
1
 Programming with
Visual C++ 2010

 WHAT YOU WILL LEARN IN THIS CHAPTER:

 ‰ What the principal components of Visual C++ 2010 are

 ‰ What the .NET Framework consists of and the advantages it off ers

 ‰ What solutions and projects are and how you create them

 ‰ About console programs

 ‰ How to create and edit a program

 ‰ How to compile, link, and execute C++ console programs

 ‰ How to create and execute basic Windows programs

 Windows programming isn ’ t diffi cult. Microsoft Visual C++ 2010 makes it remarkably easy,
as you ’ ll see throughout the course of this book. There ’ s just one obstacle in your path: Before
you get to the specifi cs of Windows programming, you have to be thoroughly familiar with
the capabilities of the C++ programming language, particularly the object - oriented aspects
of the language. Object - oriented techniques are central to the effectiveness of all the tools
provided by Visual C++ 2010 for Windows programming, so it ’ s essential that you gain a good
understanding of them. That ’ s exactly what this book provides.

 This chapter gives you an overview of the essential concepts involved in programming
applications in C++. You ’ ll take a rapid tour of the integrated development environment (IDE)
that comes with Visual C++ 2010. The IDE is straightforward and generally intuitive in its
operation, so you ’ ll be able to pick up most of it as you go along. The best way to get familiar
with it is to work through the process of creating, compiling, and executing a simple program.

 So power up your PC, start Windows, load the mighty Visual C++ 2010, and begin your journey.

CO
PYRIG

HTED
 M

ATERIA
L

2 x CHAPTER 1 PROGRAMMING WITH VISUAL C++ 2010

 THE .NET FRAMEWORK

 The .NET Framework is a central concept in Visual C++ 2010 as well as in all the other .NET
development products from Microsoft. The .NET Framework consists of two elements: the
 Common Language Runtime (CLR) in which your application executes, and a set of libraries called
the .NET Framework class libraries. The .NET Framework class libraries provide the functional
support your code will need when executing with the CLR, regardless of the programming language
used, so .NET programs written in C++, C#, or any of the other languages that support the .NET
Framework all use the same .NET libraries.

 There are two fundamentally different kinds of C++ applications you can develop with Visual C++
2010. You can write applications that natively execute on your computer. These applications will be
referred to as native C++ programs ; you write native C++ programs in the version of C++ defi ned
by the ISO/IEC (International Standards Organization/International Electrotechnical Commision)
language standard. You can also write applications to run under the control of the CLR in an
extended version of C++ called C++/CLI . These programs will be referred to as CLR programs , or
 C++/CLI programs .

 The .NET Framework is not strictly part of Visual C++ 2010 but rather a component of the
Windows operating system that makes it easier to build software applications and Web services.
The .NET Framework offers substantial advantages in code reliability and security, as well as the
ability to integrate your C++ code with code written in over 20 other programming languages that
target the .NET Framework. A slight disadvantage of targeting the .NET Framework is that there is
a small performance penalty compared to native code, but you won ’ t notice this in the majority of
circumstances.

 THE COMMON LANGUAGE RUNTIME

 The Common Language Runtime (CLR) is a standardized environment for the execution of
programs written in a wide range of high - level languages including Visual Basic, C#, and of course
C++. The specifi cation of the CLR is now embodied in the European Computer Manufacturers
Association (ECMA) standard for the Common Language Infrastructure (CLI) , the ECMA - 335,
and also in the equivalent ISO standard, ISO/IEC 23271, so the CLR is an implementation of this
standard. You can see why C++ for the CLR is referred to as C++/CLI — it ’ s C++ for the Common
Language Infrastructure, so you are likely to see C++/CLI compilers on other operating systems that
implement the CLI.

NOTE Information about all ECMA standards is available from
www.ecma - international.org , and ECMA - 335 is currently available as a
free download.

 The CLI is essentially a specifi cation for a virtual machine environment that enables applications
written in diverse high - level programming languages to be executed in different system

environments without the original source code ’ s being changed or replicated. The CLI specifi es
a standard intermediate language for the virtual machine to which the high - level language
source code is compiled. With the .NET Framework, this intermediate language is referred to as
 Microsoft Intermediate Language (MSIL). Code in the intermediate language is ultimately mapped
to machine code by a just - in - time (JIT) compiler when you execute a program. Of course, code
in the CLI intermediate language can be executed within any other environment that has a CLI
implementation.

 The CLI also defi nes a common set of data types called the Common Type System (CTS) that
should be used for programs written in any programming language targeting a CLI implementation.
The CTS specifi es how data types are used within the CLR and includes a set of predefi ned types.
You may also defi ne your own data types, and these must be defi ned in a particular way to be
consistent with the CLR, as you ’ ll see. Having a standardized type system for representing data
allows components written in different programming languages to handle data in a uniform
way and makes it possible to integrate components written in different languages into a single
application.

 Data security and program reliability is greatly enhanced by the CLR, in part because dynamic
memory allocation and release for data is fully automatic, but also because the MSIL code for a
program is comprehensively checked and validated before the program executes. The CLR is just
one implementation of the CLI specifi cation that executes under Microsoft Windows on a PC; there
will undoubtedly be other implementations of the CLI for other operating system environments and
hardware platforms. You ’ ll sometimes fi nd that the terms CLI and CLR are used interchangeably,
although it should be evident that they are not the same thing. The CLI is a standard specifi cation;
the CLR is Microsoft ’ s implementation of the CLI.

 WRITING C++ APPLICATIONS

 You have tremendous fl exibility in the types of applications and program components that you
can develop with Visual C++ 2010. As noted earlier in this chapter, you have two basic options
for Windows applications: You can write code that executes with the CLR, and you can also
write code that compiles directly to machine code and thus executes natively. For window - based
applications targeting the CLR, you use Windows Forms as the base for the GUI provided by the
.NET Framework libraries. Using Windows Forms enables rapid GUI development because you
assemble the GUI graphically from standard components and have the code generated completely
automatically. You then just need to customize the code that has been generated to provide the
functionality that you require.

 For natively executing code, you have several ways to go. One possibility is to use the Microsoft
Foundation Classes (MFC) for programming the graphical user interface for your Windows
application. The MFC encapsulates the Windows operating system Application Programming
Interface (API) for GUI creation and control and greatly eases the process of program development.
The Windows API originated long before the C++ language arrived on the scene, so it has none of
the object - oriented characteristics that would be expected if it were written today; however, you are
not obliged to use the MFC. If you want the ultimate in performance, you can write your C++ code
to access the Windows API directly.

Writing C++ Applications x 3

4 x CHAPTER 1 PROGRAMMING WITH VISUAL C++ 2010

 C++ code that executes with the CLR is described as managed C++ because data and code
are managed by the CLR. In CLR programs, the release of memory that you have allocated
dynamically for storing data is taken care of automatically, thus eliminating a common source
of error in native C++ applications. C++ code that executes outside the CLR is sometimes described
by Microsoft as unmanaged C++ because the CLR is not involved in its execution. With unmanaged
C++ you must take care of all aspects of allocating and releasing memory during execution of
your program yourself, and also forego the enhanced security provided by the CLR. You ’ ll
also see unmanaged C++ referred to as native C++ because it compiles directly to native
machine code.

 Figure 1 - 1 shows the basic options you have for developing C++ applications.

MFCNative C++

Native C++

Operating System

Framework Classes

Common Language Runtime

Managed C++

Hardware

FIGURE 1-1

 Figure 1 - 1 is not the whole story. An application can consist partly of managed C++ and partly of
native C++, so you are not obliged to stick to one environment or the other. Of course, you do lose
out somewhat by mixing code, so you would choose to follow this approach only when necessary,
such as when you want to convert an existing native C++ application to run with the CLR. You
obviously won ’ t get the benefi ts inherent in managed C++ in the native C++ code, and there can also
be appreciable overhead involved in communications between the managed and unmanaged code
components. The ability to mix managed and unmanaged code can be invaluable, however, when
you need to develop or extend existing unmanaged code but also want to obtain the advantages of
using the CLR. Of course, for new applications you should decide at the outset whether you want to
create a managed C++ application or a native C++ application.

 LEARNING WINDOWS PROGRAMMING

 There are always two basic aspects to interactive applications executing under Windows: You need
code to create the graphical user interface (GUI) with which the user interacts, and you need code to
process these interactions to provide the functionality of the application. Visual C++ 2010 provides
you with a great deal of assistance in both aspects of Windows application development. As you ’ ll
see later in this chapter, you can create a working Windows program with a GUI without writing
any code yourself at all. All the basic code to create the GUI can be generated automatically by
Visual C++ 2010; however, it ’ s essential to understand how this automatically generated code works
because you need to extend and modify it to make it do what you want, and to do that you need a
comprehensive understanding of C++.

 For this reason you ’ ll fi rst learn C++ — both the native C++ and C++/CLI versions of the language —
 without getting involved in Windows programming considerations. After you ’ re comfortable with C++
you ’ ll learn how to develop fully - fl edged Windows applications using native C++ and C++/CLI. This
means that while you are learning C++, you ’ ll be working with programs that involve only command
line input and output. By sticking to this rather limited input and output capability, you ’ ll be able to
concentrate on the specifi cs of how the C++ language works and avoid the inevitable complications
involved in GUI building and control. After you become comfortable with C++ you ’ ll fi nd that it ’ s an
easy and natural progression to applying C++ to the development of Windows application programs.

 Learning C++

 Visual C++ 2010 fully supports two versions of C++, defi ned by two separate standards:

 ‰ The ISO/IEC C++ standard is for implementing native applications — unmanaged C++.
This version of C++ is supported on the majority of computer platforms.

 ‰ The C++/CLI standard is designed specifi cally for writing programs that target the CLR
and is an extension of the ISO/IEC C++.

 Chapters 2 through 9 of this book teach you the C++ language. Because C++/CLI is an extension of
ISO/IEC C++, the fi rst part of each chapter introduces elements of the ISO/IEC C++ language; the
second part explains the additional features that C++/CLI introduces.

 Writing programs in C++/CLI enables you to take full advantage of the capabilities of the .NET
Framework, something that is not possible with programs written in ISO/IEC C++. Although C++/
CLI is an extension of ISO/IEC C++, to be able to execute your program fully with the CLR means
that it must conform to the requirements of the CLR. This implies that there are some features
of ISO/IEC C++ that you cannot use in your CLR programs. One example of this that you might
deduce from what I have said up to now is that the dynamic memory allocation and release facilities
offered by ISO/IEC C++ are not compatible with the CLR; you must use the CLR mechanism for
memory management, and this implies that you must use C++/CLI classes, not native C++ classes.

 The C++ Standards

 At the time of writing, the currently approved C++ language standard is defi ned by the document
ISO/IEC 14882:1998, published by the International Organization for Standardization (ISO).
This is the well - established version of C++ that has been around since 1998 and is supported by

Learning Windows Programming x 5

6 x CHAPTER 1 PROGRAMMING WITH VISUAL C++ 2010

compilers on the majority of computer hardware platforms and operating systems. There is a new
standard for C++ in draft form that is expected to be approved in the near future. Visual C++ 2010
already supports several of the new language capabilities offered by this new standard, and these are
described in this book.

 Programs that you write in standard C++ can be ported from one system environment to another
reasonably easily, although the library functions that a program uses — particularly those related to
building a graphical user interface — are a major determinant of how easy or diffi cult it will be. ISO/
IEC standard C++ is the fi rst choice of many professional program developers because it is so widely
supported, and because it is one of the most powerful programming languages available today.

 C++/CLI is a version of C++ that extends the ISO/IEC standard for C++ to better support the
 Common Language Infrastructure (CLI) defi ned by the standard ECMA - 355. The C++/CLI
language specifi cation is defi ned by the standard ECMA - 372 and is available for download from
the ECMA web site. This standard was developed from an initial technical specifi cation that was
produced by Microsoft to support the execution of C++ programs with the .NET Framework.
Thus, both the CLI and C++/CLI were originated by Microsoft in support of the .NET
Framework. Of course, standardizing the CLI and C++/CLI greatly increases the likelihood of
implementation in environments other than Windows. It ’ s important to appreciate that although
C++/CLI is an extension of ISO/IEC C++, there are features of ISO/IEC C++ that you must not use
when you want your program to execute fully under the control of the CLR. You ’ ll learn what
these are as you progress through the book.

 The CLR offers substantial advantages over the native environment. If you target your C++
programs at the CLR, they will be more secure and not prone to the potential errors you can make
when using the full power of ISO/IEC C++. The CLR also removes the incompatibilities introduced
by various high - level languages by standardizing the target environment to which they are compiled,
and thus permits modules written in C++ to be combined with modules written in other languages,
such as C# or Visual Basic.

 Attributes

 Attributes are an advanced feature of programming with C++/CLI that enable you to add descriptive
declarations to your code. At the simplest level, you can use attributes to annotate particular
programming elements in your program, but there ’ s more to attributes than just additional
descriptive data. Attributes can affect how your code behaves at run time by modifying the way the
code is compiled or by causing extra code to be generated that supports additional capabilities.
A range of standard attributes is available for C++/CLI, and it is also possible to create your own.

 A detailed discussion of attributes is beyond the scope of this book, but I mention them here
because you will make use of attributes in one or two places in the book, particularly in Chapter 19,
where you learn how to write objects to a fi le.

 Console Applications

 As well as developing Windows applications, Visual C++ 2010 also enables you to write, compile,
and test C++ programs that have none of the baggage required for Windows programs — that is,
applications that are essentially character - based, command - line programs. These programs are

called console applications in Visual C++ 2010 because you communicate with them through the
keyboard and the screen in character mode.

 When you write console applications it might seem as if you are being sidetracked from the main
objective of Windows programming, but when it comes to learning C++ (which you do need to
do before embarking on Windows - specifi c programming) it ’ s the best way to proceed. There ’ s a
lot of code in even a simple Windows program, and it ’ s very important not to be distracted by the
complexities of Windows when learning the ins and outs of C++. Therefore, in the early chapters
of the book, which are concerned with how C++ works, you ’ ll spend time walking with a few
lightweight console applications before you get to run with the heavyweight sacks of code in the
world of Windows.

 While you ’ re learning C++, you ’ ll be able to concentrate on the language features without worrying
about the environment in which you ’ re operating. With the console applications that you ’ ll write,
you have only a text interface, but this will be quite suffi cient for understanding all of C++ because
there ’ s no graphical capability within the defi nition of the language. Naturally, I will provide
extensive coverage of graphical user interface programming when you come to write programs
specifi cally for Windows using Microsoft Foundation Classes (MFC) in native C++ applications, and
Windows Forms with the CLR.

 There are two distinct kinds of console applications, and you ’ ll be using both.

 ‰ Win32 console applications compile to native code. You ’ ll be using these to try out the
capabilities of ISO/IEC C++.

 ‰ CLR console applications target the CLR. You ’ ll be using these when you are working with
the features of C++/CLI.

 Windows Programming Concepts

 The project creation facilities provided with Visual C++ 2010 can generate skeleton code for a wide
variety of native C++ application programs automatically, including basic Windows programs. For
Windows applications that you develop for the CLR you get even more automatic code generation.
You can create complete applications using Windows Forms that require only a small amount of
customized code to be written by you, and some that require no additional code at all. Creating a
project is the starting point for all applications and components that you develop with Visual C++
2010, and to get a fl avor of how this works you ’ ll look at the mechanics of creating some examples,
including an outline Windows program, later in this chapter.

 A Windows program, whether a native C++ program or a program written for the CLR, has a
different structure from that of the typical console program you execute from the command line,
and it ’ s more complicated. In a console program you can get input from the keyboard and write
output back to the command line directly, whereas a Windows program can access the input
and output facilities of the computer only by way of functions supplied by the host environment;
no direct access to the hardware resources is permitted. Because several programs can be active
at one time under Windows, Windows has to determine which application a given raw input,
such as a mouse click or the pressing of a key on the keyboard, is destined for, and signal the
program concerned accordingly. Thus, the Windows operating system has primary control of all
communications with the user.

Learning Windows Programming x 7

8 x CHAPTER 1 PROGRAMMING WITH VISUAL C++ 2010

 The nature of the interface between a user and a Windows application is such that a wide range of
different inputs is usually possible at any given time. A user may select any of a number of menu
options, click a toolbar button, or click the mouse somewhere in the application window. A well -
 designed Windows application has to be prepared to deal with any of the possible types of input
at any time because there is no way of knowing in advance which type of input is going to occur.
These user actions are received by the operating system in the fi rst instance, and are all regarded
by Windows as events . An event that originates with the user interface for your application will
typically result in a particular piece of your program code being executed. How program execution
proceeds is therefore determined by the sequence of user actions. Programs that operate in this way
are referred to as event - driven programs , and are different from traditional procedural programs
that have a single order of execution. Input to a procedural program is controlled by the program
code and can occur only when the program permits it; therefore, a Windows program consists
primarily of pieces of code that respond to events caused by the action of the user, or by Windows
itself. This sort of program structure is illustrated in Figure 1 - 2.

Keyboard
Input

Press Left
Mouse
Button

Press Right
Mouse
Button

Process
Keyboard

Input

Process
Left Mouse

Button

Process
Right

Mouse
Button

WINDOWS

Program Data

Your Program

Events:

Other
Event

Process
Other
Event

FIGURE 1-2

 Each square block in Figure 1 - 2 represents a piece of code written specifi cally to deal with a
particular event. The program may appear to be somewhat fragmented because of the number of
disjointed blocks of code, but the primary factor welding the program into a whole is the Windows
operating system itself. You can think of your program as customizing Windows to provide a
particular set of capabilities.

 Of course, the modules servicing various external events, such as the selection of a menu or a mouse
click, all typically have access to a common set of application - specifi c data in a particular program.
This application data contains information that relates to what the program is about — for
example, blocks of text recording scoring records for a player in a program aimed at tracking how
your baseball team is doing — as well as information about some of the events that have occurred
during execution of the program. This shared collection of data allows various parts of the program
that look independent to communicate and operate in a coordinated and integrated fashion. I will
go into this in much more detail later in the book.

 Even an elementary Windows program involves several lines of code, and with Windows programs
generated by the application wizards that come with Visual C++ 2010, “ several ” turns out to be
 “ many. ” To simplify the process of understanding how C++ works, you need a context that is as
uncomplicated as possible. Fortunately, Visual C++ 2010 comes with an environment that is ready -
 made for the purpose.

 WHAT IS THE INTEGRATED DEVELOPMENT ENVIRONMENT?

 The integrated development environment (IDE) that comes with Visual C++ 2010 is a completely
self - contained environment for creating, compiling, linking, and testing your C++ programs.
It also happens to be a great environment in which to learn C++ (particularly when combined with
a great book).

 Visual C++ 2010 incorporates a range of fully integrated tools designed to make the whole
process of writing C++ programs easy. You will see something of these in this chapter, but rather
than grind through a boring litany of features and options in the abstract, you can fi rst take a look
at the basics to get a view of how the IDE works, and then pick up the rest in context as you
go along.

 The fundamental parts of Visual C++ 2010, provided as part of the IDE, are the editor, the
compiler, the linker, and the libraries. These are the basic tools that are essential to writing and
executing a C++ program. Their functions are as follows.

 The Editor

 The editor provides an interactive environment in which to create and edit C++ source code.
As well as the usual facilities, such as cut and paste, which you are certainly already familiar
with, the editor also provides color cues to differentiate between various language elements. The
editor automatically recognizes fundamental words in the C++ language and assigns a color to
them according to what they are. This not only helps to make your code more readable, but also
provides a clear indicator of when you make errors in keying such words.

What Is the Integrated Development Environment? x 9

10 x CHAPTER 1 PROGRAMMING WITH VISUAL C++ 2010

 The Compiler

 The compiler converts your source code into object code , and detects and reports errors in
the compilation process. The compiler can detect a wide range of errors caused by invalid or
unrecognized program code, as well as structural errors, such as parts of a program that can never
be executed. The object code output from the compiler is stored in fi les called object fi les that have
names with the extension .obj .

 The Linker

 The linker combines the various modules generated by the compiler from source code fi les, adds
required code modules from program libraries supplied as part of C++, and welds everything into
an executable whole. The linker can also detect and report errors — for example, if part of your
program is missing, or a nonexistent library component is referenced.

 The Libraries

 A library is simply a collection of prewritten routines that supports and extends the C++ language
by providing standard professionally-produced code units that you can incorporate into your
programs to carry out common operations. The operations implemented by routines in the various
libraries provided by Visual C++ 2010 greatly enhance productivity by saving you the effort of
writing and testing the code for such operations yourself. I have already mentioned the .NET
Framework library, and there are a number of others — too many to enumerate here — but I ’ ll
identify the most important ones.

 The Standard C++ Library defi nes a basic set of routines common to all ISO/IEC C++ compilers.
It contains a wide range of routines, including numerical functions, such as the calculation
of square roots and the evaluation of trigonometrical functions; character - and string - processing
routines, such as the classifi cation of characters and the comparison of character strings; and
many others. You ’ ll get to know quite a number of these as you develop your knowledge of
ISO/IEC C++. There are also libraries that support the C++/CLI extensions to ISO/IEC C++.

 Native window - based applications are supported by a library called the Microsoft
Foundation Classes (MFC). The MFC greatly reduces the effort needed to build the graphical
user interface for an application. (You ’ ll see a lot more of the MFC when you fi nish exploring the
nuances of the C++ language.) Another library contains a set of facilities called Windows
Forms, which are roughly the equivalent of the MFC for Windows - based applications executed
with the .NET Framework. You ’ ll be seeing how you make use of Windows Forms to develop
applications, too.

 USING THE IDE

 All program development and execution in this book is performed from within the IDE.
When you start Visual C++ 2010 you ’ ll notice an application window similar to that shown in
Figure 1 - 3.

Using the IDE x 11

 The pane to the left in Figure 1 - 3 is the Solution Explorer window , the top right pane presently
showing the Start page is the Editor window , and the tab visible in the pane at the bottom is
the Output window . The Solution Explorer window enables you to navigate through your
program fi les and display their contents in the Editor window, and to add new fi les to your program.
The Solution Explorer window has an additional tab (only three are shown in Figure 1 - 3) that
displays the Resource View for your application, and you can select which tabs are to be displayed
from the View menu. The Editor window is where you enter and modify source code and other
components of your application. The Output window displays the output from build operations in
which a project is compiled and linked. You can choose to display other windows by selecting from
the View menu.

 Note that a window can generally be undocked from its position in the Visual C++
application window. Just right - click the title bar of the window you want to undock and select Float
from the pop - up menu. In general, I will show windows in their undocked state in the book. You
can restore a window to its docked state by right - clicking its title bar and selecting Dock from
the pop - up.

FIGURE 1-3

12 x CHAPTER 1 PROGRAMMING WITH VISUAL C++ 2010

 Toolbar Options

 You can choose which toolbars are displayed in your Visual C++
window by right - clicking in the toolbar area. The range of toolbars
in the list depends on which edition of Visual C++ 2010 you have
installed. A pop - up menu with a list of toolbars (Figure 1 - 4)
appears, and the toolbars currently displayed have checkmarks
alongside them.

 This is where you decide which toolbars are visible at any one time. You can
make your set of toolbars the same as those shown in Figure 1 - 3 by making
sure the Build, Class Designer, Debug, Standard, and View Designer menu
items are checked. Clicking a toolbar in the list checks it if it is unchecked,
and results in its being displayed; clicking a toolbar that is checked unchecks
it and hides the toolbar.

 You don ’ t need to clutter up the application window with all the
toolbars you think you might need at some time. Some toolbars
appear automatically when required, so you ’ ll probably fi nd that the
default toolbar selections are perfectly adequate most of the time. As
you develop your applications, from time to time you might think it
would be more convenient to have access to toolbars that aren ’ t
displayed. You can change the set of visible toolbars whenever it
suits you by right - clicking in the toolbar area and choosing from the
context menu.

NOTE As in many other Windows applications, the toolbars that make up
Visual C++ 2010 come complete with tooltips. Just let the mouse pointer linger
over a toolbar button for a second or two, and a white label will display the
function of that button.

 Dockable Toolbars

 A dockable toolbar is one that you can move around to position it at a convenient place in
the window. You can arrange for any of the toolbars to be docked at any of the four sides
of the application window. If you right - click in the toolbar area and select Customize from the
pop - up, the Customize dialog will be displayed. You can choose where a particular toolbar
is docked by selecting it and clicking the Modify Selection button. You can then choose
from the drop - down list to dock the toolbar where you want. Figure 1 - 5 shows how
the dialog looks after the user selects the Build toolbar on the left and clicks the Modify
Selection button.

FIGURE 1-4

Using the IDE x 13

 You ’ ll recognize many of the toolbar icons that Visual C++ 2010 uses from other Windows
applications, but you may not appreciate exactly what these icons do in the context of Visual C++,
so I ’ ll describe them as we use them.

 Because you ’ ll use a new project for every program you develop, looking at what exactly a project is
and understanding how the mechanism for defi ning a project works is a good place to start fi nding
out about Visual C++ 2010.

 Documentation

 There will be plenty of occasions when you ’ ll want to fi nd out more information about Visual C++
2010 and its features and options. Press Ctrl+Alt+F1 to access the product documentation. The Help
menu also provides various routes into the documentation, as well as access to program samples and
technical support.

 Projects and Solutions

 A project is a container for all the things that make up a program of some kind — it might be a
console program, a window - based program, or some other kind of program — and it usually consists
of one or more source fi les containing your code, plus possibly other fi les containing auxiliary data.
All the fi les for a project are stored in the project folder ; detailed information about the project is
stored in an XML fi le with the extension .vcxproj , also in the project folder. The project folder also
contains other folders that are used to store the output from compiling and linking your project.

 The idea of a solution is expressed by its name, in that it is a mechanism for bringing together all
the programs and other resources that represent a solution to a particular data - processing problem.
For example, a distributed order - entry system for a business operation might be composed of several
different programs that could each be developed as a project within a single solution; therefore, a

FIGURE 1-5

14 x CHAPTER 1 PROGRAMMING WITH VISUAL C++ 2010

solution is a folder in which all the information relating to one or more projects is stored, and one or
more project folders are subfolders of the solution folder. Information about the projects in a solution
is stored in two fi les with the extensions .sln and .suo, respectively . When you create a project a
new solution is created automatically unless you elect to add the project to an existing solution.

 When you create a project along with a solution, you can add further projects to the same solution.
You can add any kind of project to an existing solution, but you will usually add only a project
related in some way to the existing project, or projects, in the solution. Generally, unless you have a
good reason to do otherwise, each of your projects should have its own solution. Each example you
create with this book will be a single project within its own solution.

 Defi ning a Project

 The fi rst step in writing a Visual C++ 2010 program is to create a project for it using the File Í New
Í Project menu option from the main menu or by pressing Ctrl+Shift+N ; you can also simply click
New Project . . . on the Start page. As well as containing fi les that defi ne all the code and any other
data that makes up your program, the project XML fi le in the project folder also records the Visual
C++ 2010 options you ’ re using.

 That ’ s enough introductory stuff for the moment. It ’ s time to get your hands dirty.

 TRY IT OUT Creating a Project for a Win32 Console Application

 You ’ ll now take a look at creating a project for a console application. First, select File Í New Í Project
or use one of the other possibilities mentioned earlier to bring up the New Project dialog box, as shown
in Figure 1 - 6.

FIGURE 1-6

Using the IDE x 15

 The left pane in the New Project dialog box displays the types of projects you can create; in this
case, click Win32. This also identifi es an application wizard that creates the initial contents for the
project. The right pane displays a list of templates available for the project type you have selected in
the left pane. The template you select is used by the application wizard in creating the fi les that make
up the project. In the next dialog box you have an opportunity to customize the fi les that are created
when you click the OK button in this dialog box. For most of the type/template options, a basic set of
program source modules is created automatically.

 You can now enter a suitable name for your project by typing into the “ Name: ” edit box — for
example, you could call this one Ex1_01, or you can choose your own project name. Visual C++ 2010
supports long fi le names, so you have a lot of fl exibility. The name of the solution folder appears in
the bottom edit box and, by default, the solution folder has the same name as the project. You can
change this if you want. The dialog box also enables you to modify the location for the solution that
contains your project — this appears in the “ Location: ” edit box. If you simply enter a name for your
project, the solution folder is automatically set to a folder with that name, with the path shown in the
 “ Location: ” edit box. By default the solution folder is created for you, if it doesn ’ t already exist.
If you want to specify a different path for the solution folder, just enter it in the “ Location: ” edit box.
Alternatively, you can use the Browse button to select another path for your solution. Clicking OK
displays the Win32 Application Wizard dialog box shown in Figure 1 - 7.

FIGURE 1-7

 This dialog box explains the settings currently in effect. If you click the Finish button the
wizard creates all the project fi les based on the settings in this box. In this case, you can click
Application Settings on the left to display the Application Settings page of the wizard, shown in
Figure 1 - 8.

16 x CHAPTER 1 PROGRAMMING WITH VISUAL C++ 2010

 The Application Settings page enables you to choose options that you want to apply to the project.
Here, you can leave things as they are and click Finish. The application wizard then creates the
project with all the default fi les.

 The project folder will have the name that you supplied as the project name and will hold all the
fi les making up the project defi nition. If you didn ’ t change it, the solution folder has the same name as
the project folder and contains the project folder plus the fi les defi ning the contents of the solution.
If you use Windows Explorer to inspect the contents of the solution folder, you ’ ll see that it contains
four fi les:

 ‰ A fi le with the extension .sln that records information about the projects in the solution.

 ‰ A fi le with the extension .suo in which user options that apply to the solution will be recorded.

 ‰ A fi le with the extension .sdf that records data about Intellisense
for the solution. Intellisense is the facility that provides auto -
 completion and prompts you for code in the Editor window as you
enter it.

 ‰ A fi le with the extension .opensdf that records information about
the state of the project. This fi le exists only while the project is open.

 If you use Windows Explorer to look in the project folder, you will see that
there are eight fi les initially, including a fi le with the name ReadMe.txt
that contains a summary of the contents of the fi les that have been created
for the project. The project you have created will automatically open in
Visual C++ 2010 with the Solution Explorer pane, as in Figure 1 - 9.

FIGURE 1-8

FIGURE 1-9

Using the IDE x 17

 The Solution Explorer pane presents a view of all the projects in the current solution and the fi les they
contain — here, of course, there is just one project. You can display the contents of any fi le as an additional
tab in the Editor pane just by double - clicking the name in the Solution Explorer tab. In the Editor pane,
you can switch instantly to any of the fi les that have been displayed just by clicking on the appropriate tab.

 The Class View tab displays the classes defi ned in your project and also shows the contents of each
class. You don ’ t have any classes in this application, so the view is empty. When I discuss classes you
will see that you can use the Class View tab to move around the code relating to the defi nition and
implementation of all your application classes quickly and easily.

 The Property Manager tab shows the properties that have been set for the Debug and Release versions
of your project. I ’ ll explain these versions a little later in this chapter. You can change any of the
properties shown by right - clicking a property and selecting Properties from the context menu; this
displays a dialog box where you can set the project property. You can also press Alt+F7 to display
the properties dialog box at any time. I ’ ll discuss this in more detail when we go into the Debug and
Release versions of a program.

 You can display the Resource View tab by selecting from the View menu or by pressing Ctrl+Shift+E.
The Resource View shows the dialog boxes, icons, menus, toolbars, and other resources used by the
program. Because this is a console program, no resources are used; however, when you start writing
Windows applications, you ’ ll see a lot of things here. Through this tab you can edit or add to the
resources available to the project.

 As with most elements of the Visual C++ 2010 IDE, the Solution Explorer and other tabs provide
context - sensitive pop - up menus when you right - click items displayed in the tab, and in some cases when
you right - click in the empty space in the tab, too. If you fi nd that the Solution Explorer pane gets in
your way when you ’ re writing code, you can hide it by clicking the Autohide icon. To redisplay it, click
the Name tab on the left of the IDE window.

 Modifying the Source Code

 The application wizard generates a complete Win32 console program that you can compile and
execute. Unfortunately, the program doesn ’ t do anything as it stands, so to make it a little more
interesting you need to change it. If it is not already visible in the Editor pane, double - click
 Ex1_01.cpp in the Solution Explorer pane. This is the main source fi le for the program that the
application wizard generated, and it looks like what is shown in Figure 1 - 10.

FIGURE 1-10

18 x CHAPTER 1 PROGRAMMING WITH VISUAL C++ 2010

 If the line numbers are not displayed on your system, select Tools Í Options from the main menu to
display the Options dialog box. If you extend the C/C++ option in the Text Editor subtree in the left
pane and select General from the extended tree, you can select Line Numbers in the right pane of
the dialog box. I ’ ll fi rst give you a rough guide to what this code in Figure 1 - 10 does, and you ’ ll see
more on all of this later.

 The fi rst two lines are just comments. Anything following “ // ” in a line is ignored by the compiler.
When you want to add descriptive comments in a line, precede your text with “ // ” .

 Line 4 is an #include directive that adds the contents of the fi le stdafx.h to this fi le in place of this
 #include directive. This is the standard way to add the contents of .h source fi les to a .cpp source
fi le in a C++ program.

 Line 7 is the fi rst line of the executable code in this fi le and the beginning of the function _tmain() .
A function is simply a named unit of executable code in a C++ program; every C++ program
consists of at least one — and usually many more — functions.

 Lines 8 and 10 contain left and right braces, respectively, that enclose all the executable code in the
function _tmain() . The executable code is, therefore, just the single line 9, and all this does is end
the program.

 Now you can add the following two lines of code in the Editor window:

// Ex1_01.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"
 #include < iostream >

int _tmain(int argc, _TCHAR* argv[])
{
 std::cout < < "Hello world!\n";
 return 0;
}

code snippet Ex1_01.cpp

 The new lines you should add are shown in bold; the others are generated for you. To introduce
each new line, place the cursor at the end of the text on the preceding line and press Enter to create
an empty line in which you can type the new code. Make sure it is exactly as shown in the preceding
example; otherwise the program may not compile.

 The fi rst new line is an #include directive that adds the contents of one of the standard libraries
for ISO/IEC C++ to the source fi le. The iostream library defi nes facilities for basic I/O operations,
and the one you are using in the second line that you added writes output to the command line.
 std::cout is the name of the standard output stream, and you write the string “ Hello world!\n ”
to std::cout in the second addition statement. Whatever appears between the pair of double - quote
characters is written to the command line.

 Building the Solution

 To build the solution, press F7 or select the Build Í Build Solution menu item. Alternatively, you can
click the toolbar button corresponding to this menu item. The toolbar buttons for the Build menu

Available for
download on
Wrox.com

Using the IDE x 19

may not be displayed, but you can easily fi x this by right - clicking in the toolbar area and selecting
the Build toolbar from those in the list. The program should then compile successfully.
If there are errors, it may be that you created them while entering the new code, so check the two
new lines very carefully.

 Files Created by Building a Console Application

 After the example has been built without error, take a look in the project folder by using Windows
Explorer to see a new subfolder to the solution folder Ex1_01 called Debug . This is the folder
Ex1_01\Debug , not the folder Ex1_01\Ex1_01\Debug . This folder contains the output of the build
you just performed on the project. Notice that this folder contains three fi les.

 Other than the .exe fi le, which is your program in executable form, you don ’ t need to know much
about what ’ s in these fi les. In case you ’ re curious, however, the .ilk fi le is used by the linker when
you rebuild your project. It enables the linker to incrementally link the object fi les produced from
the modifi ed source code into the existing .exe fi le. This avoids the need to relink everything each
time you change your program. The .pdb fi le contains debugging information that is used when
you execute the program in debug mode. In this mode, you can dynamically inspect information
generated during program execution.

 There ’ s a Debug subdirectory in the Ex1_01 project folder too. This contains a large number of fi les
that were created during the build process, and you can see what kind of information they contain
from the Type description in Windows Explorer.

 Debug and Release Versions of Your Program

 You can set a range of options for a project through the Project Í Ex1_01 Properties
menu item. These options determine how your source code is processed during the compile
and link stages. The set of options that produces a particular executable version of your
program is called a confi guration . When you create a new project workspace, Visual
C++ 2010 automatically creates confi gurations for producing two versions of your application.
One version, called the Debug version, includes additional information that helps you debug
the program. With the Debug version of your program, you can step through the code when
things go wrong, checking on the data values in the program. The other, called the Release
version, has no debug information included and has the code - optimization options for the
compiler turned on to provide you with the most effi cient executable module. These two
confi gurations are suffi cient for your needs throughout this book, but when you need to add
other confi gurations for an application you can do so through the Build Í Confi guration
Manager menu. (Note that this menu item won ’ t appear if you haven ’ t got a project loaded. This is
obviously not a problem, but might be confusing if you ’ re just browsing through the menus to see
what ’ s there.)

 You can choose which confi guration of your program to work with by selecting from the
dropdown list in the toolbar. If you select Confi guration Manager . . . from the dropdown list, the
Confi guration Manager dialog box will be displayed, as shown in Figure 1 - 11.

20 x CHAPTER 1 PROGRAMMING WITH VISUAL C++ 2010

 You use this dialog when your solution contains multiple projects. Here you can choose
confi gurations for each of the projects and choose which ones you want to build.

 After your application has been tested using the debug confi guration and appears to be
working correctly, you typically rebuild the program as a release version; this produces
optimized code without the debug and trace capability, so the program runs faster and occupies
less memory.

 Executing the Program

 After you have successfully compiled the solution, you
can execute your program by pressing Ctrl+F5. You
should see the window shown in Figure 1 - 12.

 As you can see, you get the text between the double
quotes written to the command line. The “ \n ” that
appeared at the end of the text string is a special sequence called an escape sequence that denotes a
newline character. Escape sequences are used to represent characters in a text string that you cannot
enter directly from the keyboard.

 TRY IT OUT Creating an Empty Console Project

 The previous project contained a certain amount of excess baggage that you don ’ t need when
working with simple C++ language examples. The precompiled headers option chosen by
default resulted in the stdafx.h fi le being created in the project. This is a mechanism for making
the compilation process more effi cient when there are a lot of fi les in a program, but it won ’ t

FIGURE 1-11

FIGURE 1-12

Using the IDE x 21

be necessary for many of our examples. In these instances, you start with an empty project
to which you can add your own source fi les. You can see how this works by creating a new
project in a new solution for a Win32 console program with the name Ex1_02 . After you have
entered the project name and clicked OK, click Application Settings on the left side of the
dialog box that follows. You can then select “ Empty project ” from the additional options, as
Figure 1 - 13 shows.

FIGURE 1-13

 When you click Finish, the project is created as before, but this time without any source fi les.

 By default, the project options will be set to use Unicode libraries. This makes use of a non - standard
name for the main function in the program. In order to use standard native C++ in your console
programs, you need to switch off the use of Unicode libraries.

 Select the Project Í Properties menu item, or press Alt+F7, to display the Property Pages dialog
for the project. Select the General option under Confi guration Properties in the left pane and select
the Character Set property in the right pane. You will then be able to set the value of this property to
Not Set from the drop - down list to the right of the property name, as shown in Figure 1 - 14. Click
OK to close the dialog. You should do this for all the native C++ console program examples in the
book. If you forget to do so, they won ’ t build. You will be using Unicode libraries in the Windows
examples, though.

22 x CHAPTER 1 PROGRAMMING WITH VISUAL C++ 2010

 Next, add a new source fi le to the project. Right - click the Solution Explorer pane, and then select Add
Í New Item . . . from the context menu. A dialog box displays: click Code in the left pane and C++
File (.cpp) in the right pane. Enter the fi le name as Ex1_02 , as shown in Figure 1 - 15.

FIGURE 1-14

FIGURE 1-15

Using the IDE x 23

 When you click Add, the new fi le is added to the project and is displayed in the Editor window. The fi le
is empty, of course, so nothing will be displayed. Enter the following code in the Editor window:

// Ex1_02.cpp A simple console program
#include < iostream > // Basic input and output library

int main()
{
 std::cout < < "This is a simple program that outputs some text." < < std::endl;
 std::cout < < "You can output more lines of text" < < std::endl;
 std::cout < < "just by repeating the output statement like this." < < std::endl;
 return 0; // Return to the operating system
}

code snippet Ex1_02.cpp

 Note the automatic indenting that occurs as you type the code. C++ uses indenting to make programs
more readable, and the editor automatically indents each line of code that you enter based on what was
in the previous line. You can change the indenting by selecting the Tools Í Options . . . menu item to
display the Options dialog. Selecting Text Editor Í C/C++ Í Tabs in the left pane of the dialog displays
the indenting options in the right pane. The editor inserts tabs by default, but you can change it to
insert spaces if you want.

 You can also see the syntax color highlighting in action as you type. Some elements of the program are
shown in different colors, as the editor automatically assigns colors to language elements depending on
what they are.

 The preceding code is the complete program. You probably noticed a couple of differences compared
to the code generated by the application wizard in the previous example. There ’ s no #include directive
for the stdafx.h fi le. You don ’ t have this fi le as part of the project here because you are not using the
precompiled headers facility. The name of the function here is main ; before it was _tmain . In fact all
ISO/IEC C++ programs start execution in a function called main() . Microsoft also provides for this
function to be called wmain when Unicode characters are used, and the name _tmain is defi ned to be
either main or wmain (in the tchar.h header fi le), depending on whether or not the program is going
to use Unicode characters. In the previous example the name _tmain is defi ned behind the scenes to be
 main . I ’ ll use the standard name main in all the native C++ examples, which is why you need to change
the Character Set property value for these projects to Not Set.

 The output statements are a little different. The fi rst statement in main() is the following:

 std::cout < < "This is a simple program that outputs some text." < < std::endl;

 You have two occurrences of the < < operator, and each one sends whatever follows to std::cout ,
which is the standard output stream. First, the string between double quotes is sent to the stream, and
then std::endl , where std::endl is defi ned in the standard library as a newline character. Earlier,
you used the escape sequence \n for a newline character within a string between double quotes. You
could have written the preceding statement as follows:

 std::cout < < "This is a simple program that outputs some text.\n";

Available for
download on
Wrox.com

24 x CHAPTER 1 PROGRAMMING WITH VISUAL C++ 2010

 You can now build this project in the same way as the previous example. Note that any open source
fi les in the Editor pane are saved automatically if you have not already saved them. When you have
compiled the program successfully, press Ctrl+F5 to execute it. If everything works as it should,
the output will be as follows:

This is a simple program that outputs some text.
You can output more lines of text
just by repeating the output statement like this.

 Dealing with Errors

 Of course, if you didn ’ t type the program correctly, you get errors reported. To see how this
works you could deliberately introduce an error into the program. If you already have errors
of your own, you can use those to perform this exercise. Go back to the Editor pane and delete
the semicolon at the end of the second - to - last line between the braces (line 8); then rebuild the
source fi le. The Output pane at the bottom of the application window will include the following
error message:

C2143: syntax error : missing ';' before 'return'

 Every error message during compilation has an error number that you can look up in the
documentation. Here the problem is obvious; however, in more obscure cases, the documentation
may help you fi gure out what is causing the error. To get the documentation on an error, click
the line in the Output pane that contains the error number and then press F1. A new window
displays containing further information about the error. You can try it with this simple error,
if you like.

 When you have corrected the error, you can then rebuild the project. The build operation works
effi ciently because the project defi nition keeps track of the status of the fi les making up the project.
During a normal build, Visual C++ 2010 recompiles only the fi les that have changed since the
program was last compiled or built. This means that if your project has several source fi les, and
you ’ ve edited only one of the fi les since the project was last built, only that fi le is recompiled before
linking to create a new .exe fi le.

 You ’ ll also use CLR console programs, so the next section shows you what a CLR console project
looks like.

 TRY IT OUT Creating a CLR Console Project

 Press Ctrl+Shift+N to display the New Project dialog box; then select the project type as CLR and the
template as CLR Console Application, as shown in Figure 1 - 16.

Using the IDE x 25

 Enter the name as Ex1_03 . When you click OK, the fi les for the project are created. There are no options for
a CLR console project, so you always start with the same set of fi les in a project with this template. If you
want an empty project — something you won ’ t need with this book — there ’ s a separate template for this.

 If you look at the Solution Explorer pane, you ’ ll see that there are some extra fi les, compared to a Win32
console project.

 There are a couple of fi les in the virtual Resource Files folder. The .ico fi le stores an icon for the
application that is displayed when the program is minimized; the .rc fi le records the resources for
the application — just the icon in this case.

 There is also a fi le with the name AssemblyInfo.cpp . Every CLR program consists of one or more
 assemblies , an assembly being a collection of code and resources that forms a functional unit. An assembly
also contains extensive data for the CLR; there are specifi cations of the data types being used, versioning
information about the code, and information that determines if the contents of the assembly can be accessed
from another assembly. In short, an assembly is a fundamental building block in all CLR programs.

 If the source code in the Ex1_03.cpp fi le is not displayed in the Editor window, double - click the fi le name
in the Solution Explorer pane. The source code has the same #include directive as the default native C++
console program because CLR programs use precompiled headers for effi ciency. The next line is new:

using namespace System;

 The .NET library facilities are all defi ned within a namespace , and all the standard sort of stuff you are
likely to use is in a namespace with the name System . This statement indicates the program code that
follows uses the System namespace, but what exactly is a namespace?

FIGURE 1-16

26 x CHAPTER 1 PROGRAMMING WITH VISUAL C++ 2010

 A namespace is a very simple concept. Within your program code and within the code that forms the
.NET libraries, names have to be given to lots of things — data types, variables, and blocks of code called
functions all have to have names. The problem is that if you happen to invent a name that is already used
in the library, there ’ s potential for confusion. A namespace provides a way of getting around this problem.
All the names in the library code defi ned within the System namespace are implicitly prefi xed with the
namespace name. So a name such as String in the library is really System::String . This means that if
you have inadvertently used the name String for something in your code, you can use System::String
to refer to String from the .NET library without confusing it with the name String in your code.

 The two colons (::) are an operator called the scope resolution operator . Here the scope resolution operator
separates the namespace name System from the type name String . You have seen this operator in the
native C++ examples earlier in this chapter with std::cout and std::endl . This is the same story — std
is the namespace name for native C++ libraries, and cout and endl are the names that have been defi ned
within the std namespace to represent the standard output stream and the newline character, respectively.

 In fact, the using namespace statement in this example enables you to use any name from the System
namespace without having to use the namespace name as a prefi x. If you did end up with a name
confl ict between a name you defi ned and a name in the library, you could resolve the problem by
removing the using namespace statement and explicitly qualifying the name from the library with the
namespace name. You learn more about namespaces in Chapter 2.

 You can compile and execute the program by pressing Ctrl+F5. The output window should contain the
following:

Hello World

NOTE At the time of writing, the console window for a C++/CLI program does
not remain on the screen when you press Ctrl+F5. It is displayed briefl y, and
then immediately disappears. If you fi nd this is still the case with your
 installation, put the following line immediately before any return statement in
the main() function:

Console::ReadLine();

The program will pause with the console window displayed when this statement
executes. Just press the Enter key to continue and allow the program to end. You
may need to do this for all C++/CLI console program examples to see the output.

The other possibility is to open a command prompt window for the folder that
contains the .exe fi le for the program. With Windows Vista or Windows 7, you
can do this by holding down the Shift key while you right-click the folder in
Windows Explorer and then selecting Open Command Window Here from the
context menu. You can then execute the program from the command prompt by
entering the name of the .exe fi le.

Using the IDE x 27

 Setting Options in Visual C++ 2010

 Two sets of options are available. You can set options that apply to the tools provided by Visual C++
2010, which apply in every project context. You also can set options that are specifi c to a project,
and that determine how the project code is to be processed when it is compiled and linked. Options
that apply to every project are set through the Options dialog box that ’ s displayed when you select
Tools Í Options from the main menu. You used this dialog earlier to change the code indenting
used by the editor. The Options dialog box is shown in Figure 1 - 17.

The output is similar to that from the fi rst example. This output is produced by
the following line:

 Console::WriteLine(L"Hello World");

This uses a .NET library function to write the information between the double
quotes to the command line, so this is the CLR equivalent of the native C++
statement that you added to Ex1_01:

 std::cout << "Hello world!\n";

What the CLR statement does is more immediately apparent than what the
native C++ statement does.

FIGURE 1-17

 Clicking the [unfi lled] symbol for any of the items in the left pane displays a list of subtopics.
Figure 1 - 17 shows the options for the General subtopic under Projects and Solutions. The right pane
displays the options you can set for the topic you have selected in the left pane. You should concern

28 x CHAPTER 1 PROGRAMMING WITH VISUAL C++ 2010

yourself with only a few of these at this time, but you ’ ll fi nd it useful to spend a little time browsing
the range of options available to you. Clicking the Help button (the one with the question mark) at
the top right of the dialog box displays an explanation of the current options.

 You probably want to choose a path to use as a default when you create a new project, and you can
do this through the fi rst option shown in Figure 1 - 17. Just set the path to the location where you
want your projects and solutions stored.

 You can set options that apply to every C++ project by selecting the Projects and Solutions Í

VC++ Project Settings topic in the left pane. You can also set options specifi c to the current project
through the Project Í Properties menu item in the main menu, or by pressing Alt+F7. This menu
item label is tailored to refl ect the name of the current project. You used this to change the value of
the Character Set property for the Ex1_02 console program.

 Creating and Executing Windows Applications

 Just to show how easy it ’ s going to be, you can now create two working Windows applications.
You ’ ll create a native C++ application using MFC, and then you ’ ll create a Windows Forms
application that runs with the CLR. I ’ ll defer discussion of the programs that you ’ ll generate until
I ’ ve covered the necessary ground for you to understand it in detail. You will see, though, that the
processes are straightforward.

 Creating an MFC Application

 To start with, if an existing project is active — as indicated by the project name ’ s appearing
in the title bar of the Visual C++ 2010 main window — you can select Close Solution from the
File menu. Alternatively, you can create a new project and have the current solution closed
automatically.

 To create the Windows program, select
New Í Project from the File menu or press
Ctrl+Shift+N; then set the project type as
MFC, and select MFC Application as the
project template. You can then enter
the project name as Ex1_04 . When you
click OK the MFC Application Wizard
dialog box is displayed. The dialog box has
a range of options that let you choose which
features you ’ d like to have included in your
application. These are identifi ed by the items
in the list on the left of the dialog box.

 Click Application Type to display these
options. Click the Tabbed documents option
to deselect it and select Windows Native/
Default from the drop - down list to the right.
The dialog should then look as shown in
Figure 1 - 18.

FIGURE 1-18

Using the IDE x 29

 Click Advanced Features next, and uncheck Explorer docking pane, Output docking pane,
Properties docking pane, ActiveX controls, and Common Control Manifest so that the dialog looks
as shown in Figure 1 - 19.

FIGURE 1-19

 Finally, click Finish to create the project. The undocked Solution
Explorer pane in the IDE window will look as shown in Figure 1 - 20.

 The list shows the large number of source fi les that have been created,
and several resource fi les. You need plenty of space on your hard
drive when writing Windows programs! The fi les with the extension
 .cpp contain executable C++ source code, and the .h fi les contain
C++ code consisting of defi nitions that are used by the executable
code. The .ico fi les contain icons. The fi les are grouped into
subfolders you can see for ease of access. These aren ’ t real folders,
though, and they won ’ t appear in the project folder on your disk.

 If you now take a look at the Ex1_04 solution folder and subfolders
using Windows Explorer or whatever else you may have handy for
looking at the fi les on your hard disk, you ’ ll notice that you have
generated a total of 29 fi les. Four of these are in the solution folder
that includes the transient .opensdf fi le, a further 20 are in the
project folder, and the rest are in a subfolder, res , of the project
folder. The fi les in the res subfolder contain the resources used by the
program, such as the menus and icons. You get all this as a result of
just entering the name you want to assign to the project. You can see
why, with so many fi les and fi le names being created automatically,
a separate directory for each project becomes more than just a good
idea. FIGURE 1-20

30 x CHAPTER 1 PROGRAMMING WITH VISUAL C++ 2010

 One of the fi les in the Ex1_04 project directory is ReadMe.txt , and it provides an explanation of the
purpose of each of the fi les that the MFC Application Wizard has generated. You can take a look
at it if you want, using Notepad, WordPad, or even the Visual C++ 2010 editor. To view it in the
Editor window, double - click it in the Solution Explorer pane.

 Building and Executing the MFC Application

 Before you can execute the program, you have to build the project — that is, compile the source code
and link the program modules. You do this in exactly the same way as with the console application
example. To save time, press Ctrl+F5 to get the project built and then executed in a single operation.

 After the project has been built, the Output window indicates that there are no errors, and the
executable starts running. The window for the program you ’ ve generated is shown in Figure 1 - 21.

FIGURE 1-21

 As you see, the window is complete with menus and a toolbar. Although there is no specifi c functionality
in the program — that ’ s what you need to add to make it your program — all the menus work. You can
try them out. You can even create further windows by selecting New from the File menu.

 I think you ’ ll agree that creating a Windows program with the MFC Application Wizard hasn ’ t
stressed too many brain cells. You ’ ll need to get a few more ticking away when it comes to
developing the basic program you have here into a program that does something more interesting,
but it won ’ t be that hard. Certainly, for many people, writing a serious Windows program the
old - fashioned way, without the aid of Visual C++ 2010, required at least a couple of months on a
brain - enhancing fi sh diet before making the attempt. That ’ s why so many programmers used to eat
sushi. That ’ s all gone now with Visual C++ 2010. You never know, however, what ’ s around
the corner in programming technology. If you like sushi, it ’ s best to continue eating it to be on the
safe side.

Using the IDE x 31

 Creating a Windows Forms Application

 This is a job for another application wizard. So, create yet another new
project, but this time select the type as CLR in the left pane of the New
Project dialog box, and the template as Windows Forms Application.
You can then enter the project name as Ex1_05 . There are no options
to choose from in this case, so click OK to create the project.

 The Solution Explorer pane in Figure 1 - 22 shows the fi les that have
been generated for this project.

 There are considerably fewer fi les in this project — if you
look in the directories, you ’ ll see that there are a total of 15,
including the solution fi les. One reason is that the initial
GUI is much simpler than the native C++ application using
MFC. The Windows Forms application has no menus or
toolbars, and there is only one window. Of course you
can add all these things quite easily, but the wizard for a
Windows Forms application does not assume you want
them from the start.

 The Editor window looks rather different for this project,
as Figure 1 - 23 shows.

 The Editor window shows an image of the application
window rather than code. The reason for this is that
developing the GUI for a Windows Forms application
is oriented toward a graphical design approach rather
than a coding approach. You add GUI components to the
application window by dragging or placing them there
graphically, and Visual C++ 2010 automatically generates
the code to display them. If you press Ctrl+Alt+X or
select View Í Toolbox you ’ ll see an additional window
showing a list of GUI components, as in Figure 1 - 24.

 The Toolbox window presents a list of standard components that you
can add to a Windows Forms application. If you scroll down you
will see there are many more groups of controls available. You can
try adding some buttons to the window for Ex1_05 . Click Button
in the Toolbox window list and then click in the client area of the
Ex1_05 application window, displayed in the Editor window, where
you want the button to be placed. You can adjust the size of the button
by dragging its borders, and you can reposition the button by dragging it
around. You can also change the caption. Right - click the button, select
Properties from the pop - up, and then select the button1 value for the Text
property in the Appearance group of properties. You can then enter Start on
the keyboard and then press Enter to change the button label. The Properties
window shows many other properties for the button as well. I won ’ t go into
these now, but essentially they are the specifi cations that affect the appearance
of the button, and you can change them to suit your application. Try adding

FIGURE 1-22

FIGURE 1-23

FIGURE 1-24

32 x CHAPTER 1 PROGRAMMING WITH VISUAL C++ 2010

another button with the label Stop, for example. The
Editor window will look as shown in Figure 1 - 25.

 You can graphically edit any of the GUI components at
any time, and the code adjusts automatically. Try adding
a few other components in the same way and then
compile and execute the example by pressing Ctrl+F5.
The application window displays in all its glory.
Couldn ’ t be easier, could it?

 SUMMARY

 In this chapter you have run through the basic
mechanics of using Visual C++ 2010 to create
applications of various kinds. You created and executed
native and CLR console programs, and with the help of the application wizards you created an
MFC - based Windows program and a Windows Forms program that executes with the CLR.

 Starting with the next chapter, you ’ ll use console applications extensively throughout the fi rst half of
the book. All the examples illustrating how C++ language elements are used are executed using either
Win32 or CLR console applications. You will return to the application wizard for MFC - based programs
and Windows Forms applications as soon as you have fi nished delving into the secrets of C++.

FIGURE 1-25

 � WHAT YOU LEARNED IN THIS CHAPTER

 TOPIC CONCEPT

 The Common

Language Runtime

 The Common Language Runtime (CLR) is the Microsoft implementation of

the Common Language Infrastructure (CLI) standard.

 The .NET

Framework

 The .NET Framework comprises the CLR plus the .NET libraries that support

applications targeting the CLR.

 Native C++ Native C++ applications are written in the ISO/IEC C++ language.

 C++/CLI Programs written in the C++/CLI language execute with the CLR.

 Attributes Attributes can provide additional information to the compiler to instruct it to

modify or extend particular programming elements in a program.

 Solutions A solution is a container for one or more projects that form a solution to an

information - processing problem of some kind.

 Projects A project is a container for the code and resource elements that make up a

functional unit in a program.

 Assemblies An assembly is a fundamental unit in a CLR program. All CLR programs are

made up of one or more assemblies.

 Summary x 33

		2015-12-29T06:03:09-0500
	Certified PDF 2 Signature

