collapse for a few minutes, then pick up
Nicky.

Collapse!

In what we often call a ‘‘laundry list’’ (whether it involves laundry or not)
is the perfect metaphor for a computer program. Without realizing it, our
intrepid homemaker has written herself a computer program and then set out
(acting as the computer) to execute it and be done before noon.

Computer programming is nothing more than this: you, the programmer,
write a list of steps and tests. The computer then performs each step and
test in sequence. When the list of steps has been executed, the computer
stops.

A computer program is a list of steps and tests, nothing more.

Steps and Tests
Think for a moment about what I call a ‘‘test’’ in the preceding laundry list.
A test is the sort of either/or decision we make dozens or hundreds of times
on even the most placid of days, sometimes nearly without thinking about it.

Chapter 1 ■ Another Pleasant Valley Saturday 3

Our homemaker performed a test when she jumped into the van to get
started on her adventure. She looked at the gas gauge. The gas gauge would
tell her one of two things: either she has enough gas or she doesn’t. If she has
enough gas, then she takes a right and heads for Rand Park. If she doesn’t
have enough gas, then she takes a left down to the corner and fills the tank
at Del’s Shell. Then, with a full tank, she continues the program by taking a
U-turn and heading for Rand Park.

In the abstract, a test consists of those two parts:

First, you take a look at something that can go one of two ways.

Then you do one of two things, depending on what you saw when you
took a look.

Toward the end of the program, our homemaker gets home, takes the
groceries out of the van, and checks the clock. If it isn’t time to get Nicky from
Little League, then she has a moment to collapse on the couch in a nearly
empty house. If it is time to get Nicky, then there’s no rest for the ragged: she
sprints for the van and heads back to Rand Park.

(Any guesses as to whether she really gets to collapse when the program
finishes running?)

More Than Two Ways?
You might object, saying that many or most tests involve more than two
alternatives. Ha-ha, sorry, you’re dead wrong— in every case. Furthermore,
you’re wrong whether you think you are or not. Read this twice: Except for
totally impulsive or psychotic behavior, every human decision comes down to the
choice between two alternatives.

What you have to do is look a little more closely at what goes through
your mind when you make decisions. The next time you buzz down to Yow
Chow Now for fast Chinese, observe yourself while you’re poring over the
menu. The choice might seem, at first, to be of one item out of 26 Cantonese
main courses. Not so. The choice, in fact, is between choosing one item and
not choosing that one item. Your eyes rest on chicken with cashews. Naw, too
bland. That was a test. You slide down to the next item. Chicken with black
mushrooms. Hmm, no, had that last week. That was another test. Next item:
Kung Pao chicken. Yeah, that’s it! That was a third test.

The choice was not among chicken with cashews, chicken with black
mushrooms, or Kung Pao chicken. Each dish had its moment, poised before
the critical eye of your mind, and you turned thumbs up or thumbs down on
it, individually. Eventually, one dish won, but it won in that same game of ‘‘to
eat or not to eat.’’

Let me give you another example. Many of life’s most complicated decisions
come about due to the fact that 99.99867 percent of us are not nudists. You’ve

4 Chapter 1 ■ Another Pleasant Valley Saturday

been there: you’re standing in the clothes closet in your underwear, flipping
through your rack of pants. The tests come thick and fast. This one? No. This
one? No. This one? No. This one? Yeah. You pick a pair of blue pants, say.
(It’s a Monday, after all, and blue would seem an appropriate color.) Then you
stumble over to your sock drawer and take a look. Whoops, no blue socks.
That was a test. So you stumble back to the clothes closet, hang your blue pants
back on the pants rack, and start over. This one? No. This one? No. This one?
Yeah. This time it’s brown pants, and you toss them over your arm and head
back to the sock drawer to take another look. Nertz, out of brown socks, too.
So it’s back to the clothes closet . . .

What you might consider a single decision, or perhaps two decisions
inextricably tangled (such as picking pants and socks of the same color, given
stock on hand), is actually a series of small decisions, always binary in nature:
pick ‘em or don’t pick ‘em. Find ‘em or don’t find ‘em. The Monday morning
episode in the clothes closet is a good analogy of a programming structure
called a loop: you keep doing a series of things until you get it right, and then
you stop (assuming you’re not the kind of geek who wears blue socks with
brown pants); but whether you get everything right always comes down to a
sequence of simple either/or decisions.

Computers Think Like Us
I can almost hear the objection: ‘‘Sure, it’s a computer book, and he’s trying
to get me to think like a computer.’’ Not at all. Computers think like us. We
designed them; how else could they think? No, what I’m trying to do is get
you to take a long, hard look at how you think. We run on automatic for so
much of our lives that we literally do most of our thinking without really
thinking about it.

The very best model for the logic of a computer program is the very same
logic we use to plan and manage our daily affairs. No matter what we do,
it comes down to a matter of confronting two alternatives and picking one.
What we might think of as a single large and complicated decision is nothing
more than a messy tangle of many smaller decisions. The skill of looking at
a complex decision and seeing all the little decisions in its tummy will serve
you well in learning how to program. Observe yourself the next time you have
to decide something. Count up the little decisions that make up the big one.
You’ll be surprised.

And, surprise! You’ll be a programmer.

Had This Been the Real Thing . . .

Do not be alarmed. What you have just experienced was a metaphor. It was
not the real thing. (The real thing comes later.) I use metaphors a lot in this
book. A metaphor is a loose comparison drawn between something familiar

Chapter 1 ■ Another Pleasant Valley Saturday 5

(such as a Saturday morning laundry list) and something unfamiliar (such as
a computer program). The idea is to anchor the unfamiliar in the terms of
the familiar, so that when I begin tossing facts at you, you’ll have someplace
comfortable to lay them down.

The most important thing for you to do right now is keep an open mind. If
you know a little bit about computers or programming, don’t pick nits. Yes,
there are important differences between a homemaker following a scribbled
laundry list and a computer executing a program. I’ll mention those differences
all in good time.

For now, it’s still Chapter 1. Take these initial metaphors on their own terms.
Later on, they’ll help a lot.

Do Not Pass Go

’’There’s a reason bored and board are homonyms,’’ said my best friend, Art, one
evening as we sat (two super-sophisticated twelve-year-olds) playing some
game in his basement. (He may have been unhappy because he was losing.)
Was it Mille Bornes? Or Stratego? Or Monopoly? Or something else entirely?
I confess, I don’t remember. I simply recall hopping some little piece of plastic
shaped like a pregnant bowling pin up and down a series of colored squares
that told me to do dumb things like go back two spaces or put $100 in the pot
or nuke Outer Mongolia.

There are strong parallels to be drawn between that peculiar American
pastime, the board game, and assembly-language programming. First of all,
everything I said before still holds: board games, by and large, consist of a
progression of steps and tests. In some games, such as Trivial Pursuit, every
step on the board is a test: to see if you can answer, or not answer, a question
on a card. In other board games, each little square along the path on the board
contains some sort of instruction: Lose One Turn; Go Back Two Squares; Take
a Card from Community Chest; and, of course, Go to Jail. Things happen in
board games, and the path your little pregnant bowling pin takes as it works
its way along the edge of the board will change along the way.

Many board games also have little storage locations marked on the board
where you keep things: cards and play money and game tokens such as little
plastic houses or hotels, or perhaps bombers and nuclear missiles. As the
game progresses, you buy, sell, or launch your assets, and the contents of your
storage locations change. Computer programs are like that too: there are places
where you store things (’’things’’ here being pure data, rather than physical
tokens); and as the computer program executes, the data stored in those places
will change.

Computer programs are not games, of course—at least, not in the sense
that a board game is a game. Most of the time, a given program is running
all by itself. There is only one ‘‘player’’ and not two or more. (This is not

6 Chapter 1 ■ Another Pleasant Valley Saturday

always true, but I don’t want to get too far ahead right now. Remember, we’re
still in metaphor territory.) Still, the metaphor is useful enough that it’s worth
pursuing.

The Game of Big Bux
I’ve invented my own board game to continue down the road with this
particular metaphor. In the sense that art mirrors life, the Game of Big Bux
mirrors life in Silicon Valley, where money seems to be spontaneously created
(generally in somebody else’s pocket) and the three big Money Black Holes
are fast cars, California real estate, and messy divorces. There is luck, there is
work, and assets often change hands very quickly.

A portion of the Big Bux game board is shown in Figure 1-1. The line of rect-
angles on the left side of the page continues all the way around the board. In the
middle of the board are cubbyholes to store your play money and game pieces;
stacks of cards to be read occasionally; and short detours with names such as
Messy Divorce and Start a Business, which are brief sequences of the same
sort of action squares as those forming the path around the edge of the board.
These are ‘‘side paths’’ that players take when instructed, either by a square
on the board or a card pulled during the game. If you land on a square that
tells you to Start a Business, you go through that detour. If you jump over the
square, you don’t take the detour, and just keep on trucking around the board.

Unlike many board games, you don’t throw dice to determine how many
steps around the board you take. Big Bux requires that you move one step
forward on each turn, unless the square you land on instructs you to move
forward or backward or go somewhere else, such as through a detour. This
makes for a considerably less random game. In fact, Big Bux is a pretty linear
experience, meaning that for the most part you go around the board until
you’re told that the game is over. At that point, you may be bankrupt; if not,
you can total up your assets to see how well you’ve done.

There is some math involved. You start out with a condo, a cheap car,
and $250,000 in cash. You can buy CDs at a given interest rate, payable
each time you make it once around the board. You can invest in stocks and
other securities whose value is determined by a changeable index in economic
indicators, which fluctuates based on cards chosen from the stack called the
Fickle Finger of Fate. You can sell cars on a secondary market, buy and sell
houses, condos, and land; and wheel and deal with the other players. Each time
you make it once around the board, you have to recalculate your net worth.
All of this involves some addition, subtraction, multiplication, and division,
but there’s no math more complex than compound interest. Most of Big Bux
involves nothing more than taking a step and following the instructions at
each step.

Is this starting to sound familiar?

Chapter 1 ■ Another Pleasant Valley Saturday 7

Buy option on Pomegranite Computer.
Look out the window– –if you can see
the moon, stock falls. Make $50,000.

Mortgage:
Car loan:

THE BANK
$153,000 11% adj.
$ 15,000 10% fixed

PAYDAY! Deposit salary into
checking acct.

Take a card from:
The Fickle Finger of Fate.

Did you get laid off? If so, detour
thru Start Your Own Business.

Draw up a business plan and
submit to a venture firm.
Venture firm requires
$50,000 matching capital.
Have it? If not, return to
where you came from.

The Fickle Finger of Fate.

Major Bank Failure!

Decrement Economic Indicators line
by thirty percent. Bonds tumble by
20%; housing prices by 5%. Re-valuate
your portfolio. Bank cuts your line of
credit by $2000. Have a good cry.

Add $850,000 to checking
account.
Hire 6 people. Subtract
$100,000 from checking acct.
Work 18 hours a day for a
year. Spend $200,000.
Spend $300,000 launching
the new product.
Take a card from:
The Fickle Finger of Fate.
First year’s sales:
$500,000 x economic ind.
Are you bankrupt? If not,
jump ahead 2 squares.
Go through messy divorce.

Return to where you came from.

Sell company for $10,000,000.
Buy another $65,000 Porsche.

Go back to where
you came from.

Are you married? If not, marry chief
programmer for $10,000. If so,
detour through Messy Divorce.
Friday night. Are you alone?
If so, get roaring drunk and jump
back three squares.
Total car on Highway 101. Buy
antoher one of equal value.

Is your job boring? (Prosperity
Index > 0.6 but less than 1.2) If not,
jump ahead 3 squares.
Get promoted. Salary rises by 25%.
(If unemployed, get new job at
salary of $800/week.)
Have an affair with the Chief
Programmer. Jump back 5 squares.

Holiday. NOTHING HAPPENS AT ALL!

Vest 5000 stock options. Sell at $10
X economic indicator.

Buy condo in Palo Alto for 15% down.

Are you bankrupt? If so, move to
Peoria. If not, detour through Start
of Business.
Friend Nick drops rumor of huge gov’t
contract impending at Widgetsoft. Buy
$10,000 worth of Widgetsoft stock.
Did Widgetsoft contract go through?
If not, jump back two squares. If so,
sell and make $500,000 in one day.
Brag about insider trading to friend Nick.
An error. Nick is an SEC plant. Wave at
Peoria. Move to Joliet. End of game.

Balance:
Line of credit:

YOUR CHECKING ACCOUNT
$12,255.00
$ 8,000.00

Porsches:
BMWs:
2br Palo Alto condo: $385,000
4br Palo Alto house: $742,000

MARKET VALUES
$48,000 Chevies: $10,000
$28,000 Used Fords: $2700

1

OTHER ASSETS

YOUR PORTFOLIO

Salary: $1000/week

CD’s: $100.00

1 2 3

1 2

3 4

$

0.0

0.1

0.2

0.3

0.4

0.5

1.0

2.0

4.0

7.0

12.0

20

30

50

100

1000

Pr
os

pe
rit

y
Re

ce
ss

io
n

ECONOMIC
INDICATORS

PEORIA

THE GAME OF “BIG BUX!” – – By Jeff Duntemann

She moves out, rents
$2000/mo. apartment.

Messy
Divorce

Start Here:

Are you bankrupt? If so, get
cheap lawyer. Jump ahead 4.
Hire expensive lawyer. Pay
$50,000 from checking.
Lawyer proves in court that
wife is a chinchilla.
Wife is sent to Brookfield Zoo.
Return to whence you came.
Lawyer proves in court that
you are a chinchilla.
Court and wife skin you alive.
Lose 50% of everything.
Start paying wife $5000/mo.
for the rest of your life.

Go back to where
you came from.

Start a
Business
Start Here:

$

Figure 1-1: The Big Bux game board

8 Chapter 1 ■ Another Pleasant Valley Saturday

Playing Big Bux
At one corner of the Big Bux board is the legend Move In, as that’s how people
start life in California—no one is actually born there. That’s the entry point
at which you begin the game. Once moved in, you begin working your way
around the board, square by square, following the instructions in the squares.

Some of the squares simply tell you to do something, such as ‘‘Buy a Condo
in Palo Alto for 15% down.’’ Many of the squares involve a test of some kind.
For example, one square reads: ‘‘Is your job boring? (Prosperity Index 0.3 but
less than 4.0.) If not, jump ahead three squares.’’ The test is actually to see
if the Prosperity Index has a value between 0.3 and 4.0. Any value outside
those bounds (that is, runaway prosperity or Four Horsemen–class recession)
is defined as Interesting Times, and causes a jump ahead by three squares.

You always move one step forward at each turn, unless the square you land
on directs you to do something else, such as jump forward three squares or
jump back five squares, or take a detour.

The notion of taking a detour is an interesting one. Two detours are shown
in the portion of the board I’ve provided. (The full game has others.) Taking a
detour means leaving your main path around the edge of the game board and
stepping through a series of squares somewhere else on the board. When you
finish with the detour, you return to your original path right where you left it.
The detours involve some specific process—for example, starting a business
or getting divorced.

You can work through a detour, step by step, until you hit the bottom. At
that point you simply pick up your journey around the board right where
you left it. You may also find that one of the squares in the detour instructs
you to go back to where you came from. Depending on the logic of the game
(and your luck and finances), you may completely run through a detour or get
thrown out of the detour somewhere in the middle. In either case, you return
to the point from which you originally entered the detour.

Also note that you can take a detour from within a detour. If you detour
through Start a Business and your business goes bankrupt, you leave Start
a Business temporarily and detour through Messy Divorce. Once you leave
Messy Divorce, you return to where you left Start a Business. Ultimately, you
also leave Start a Business and return to wherever you were on the main path
when you took the detour. The same detour (for example, Start a Business)
can be taken from any of several different places along the game board.

Unlike most board games, the Game of Big Bux doesn’t necessarily end. You
can go round and round the board basically forever. There are three ways to
end the game:

Retire: To do this, you must have assets at a certain level and make the
decision to retire.

Chapter 1 ■ Another Pleasant Valley Saturday 9

Go bankrupt: Once you have no assets, there’s no point in continuing the
game. Move to Peoria in disgrace.

Go to jail: This is a consequence of an error of judgment, and is not a
normal exit from the game board.

Computer programs are also like that. You can choose to end a program
when you’ve accomplished what you planned, even though you could con-
tinue if you wanted. If the document or the spreadsheet is finished, save it
and exit. Conversely, if the photo you’re editing keeps looking worse and
worse each time you select Sharpen, you stop the program without having
accomplished anything. If you make a serious mistake, then the program may
throw you out with an error message and corrupt your data in the bargain,
leaving you with less than nothing to show for the experience.

Once more, this is a metaphor. Don’t take the game board too literally. (Alas,
Silicon Valley life was way too much like this in the go-go 1990s. It’s calmer
now, I’ve heard.)

Assembly Language Programming
As a Board Game

Now that you’re thinking in terms of board games, take a look at Figure 1-2.
What I’ve drawn is actually a fair approximation of assembly language as
it was used on some of our simpler computers about 25 or 30 years ago.
The column marked ‘‘Program Instructions’’ is the main path around the
edge of the board, of which only a portion can be shown here. This is the
assembly language computer program, the actual series of steps and tests that,
when executed, cause the computer to do something useful. Setting up this
series of program instructions is what programming in assembly language
actually is.

Everything else is odds and ends in the middle of the board that serve
the game in progress. Most of these are storage locations that contain your
data. You’re probably noticing (perhaps with sagging spirits) that there are
a lot of numbers involved. (They’re weird numbers, too—what, for example,
does ‘‘004B’’ mean? I deal with that issue in Chapter 2.) I’m sorry, but that’s
simply the way the game is played. Assembly language, at its innermost level,
is nothing but numbers, and if you hate numbers the way most people hate
anchovies, you’re going to have a rough time of it. (I like anchovies, which is
part of my legend. Learn to like numbers. They’re not as salty.) Higher-level
programming languages such as Pascal or Python disguise the numbers by
treating them symbolically—but assembly language, well, it’s you and the
numbers.

10 Chapter 1 ■ Another Pleasant Valley Saturday

The Stack

Stack Pointer

0000

0001

0002

0003

0004

0005

0006

0001

e

0002

5

0

0000

0001

0002

0003

0004

0005

A

L

e

r

t

!

Program Counter

0045

0040

0041

0042

0043

0044

0045

0046

0047

0048

0049

004A

004B

004C

004D

004E

004F

MOVE data at B to A

0000

0045INCREMENT B

MOVE A to data at B

PUSH Program
Counter onto the Stack

CALL UpCase

DECREMENT C

COMPARE C to 0

JUMP BACK 9 IF C > 0

MOVE 0000 to B

JUMP BACK 6

0080

0081

0082

0083

0084

0085

COMPARE data at A
with 'a'
JUMP AHEAD 4
IF data at A < 'a'

ADD 32 to data at A

POP Program Counter
from Stack & Return

PROCEDURE UpCase

COMPARE data at A
with 'z'
JUMP AHEAD 2
IF data at A > 'z'

MOVE 6 to C

COMPARE A to ' '

JUMP AHEAD 9 IF A < ' '

ADD 128 to A

GOTO StringReady

(etc....)

Program
Instructions

Data
in Memory Registers

A

B

C

D

Carry0

Figure 1-2: The Game of Assembly Language

I should caution you that the Game of Assembly Language represents no real
computer processor like the Pentium. Also, I’ve made the names of instructions
more clearly understandable than the names of the instructions in Intel
assembly language. In the real world, instruction names are typically things like
STOSB, DAA, INC, SBB, and other crypticisms that cannot be understood without
considerable explanation. We’re easing into this stuff sidewise, and in this
chapter I have to sugarcoat certain things a little to draw the metaphors clearly.

Code and Data
Like most board games (including the Game of Big Bux), the assembly
language board game consists of two broad categories of elements: game steps
and places to store things. The ‘‘game steps’’ are the steps and tests I’ve been
speaking of all along. The places to store things are just that: cubbyholes into
which you can place numbers, with the confidence that those numbers will
remain where you put them until you take them out or change them somehow.

Chapter 1 ■ Another Pleasant Valley Saturday 11

In programming terms, the game steps are called code, and the numbers in
their cubbyholes (as distinct from the cubbyholes themselves) are called data.
The cubbyholes themselves are usually called storage. (The difference between
the places you store information and the information you store in them is
crucial. Don’t confuse them.)

The Game of Big Bux works the same way. Look back to Figure 1-1 and
note that in the Start a Business detour, there is an instruction reading ‘‘Add
$850,000 to checking account.’’ The checking account is one of several different
kinds of storage in the Game of Big Bux, and money values are a type of data.
It’s no different conceptually from an instruction in the Game of Assembly
Language reading ADD 5 to Register A. An ADD instruction in the code alters
a data value stored in a cubbyhole named Register A.

Code and data are two very different kinds of critters, but they interact
in ways that make the game interesting. The code includes steps that place
data into storage (MOVE instructions) and steps that alter data that is already
in storage (INCREMENT and DECREMENT instructions, and ADD instructions). Most
of the time you’ll think of code as being the master of data, in that the code
writes data values into storage. Data does influence code as well, however.
Among the tests that the code makes are tests that examine data in storage, the
COMPARE instructions. If a given data value exists in storage, the code may do
one thing; if that value does not exist in storage, the code will do something
else, as in the Big Bux JUMP BACK and JUMP AHEAD instructions.

The short block of instructions marked PROCEDURE is a detour off the main
stream of instructions. At any point in the program you can duck out into
the procedure, perform its steps and tests, and then return to the very place
from which you left. This allows a sequence of steps and tests that is generally
useful and used frequently to exist in only one place, rather than as a separate
copy everywhere it is needed.

Addresses
Another critical concept lies in the funny numbers at the left side of the
program step locations and data locations. Each number is unique, in that
a location tagged with that number appears only once inside the computer.
This location is called an address. Data is stored and retrieved by specifying the
data’s address in the machine. Procedures are called by specifying the address
at which they begin.

The little box (which is also a storage location) marked PROGRAM COUNTER

keeps the address of the next instruction to be performed. The number inside
the program counter is increased by one (we say, ‘‘incremented’’ each time
an instruction is performed unless the instructions tell the program counter to do
something else. For example: notice the JUMP BACK 9 instruction at address 004B.
When this instruction is performed, the program counter will ‘‘back up’’ by

12 Chapter 1 ■ Another Pleasant Valley Saturday

nine locations. This is analogous to the ‘‘go back three spaces’’ concept in most
board games.

Metaphor Check!
That’s about as much explanation of the Game of Assembly Language as I’m
going to offer for now. This is still Chapter 1, and we’re still in metaphor
territory. People who have had some exposure to computers will recognize
and understand some of what Figure 1-2 is doing. (There’s a real, traceable
program going on in there—I dare you to figure out what it does—and how!)
People with no exposure to computer innards at all shouldn’t feel left behind
for being utterly lost. I created the Game of Assembly Language solely to put
across the following points:

The individual steps are very simple: One single instruction rarely does more
than move a single byte from one storage cubbyhole to another, perform
very elementary arithmetic such as addition or subtraction, or compare the
value contained in one storage cubbyhole to a value contained in another.
This is good news, because it enables you to concentrate on the simple
task accomplished by a single instruction without being overwhelmed by
complexity. The bad news, however, is the following:

It takes a lot of steps to do anything useful: You can often write a use-
ful program in such languages as Pascal or BASIC in five or six lines.
You can actually create useful programs in visual programming systems
such as Visual Basic and Delphi without writing any code at all. (The
code is still there . . . but it is ‘‘canned’’ and all you’re really doing is
choosing which chunks of canned code in a collection of many such
chunks will run.) A useful assembly language program cannot be imple-
mented in fewer than about 50 lines, and anything challenging takes
hundreds or thousands—or tens of thousands—of lines. The skill of
assembly language programming lies in structuring these hundreds or
thousands of instructions so that the program can still be read and
understood.

The key to assembly language is understanding memory addresses: In such
languages as Pascal and BASIC, the compiler takes care of where some-
thing is located—you simply have to give that something a symbolic
name, and call it by that name whenever you want to look at it or
change it. In assembly language, you must always be cognizant of
where things are in your computer’s memory. Therefore, in working
through this book, pay special attention to the concept of memory
addressing, which is nothing more than the art of specifying where some-
thing is. The Game of Assembly Language is peppered with addresses
and instructions that work with addresses (such as MOVE data at B

Chapter 1 ■ Another Pleasant Valley Saturday 13

to C, which means move the data stored at the address specified by
register B to register C). Addressing is by far the trickiest part of assem-
bly language, but master it and you’ve got the whole thing in your hip
pocket.

Everything I’ve said so far has been orientation. I’ve tried to give you a taste
of the big picture of assembly language and how its fundamental principles
relate to the life you’ve been living all along. Life is a sequence of steps and
tests, and so are board games—and so is assembly language. Keep those
metaphors in mind as we proceed to get real by confronting the nature of
computer numbers.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

