# 1

### INTRODUCTION AND LITERATURE SURVEY

#### **1.1 INTRODUCTION**

Both living organisms and computers are "information-processing machines" that operate on the basis of internally stored programs, but the differences between these systems are also quite large. In the case of living organisms, self-assembly occurs following an internal program, and the nervous system and brain formed in this way function as an autonomous information machine. Unlike traditional computers which must be "driven" from the outside, biological systems have somehow incorporated within them rules on how to function. Moreover, in the case of biological entities for which there is no external blueprint, the design plan is entirely internal and is thought to undergo changes both in the evolution of species and in the development of individuals. These similarities and differences have drawn the attention of computer scientists as well as of life scientists.

In order to revolutionize the current world of computers, three roads, or any combinations of them, are clearly visible [1]

- 1. Changing the physical elements at the foundations of the computer components
- 2. Changing the architecture of computers
- 3. Devising new software and computing algorithms

Information Processing by Biochemical Systems: Neural Network–Type Configurations, By Orna Filo and Noah Lotan Copyright © 2010 John Wiley & Sons, Inc.

#### 2 INTRODUCTION AND LITERATURE SURVEY

It is, however, true that a biological computer (or *biocomputer*) of a completely different nature from today's electronic computers already exists in the form of the fundamental phenomenon of life. The most advanced machinery, a living organism, operates with functional elements that are of molecular dimensions and actually exploits the quantum-size effects of its components [1]. Yet the quintessentially biological functions of living forms: autonomy, self-organization, self-replication, and development, as witnessed in both evolution and individual ontogeny, are completely absent from current computing machines [1].

Two major approaches to the construction of a biocomputer are reviewed here:

- 1. Study of the operational mechanism of biological systems, particularly those of the living brain, and the use of these results in the redesign of computer software and hardware architecture based on semiconductor technology (Section 1.2).
- 2. Development of biocomponents that are similar to and/or composed of biological macromolecules, the development of biochips that make use of these components, and ultimately, the construction of biocomputers (Section 1.3).

#### **1.2 COMPUTATIONAL PROCESSES BASED ON BIOLOGICAL PRINCIPLES**

#### 1.2.1 Modeling Biological Processes

The involvement of biology might lead to new computational processes based on those found in natural systems. Multiple modes of processing contribute to the information-processing functions of biological systems, and these have been investigated and modeled extensively [2–8]. In his pioneering work, Rosen [9,10] introduced a two-factor model based on the idea that the fundamental dynamic behavior of physiological and biochemical systems is regulated by the combined action of two factors, one excitatory and the other inhibitory. Kampfner, Kirby, and Conrad [11–13] introduced theoretical models of enzymic neuron systems for learning processes, based on the concept of a hypothetic enzyme called excitase. Based on the same concept, a comprehensive mathematical model of the enzymic neuron as a logical circuit has been introduced by Neuschl and Menhart [14].

#### 1.2.2 Artificial Neural Networks

The nerve cell has proved to be an extremely valuable source of ideas about networks of automata. A fundamentally different approach to computation

#### COMPUTATIONAL PROCESSES BASED ON BIOLOGICAL PRINCIPLES 3

is represented by artificial neural networks (ANNs), which are designed to mimic the basic organizational features of biological nervous systems [15–22]. The building brick of any neural computing system is some sort of representation of the fundamental cell of the brain: the neuron. Thus, ANNs consist of a large number of simple interconnected processing elements which are simplified models of neurons, and the interconnections between the processing elements are simplified models of the synapses between neurons. The processing of information in such networks occurs in parallel and is distributed throughout each unit composing the network [15–22].

There has been a steady development of neuronal analogs over the past 50 years. An important early model was proposed in 1943 by McCulloch and Pitts [23]. They described the neuron as a logical processing unit, and the influence of their model set the mathematical tone of what is being done today. Adaption or learning is a major focus of neural net research. The development of a learning rule that could be used for neural models was pioneered by Hebb, who proposed the famous Hebbian model for synaptic modification [24]. Since then, many alternative quantitative interpretations of synaptic modification have been developed [15–22].

There is no universally accepted definition of an artificial neural network. However, some definitions can be found in the literature, and examples are cited here.

- Robert Hecht-Nielsen, the inventor of one of the first commercial neurocomputers, defined [17] a *neural network* as "a computing system made up of a number of simple, highly interconnected processing elements, which process information by its dynamic state response to external inputs."
- According to the DARPA Neural Network Study [18]: "A neural network is a system composed of many simple processing elements operating in parallel whose function is determined by network structure, connection strengths, and the processing performed at computing elements or nodes."
- According to Aleksander and Morton [19], *neural computing* can be defined as "the study of networks of adaptable nodes which, through a process of learning from task examples, store experiential knowledge and make it available for use."
- According to Zurada [20], artificial neural systems, or neural networks, are "physical cellular systems which can acquire, store, and utilize experiential knowledge."
- According to Nigrin [21], "a neural network is a circuit composed of a very large number of simple processing elements that are neurally based. Each element operates only on local information. Furthermore

#### 4 INTRODUCTION AND LITERATURE SURVEY

each element operates asynchronously; thus, there is no overall system clock."

- Haykin [22] offers a definition based on Aleksander and Morton [19]: "A neural network is a massively parallel distributed processor that has a natural propensity for storing experiential knowledge and making it available for use. It resembles the brain in two respects:
  - Knowledge is acquired by the network through a learning process.
  - Interneuron connection strengths known as synaptic weights are used to store the knowledge."

Significant progress in neural network research has been made in recent decades [15–22,25]. Presently, the neural network strategy is implemented at either the software or hardware level. The VLSI (very large scale integration) version of neural network implementation is a technology that has approached a certain degree of maturity [22]. Although the VLSI version serves as an impressive demonstration of the power of the new computer architecture of neural networks, it falls short of a radical design departure that is capable of capturing the structural and functional flexibility inherent in biosystems [25]. Many experts believe that neural network technology will be more robust and more powerful when its implementation becomes possible in a molecular-based "hardware" environment [25].

#### **1.3 MOLECULAR AND BIOMOLECULAR ELECTRONICS**

#### 1.3.1 Motivation

The high-technology revolution that made the personal computer standard equipment was fueled primarily by astonishing advances in microelectronics that allow more and more circuit elements to be packed into a small integrated circuit (IC). The number of device components packaged into a single IC has grown exponentially with the passage of time [25–28]. Moreover, we witness increasing capability of each IC, increasing speed of operation, reduced consumption of energy, reduction in sizes and weights of the finished products, and reduced prices. Will this trend continue so that the device size eventually reaches the atomic scale? To many experts the answer is "not if using conventional microelectronics technology," which exploits mainly macroscopic properties of inorganic materials, because the ensuing quantum size and the thermal effects will make such devices unreliable [25,28]. Thus, today, the miniaturization and integration of electronic devices are being pushed to their physical limits [25–28].

#### MOLECULAR AND BIOMOLECULAR ELECTRONICS 5

#### **1.3.2** Molecular Electronics

*Molecular electronics* is defined broadly as the encoding, manipulation, and retrieval of information at a molecular or macromolecular level [25–29]. This approach contrasts with current techniques, in which these functions are accomplished via lithographic manipulations of bulk materials to generate integrated circuits [28]. A key advantage of the molecular approach is the ability to design and fabricate devices from the bottom-up, on an atomby-atom basis. Lithography can never provide the level of control available through organic synthesis or genetic engineering [28]. The molecular primitives allow for improvement in a number of information-processing device characteristics compared with similar characteristics of silicon-based devices. Thus, molecular information processing is attractive because it offers [29]:

- Integrability at the atomic scale
- High computational speed due to parallel processing, which compensates for the inherent low processing rate of each elementary device
- Self-assembly capability of atomic or molecular processors
- Plasticity of the molecular circuit, which can reconfigure itself to optimize its performance, taking into account the previous experience (learning)
- Fault-tolerance capability and even self-repair ability of the molecular circuit
- Reduced power consumption

Since Aviram's proposal of a molecular rectifier [30,31], a variety of designs of molecular electronic devices have appeared. Molecular-scale devices are fabricated on the nanometer scale and are composed of either a single molecule or several molecules configured into a supramolecular complex. Among these devices, molecular rectifiers, molecular switches, molecular diodes, molecular photodiodes, and molecular memories are described [30–39]. Studies also deal with assembling the individual components in thin-film configurations [25,40,41], forming artificial membranes [25,42] and establishing an interface between the molecules and conventional electronic materials [43]. Another possibility that has been investigated is the use of electroconductive polymers as "molecular wires" for establishing the connection required between molecular elements [43,44].

#### **1.3.3 Biomolecular Electronics**

Biomolecular electronics is a subfield of molecular electronics that considers the use of native and modified biological molecules in electronic or photonic

#### 6 INTRODUCTION AND LITERATURE SURVEY

devices [45–56]. The growing interest in the possibility of utilizing biological molecules in molecular electronics is fostered by the basic understanding that, in so doing, one may be able to take advantage of the specific characteristics and unique capabilities of these natural molecules [44–56]. Among the biomolecular devices investigated, protein-based molecular devices have gained increasing attention due to the versatile and highly specific molecular functionality of proteins [43,57]. Enzymes [44,58–67], receptors [68], antibodies [43], and bacteriorhodopsin [29,69–73] have been used as either electronic or optical devices. Computation with simple DNA manipulations has also been demonstrated [74,75].

## 1.4 BIOCHEMICAL DEVICES BASED ON ENZYMIC REACTIONS

In an extensive study, Okamoto and co-workers [76–86] introduced a biochemical switching device based on a cyclic enzyme system in which two enzymes share two cofactors in a cyclic manner. Cyclic enzyme systems have been used as biochemical amplifiers to improve the sensitivity of enzymatic analysis [87–89], and subsequently, this technique was introduced into biosensors [90–93]. In addition, cyclic enzyme systems were also widely employed in enzymic reactors, in cases where cofactor regeneration is required [94–107]. Using computer simulations, Okamoto and associates [77,80–83] investigated the characteristics of the cyclic enzyme system as a switching device, and their main model characteristics and simulation results are detailed in Table 1.1, as is a similar cyclic enzyme system introduced by Hjelmfelt et al. [109,116], which can be used as a logic element.

Subsequently, Okamoto and associates [84–86] investigated the connection of several cyclic enzyme systems in order to construct a network. In their models the cyclic enzyme system represents a biochemical neuron that participates in a biochemical neural network. These models are detailed in Table 1.2. Theoretical models of such networks were also proposed by Hjelmfelt and co-workers [109–111,116], and these are also presented in Table 1.2.

Models for biochemical switches, logic gates, and information-processing devices that are also based on enzymic reactions but do not use the cyclic enzyme system were also introduced [76,115,117–122]. Examples of these models are presented in Table 1.3. It should also be mentioned that in other studies [108,112–114,116], models of chemical neurons and chemical neural networks based on nonenzymic chemical reactions were also introduced.

|                                          | Refs.                           | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ttinued)       |
|------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|                                          | Comments <sup>a</sup>           | The mathematical<br>equations for this model<br>and the following ones<br>agree with the case of<br>batch reactions, in which<br>there is no mass flow<br>into or out of the system.<br>However, $I_1$ and $I_2$<br>cannot be defined as<br>mass flows if volume<br>changes are not<br>considered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ( <i>cor</i> ) |
|                                          | Conclusions and<br>Applications |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
|                                          | Results                         | The steady-state concentrations of<br>A and B ( $\overline{A}$ , $\overline{B}$ ) change stepwise<br>at $I_2/I_1 = 1$ and can be<br>represented as $\overline{A} = f(I_1, I_2)$<br>$= [1 \text{ if } I_1 \ge I_2, 0 \text{ if } I_1 < I_2]$<br>The steady-state concentrations of<br>$X_2$ and $X_4$ ( $\overline{X}_2$ , $\overline{X}_4$ ) are also a<br>function of $I_1$ and $I_2$ :<br>$\overline{X}_2 = \overline{X}_4 = f(\min(I_2, I_2))$<br>$= [\frac{I_2}{k} \text{ if } I_1 \ge I_2; \frac{I_1}{k} \text{ if } I_1 < I_2]$<br>where k indicates the rate<br>constant of the decay of $X_2$ or<br>$X_4$ , $k_3$ or $k_4$ , respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Same results for X <sub>2</sub> and X <sub>4</sub> as obtained in model 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| Models Based on the Cyclic Enzyme System | Model Characteristics           | 1, $X_1$ , $k_1$ , $k_2$ , $k_3$ , $k_3$ , $k_4$ , $X_4$ , $k_2$ , $X_3$ , $k_3$ , $k_2$ , $k_3$ , $k_2$ , $k_3$ , $k_3$ , $k_2$ , $k_3$ , $k_3$ , $k_2$ , $k_3$ | $I_{1} \xrightarrow{F_{1}} X_{1} \xrightarrow{E_{1}} X_{2} \xrightarrow{k_{3}} K_{2}$ $\downarrow k_{4} \xrightarrow{k_{4}} X_{4} \xrightarrow{F_{2}} X_{5} \xrightarrow{k_{3}} X_{5} \xrightarrow{k_{3}} X_{5}$ $\downarrow k_{4} \xrightarrow{k_{4}} X_{4} \xrightarrow{F_{2}} X_{5} \xrightarrow{k_{3}} X_{5}$ $\downarrow k_{4} \xrightarrow{k_{4}} X_{4} \xrightarrow{F_{2}} X_{5} \xrightarrow{k_{3}} X_{5}$ $\downarrow k_{4} \xrightarrow{k_{4}} X_{4} \xrightarrow{k_{2}} X_{5} \xrightarrow{k_{3}} X_{5}$ $\downarrow k_{4} \xrightarrow{k_{4}} X_{4} \xrightarrow{k_{2}} X_{5} \xrightarrow{k_{3}} X_{5}$ $\downarrow k_{4} \xrightarrow{k_{4}} X_{4} \xrightarrow{k_{2}} X_{5} \xrightarrow{k_{3}} X_{5}$ $\downarrow k_{4} \xrightarrow{k_{4}} X_{5} \xrightarrow{k_{3}} X_{5} \xrightarrow{k_{3}} X_{5}$ $\downarrow k_{4} \xrightarrow{k_{4}} X_{5} \xrightarrow{k_{3}} X_{5} \xrightarrow{k_{3}} X_{5}$ $\downarrow k_{4} \xrightarrow{k_{4}} X_{5} \xrightarrow{k_{3}} X_{5} \xrightarrow{k_{3}} X_{5}$ $\downarrow k_{4} \xrightarrow{k_{4}} X_{5} \xrightarrow{k_{5}} X_{5} \xrightarrow{k_{5}} X_{5} \xrightarrow{k_{5}} X_{5}$ $\downarrow k_{5} \xrightarrow{k_{5}} X_{5} \xrightarrow{k_{5}}$ |                |
| lable 1.1                                | Model<br>No.                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $S_{\tilde{s}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |

Ű F -1 T ÷ ρ Ę 2 -.

P1: OTA/XYZ P2: ABC c01 JWBS019-Filo M November 4, 2009 7:29

| Table 1.1    | (continued)                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                      |                       |       |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------|
| Model<br>No. | Model Characteristics                                                                                                                                                                                                                                                                          | Results                                                                                                                                                                                                                                                                                                                                                                                                                     | Conclusions and<br>Applications                                                                                                                                                                      | Comments <sup>a</sup> | Refs. |
| ς,           | Same assumptions as in model 1 except:<br>I <sub>1</sub> and I <sub>2</sub> change linearly with time such that<br>$I_1(t) = 80 + t$<br>$I_2(t) = 100 - t$                                                                                                                                     | $X_2$ and $X_4$ are dynamically<br>regulated by the levels of $I_1$ and<br>$I_2$ as described in model 1.<br>Switching of dependence on the<br>inputs at a point beyond the<br>similar point determined by the<br>steady-state analysis is observed.<br>This time lag is due to an<br>accumulation of $X_3$ .<br>Concentrations of $A(t)$ and $B(t)$<br>show a step function with the<br>same time lag as $X_2$ and $X_4$ . | The dynamic behavior of the cyclic enzyme system display catastrophic behavior in response to specific changes in external input. The system can realize a neuronic model capable of storing memory. |                       | 77,82 |
| 4            | Same assumptions as in model 1 except:<br>$I_1$ and $I_2$ are represented by a sinusoidal<br>function with time $t$ , such that<br>$I_1(t) = 10 + 2 \sin \left(\frac{2\pi}{40}t + \frac{\pi}{2}\right)$<br>$I_2(t) = 10 + 2 \sin \left(\frac{2\pi}{40}t - \frac{\pi}{2}\right)$                | Concentrations of $A(t)$ and $B(t)$ follow the pattern described in models 1 and 2. The time lag is observed due to accumulation of X <sub>1</sub> and X <sub>3</sub> . Switching does not occur until the accumulation of either substrate is canceled.                                                                                                                                                                    | The accumulated substrate is<br>equivalent to a "condenser"<br>and is applicable to a kind<br>of "memory storage."                                                                                   |                       | 81    |
| Ś            | $I_{1} \xrightarrow{k_{1}} X_{1} \xrightarrow{k_{1}} x_{2} \xrightarrow{k_{3}} x_{2}$ $\downarrow k_{4} \xrightarrow{k_{4}} X_{4} \xrightarrow{k_{2}} x_{3} \xrightarrow{k_{3}} x_{3} \xrightarrow{k_{3}} x_{3}$ Same assumptions as in model 4 except:<br>$k_{5} \neq 0$ and $k_{6} \neq 0$ . | No time lag is observed, and the conversion from switched on to off (or from off to on) occurs rapidly according to the difference in amount between $I_1$ and $I_2$ .                                                                                                                                                                                                                                                      | The behavior of the system is<br>equivalent to that of an<br>electronic switching circuit.                                                                                                           |                       | 81    |

8

P1: OTA/XYZ P2: ABC c01 JWBS019-Filo November 4, 2009

| 82                                                                                                                                                                                                                                                                                                                                                                | 82                                                                                                                                                                                                                                                                                                                                                         | 80                                                                                                                                                                                                                                 | (continued) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                   | The system can be used as a switching controller when it is coupled to the reaction $S \rightarrow P$ and a cofactor A is essential to produce P. Thus, A can be controlled by $I_1$ and $I_2$ and the switch properties will be obtained for $P(t)$ .                                                                                                     | Focusing on the dynamics of $X_1(t)$ and $X_3(t)$ , the system can play the role of a rectifier circuit. The amount of rectification depends on $\theta$ .                                                                         |             |
| Increase in the values of the rate<br>parameters, $k_{-1}$ and $k_{-2}$ , leads<br>to a more gradual rise of A( <i>t</i> )<br>and B( <i>t</i> ), and the step function<br>is not obtained. When the ratio<br>of $k_1/k_{-1}$ and $k_2/k_{-2}$ is fixed at<br>1, increase in the rate<br>parameters leads to a sharper<br>rise of A( <i>t</i> ) and B( <i>t</i> ). | The dynamic characteristics<br>of $A(t)$ and $B(t)$ are<br>qualitatively similar to those<br>observed in model 3. The initial<br>concentrations of the enzymes<br>and cofactors affected the<br>dynamic characteristics of the<br>system significantly. The switch<br>is obtained only when these<br>concentrations are over a<br>certain threshold value. | The concentration profiles<br>obtained for $A(t)$ and $B(t)$ show<br>the switching observed in<br>model 4, but the on/off times<br>depend on $\theta$ . The frequency and<br>amplitude of $X_1$ and $X_3$ depend<br>on $\theta$ .  |             |
| $I_1 - X_1 - \frac{k_1}{2} - \frac{k_3}{2}$ $k_4 - X_4 - \frac{k_4}{2} - \frac{k_3}{2} - \frac{k_3}{2}$ Same assumptions as in model 3 except:<br>The reactions $X_1 \rightarrow X_2$ and $X_3 \rightarrow X_4$ are reversible.                                                                                                                                   | Same assumptions as in model 3 except:<br>Reaction mechanisms are represented by<br>ordered bi-bi enzymic kinetics. All reaction<br>steps are assumed to be reversible.                                                                                                                                                                                    | Same assumptions as in model 1 except: Two sinusoidal inputs with a phase difference $\theta$ between them:<br>$I_1(t) = 10 + 2 \sin\left(\frac{2\pi}{40}t\right)$<br>$I_2(t) = 10 + 2 \sin\left(\frac{2\pi}{40}t - \theta\right)$ |             |
| Q                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                          | ×                                                                                                                                                                                                                                  |             |

7:29

November 4, 2009

P1: OTA/XYZ P2: ABC c01 JWBS019-Filo M

| a        | ble 1.1  | (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                |                                                                                                                                      |                                                                                                                                                                                                                             |             |
|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Ę        | ləb      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                | Conclusions and                                                                                                                      |                                                                                                                                                                                                                             |             |
| <u>o</u> |          | Model Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Results                                                                                                                                                                                                                                        | Applications                                                                                                                         | Comments <sup>a</sup>                                                                                                                                                                                                       | Refs.       |
| 6        |          | same assumptions as in model 4 except: Reaction<br>mechanisms are represented by ordered bi-bi<br>kinetics. All reaction steps assumed to be<br>reversible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | As in model 4. Since the reaction involves several steps, the value of $A(t)$ or $B(t)$ when switched on was not the initial total                                                                                                             |                                                                                                                                      |                                                                                                                                                                                                                             | 80          |
| 0        |          | $1_{1} \xrightarrow{k_{1}} X_{1} \xrightarrow{k_{1}} X_{2} \xrightarrow{k_{3}} X_{2} \xrightarrow{k_{3}} X_{3} \xrightarrow{k_{4}} X_{4} \xrightarrow{k_{4}} X_{4} \xrightarrow{k_{2}} X_{3} \xrightarrow{k_{3}} Y_{3} \xrightarrow{k_{3}} \xrightarrow{k_{3}} Y_{3} k_$ | The switching time of the cyclic<br>system can be regulated by<br>$I_3$ , $I_4$ , as well as by $I_1$ and $I_2$ .<br>When a pulse of $I_3$ and $I_4$ is<br>introduced, one can select<br>the time of introduction in<br>order for A or B to be |                                                                                                                                      | The comments concerning I <sub>1</sub><br>and I <sub>2</sub> are applicable to I <sub>3</sub><br>and I <sub>4</sub> as well.                                                                                                | 83          |
|          | Π        | <sup>1</sup> and I <sub>2</sub> are represented by a sinusoidal function<br>with time <i>t</i> . I <sub>3</sub> and I <sub>4</sub> are external inputs of A<br>and B, respectively. $k_5$ and $k_6$ are degradation<br>rate constants. $k_5 = k_6 = I_3(t) + I_4(t)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | switched-on thereafter.<br>Introduction of $I_3$ or $I_4$ affect<br>only the switching time of A<br>and B, but not the oscillatory<br>pattern of $X_2$ and $X_4$ .                                                                             |                                                                                                                                      |                                                                                                                                                                                                                             |             |
| -        |          | $I_1 \xrightarrow{C} k_1 \xrightarrow{k_1} X_1 \xrightarrow{k_2} X_2$ $X_4 \xrightarrow{k_3} X_3 \xrightarrow{k_4} I_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A and B evolve in time to a<br>unique steady state dictated<br>by <i>C</i> . Steady-state<br>concentrations of A and B<br>show step functions in<br>respect to <i>C</i> . $k_2$ and $k_3$<br>determine the steepness of                        | The system can act as a chemical neuron in which the concentration of A or B determines the state of the neuron (fire or quiescent). | The mathematical equations<br>for this model also agree<br>with the case of batch<br>reactions. Here the step<br>$I_1 \rightarrow X_1$ is a catalytic<br>reaction, and the step $I_2 \rightarrow X_3$ is a noncatalytic one | 109,<br>116 |
|          | <b>`</b> | Concentrations of $I_1$ , $I_2$ , $X_2$ , and $X_4$ are held constant. <i>C</i> is the input parameter. All the reactions are reversible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the jump. When $k_2 \neq k_3$ the curves of the steady-state concentrations of A and B are not symmetric.                                                                                                                                      | -                                                                                                                                    | <b>,</b>                                                                                                                                                                                                                    |             |

<sup>a</sup>These observations are those of the present authors.

|   | Model Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Results                                                                                                                                                                                                                                                                                                                                                                                                                                 | Conclusions and<br>Applications                                                                                                                                           | Comments <sup>a</sup>                                                                                                                                                                                                                                                                                  | Refs. |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| - | $I_{1} - X_{1} - X_{1} - \frac{k_{3}}{Y_{1}} - X_{2} - \frac{k_{1}}{Y_{1}}$ $Y_{4} - \frac{k_{4}}{Y_{3}} - \frac{1}{X_{3}} - \frac{1}$ | A stepwise change in the steady-state concentration of $Y_i(t)$ is observed. The results are similar to those obtained using a monocyclic enzyme system (described in model 1 in Table 1.1).                                                                                                                                                                                                                                            | The system can be<br>applied for<br>examination of<br>control mechanisms<br>of metabolic coupled<br>enzyme systems, such<br>as the sugar transport<br>system in bacteria. | The mathematical<br>equations for this model<br>and for the following<br>ones agree with the case<br>of batch reactions, in<br>which there is no mass<br>flow into or out of the<br>system. However, $I_1$ and<br>$I_2$ cannot be defined as<br>mass flows if volume<br>changes are not<br>considered. | 79    |
|   | reactions.<br>$k_4$ $X_2$ $k_1$ $X_1$ $I_1$<br>$1_2$ $X_3$ $k_2$ $k_1$ $K_4$ $k_5$<br>$k_6$ $X_6$ $k_3$ $X_4$ $k_5$ $I_3$<br>Bicyclic enzyme system: A, A', B, and B'<br>are cofactors; I_1, I_2, and I_3 are constant<br>inputs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The steady-state<br>concentrations of A and B<br>$(\bar{A}, \bar{B})$ are determined by<br>the minimum input among<br>I <sub>1</sub> , I <sub>2</sub> and I <sub>3</sub> :<br>I <sub>1</sub> minimum: $\bar{A}, \bar{B} = 0,1$<br>I <sub>2</sub> minimum: $\bar{A}, \bar{B} = 1,0$<br>I <sub>1</sub> and I <sub>3</sub> minimum: $\bar{A}, \bar{B} = 1,0$<br>I <sub>1</sub> and I <sub>3</sub> minimum: $\bar{A}, \bar{B} = 1,0$<br>0,0 | Based on the results<br>presented, the basic<br>logic functions NOT,<br>AND, OR can be built<br>using monocyclic or<br>dicyclic enzyme<br>systems.                        | The comments concerning<br>I <sub>1</sub> and I <sub>2</sub> are applicable<br>to I <sub>3</sub> as well.                                                                                                                                                                                              | 81    |

P1: OTA/XYZ P2: ABC c01 JWBS019-Filo N

November 4, 2009 7:29

| <b>Table 1.2</b> | (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                      |                             |       |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------|-----------------------------|-------|
| Model            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | Conclusions and      |                             |       |
| No.              | Model Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Results                      | Applications         | Comments <sup>a</sup>       | Refs. |
| 3                | k1 i k3 i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The number of excited        | One can interconnect | The species $A_i$ and $A_j$ | 84,85 |
|                  | $I_{1,i} \longrightarrow X_{1,i} \longrightarrow X_{2,i} \longrightarrow X_{2,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | elements in sequentially     | basic elements       | play the role of            |       |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | connected systems is         | excitatorally,       | effector for another        |       |
|                  | $\mathbf{B}_i$ $\mathbf{A}_i$ $W_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | related proportionally to    | inhibitorally, or    | enzymic reaction,           |       |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | the values of the            | reversibly and       | and their                   |       |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | excitatory stimulus. When    | construct large      | concentrations are          |       |
|                  | $\checkmark^{n_{4,l}}_{I} \longrightarrow X_{4,l} \checkmark \checkmark^{I}_{I} \checkmark \land^{I}_{I} \checkmark \land^{I}_{I} \checkmark \land^{I}_{I} \land^{I}_{I} \checkmark \land^{I}_{I} \land^{I$ | the introduction of the      | networks.            | not affected by this        |       |
|                  | K2,i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | excitatory stimulus is too   |                      | activity.                   |       |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | late, it can not be          |                      |                             |       |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | transmitted. The             |                      |                             |       |
|                  | $I_{1,i} \longrightarrow X_{1,i} \longrightarrow X_{2,i} \longrightarrow X_{2,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | excitatory stimulus is       |                      |                             |       |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | amplified to a certain limit |                      |                             |       |
|                  | $\mathbf{B}_i$ $\mathbf{A}_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and attenuated during        |                      |                             |       |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | propagation. By assuming     |                      |                             |       |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | several excitatory stimuli   |                      |                             |       |
|                  | $\bigstar^{n} X_{4,j} \bigstar^{n} X_{3,j} \bigstar^{n} I_{2,j}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and varying their            |                      |                             |       |
|                  | $^{N}2,j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | frequencies, the long-term   |                      |                             |       |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | potentiation phenomenon      |                      |                             |       |
|                  | The basic element is similar to the one assumed in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | can be observed.             |                      |                             |       |
|                  | model 1 in Table 1.1. The <i>j</i> th element is assumed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Supposing reversible         |                      |                             |       |
|                  | to have an excitatory or inhibitory affect on the <i>i</i> th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | interactions between two     |                      |                             |       |
|                  | element according to the following options:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | elements, a continuous       |                      |                             |       |
|                  | (a) Excitatory interactions: $A_i$ affects $X_{1,j}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | switching pattern of the     |                      |                             |       |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | output is observed.          |                      |                             |       |

$$\frac{dX_{1,j}}{dt} = (\mathbf{I}_{1,j} + \mathbf{W}_i \mathbf{A}_i) - k_{1,j} \mathbf{X}_{1,j} \mathbf{B}_j$$

(b) Inhibitory interactions:  $A_j$  affects  $X_{3,i}$ 

 $\frac{dX_{3,j}}{dt} = (I_{2,i} + W_j A_j) - k_{2,i} X_{3,i} A_i$ (c) Reversible interactions: both excitatory and inhibitory.

| 8                                                                                                                                                                                                                                                                                                                                                                                     | 85                                                                                                                                                                                                                                              | (continued) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| The system shows the<br>physiological<br>phenomenon termed<br><i>selective elimination</i><br><i>of synapses</i> generally<br>produced as a result of<br>a low-frequency train<br>of electrical stimuli to<br>the synapses.                                                                                                                                                           | Neural network model<br>composed of formal<br>neurons without the<br>capacity of memory<br>storage cannot be<br>applicable to the study<br>of information<br>processing of real<br>neural networks.                                             |             |
| High-frequency excitatory<br>stimuli which were<br>introduced to the first<br>element was amplified and<br>transmitted to the ninth<br>element. Low-frequency<br>excitatory stimuli which<br>was introduced to the fifth<br>element was attenuated<br>during propagation leading<br>to selective elimination of<br>synaptic connection<br>between the seventh and<br>fourth elements. | Selective elimination of<br>synapses cannot be<br>observed.                                                                                                                                                                                     |             |
| External stimuli on a branched series of excitatory interactions, mentioned in model 3. <i>high-frequency input</i> $ \begin{array}{c}                                     $                                                                                                                                                                                                          | External stimuli on a branched series of excitatory interactions, mentioned in models 3 and 4 except in the basic element the substrates $X_{1,i}$ and $X_{3,i}$ do not accumulate and are removed with $k_5$ and $k_6$ (model 5 in Table 1.1). |             |

P1: OTA/XYZ P2: ABC c01 JWBS019-Filo M

4

November 4, 2009 7:29

13

Ś

| able 1.2 | (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                 |                       |       |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------|-----------------------|-------|
| odel     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | Conclusions and |                       |       |
| 0.       | Model Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Results | Applications    | Comments <sup>a</sup> | Refs. |
| ý        | excitatory<br>input signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                 |                       | 86    |
|          | $ \begin{array}{c} \text{Synapse I} \\ \text{output} \\ \theta \\ \hline \\ \theta \\ \hline \\ y \\ h_{4} \\ \hline \\ \theta \\ \hline \\ y \\ \hline y \\ \hline \\ y \\ \hline y \\ y$ |         |                 |                       |       |
|          | X <sub>1,wi</sub> : synaptic efficacy for excitatory input Y <sub>i</sub> at synapse i<br>A(t): the output signal<br>$\theta$ : threshold value<br>$\beta_1, \beta_2$ : arbitrary coefficients<br>$f_i$ : feedback factor from output A<br>$f_i = (\beta_1 + \beta_2 A)Y_i$ ; $i = 1, 2,, n$<br>$k_3, k_4 \gg k_3, w_i, k_4, w_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                 |                       |       |

#### P1: OTA/XYZ P2: ABC c01 JWBS019-Filo November 4, 2009 7:29

| ncy ncy<br>of<br>synapses<br>a ng increase<br>in low<br>totr<br>the<br>synaptic<br>synaptic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (continued) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| High-freque<br>activation<br>excitatory<br>produces<br>long-lasti<br>in synapti<br>and excitt<br>stimuli w<br>frequency<br>unfavorab<br>growth of<br>efficiency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| Excitatory high-frequency stimuli which were introduced to the first element during $0 < t < 60$ are amplified and transmitted successfully to the tenth element. Excitatory low-frequency stimuli which were introduced to the fourth element during $0 < t < 60$ are attenuated during propagation leading to selective elimination of synaptic connection. During $60 < t < 120$ , excitatory high-frequency stimuli which were introduced to the fourth element turned out favorably, leading to the revival of the signal path from the fourth to the seventh, and the lement caused selective elimination of synaptic connection between the third during to the revival of the signal path from the fourth to the seventh, and the lement caused selective elimination of synaptic connection between the third and the seventh elements. |             |
| input 1<br>iput 2<br>3<br>3<br>6<br>7<br>8<br>9<br>10<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |

November 4, 2009 7:29

P1: OTA/XYZ P2: ABC c01 JWBS019-Filo M

~

| TODA TO | (commend)                                                                                                                                                                                                                                                                  |                                                                                                                                     |                 |                       |        |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------|--------|
| Model   |                                                                                                                                                                                                                                                                            | -<br>-                                                                                                                              | Conclusions and |                       | r<br>f |
| No.     | Model Characteristics                                                                                                                                                                                                                                                      | Results                                                                                                                             | Applications    | Comments <sup>a</sup> | Refs.  |
| ×       | Assumptions 1 to 6 as in model 6. The number of synapses denoted by <i>i</i> is 2. X <sub>1,W1</sub> , X <sub>1,W2</sub> : synaptic efficacies of the test path and conditioning path, respectively. Low-frequency test input and no conditioning input.                   | The test input itself has not caused long-term potentiation of the synaptic efficacy $(X_{1,w_{1}} \text{ or } X_{1,w_{2}})$ .      |                 |                       | 86     |
| 0       | Assumptions 1 to 3 as in model 8. Low-frequency test input and high-frequency conditioning input are positively correlated. After the in-phase inputs are introduced 14 times only, the test input is reintroduced and the changes in $X_{1,w_1}$ and A were investigated. | The synaptic efficacy X <sub>1,w1</sub> is potentiated during a long time period.                                                   |                 |                       | 86     |
| 10      | Assumptions 1 to 3 as in model 9. Low-frequency test input and high-frequency conditioning input are anticorrelated.                                                                                                                                                       | The synaptic efficacy X <sub>1,w1</sub> is<br>weakened or depressed,<br>leading to long-term<br>depression of synaptic<br>strength. |                 |                       | 86     |

Table 1.2(continued)

P1: OTA/XYZ P2: ABC c01 JWBS019-Filo November 4, 2009

7:29



7:29

P1: OTA/XYZ P2: ABC c01 JWBS019-Filo November 4, 2009

Printer Name: Sheridan

| Table 1.2 | (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                       |                                                                                                                                            |       |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Model     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Conclusions and                                                                                                                                       |                                                                                                                                            |       |
| No.       | Model Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Applications                                                                                                                                          | Comments <sup>a</sup>                                                                                                                      | Refs. |
| 12        | Assumptions 1 to 3 as in model 11. The external analog signal, ExtIn( <i>t</i> ), has a uniform random value between 0 and 1.<br>ExtIn( <i>t</i> ) $\sum_{i=0}^{10} \frac{1}{100} \sum_{i=0,1,2,\dots,5,i} \frac{1}{\alpha_i = 1.0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | External random input signals<br>are filtrated by the threshold<br>value $\alpha_i/2 = 0.9$ and<br>transformed into impulse<br>signals.                                                                                                                                                                                                                                                                                                                                             | By changing the $\alpha_i$<br>values, any<br>time-variant external<br>analog signal can be<br>filtrated by an<br>arbitrary threshold<br>value         |                                                                                                                                            | 86    |
| <u>ຕ</u>  | $ \begin{array}{c} I_{i,i}^{*}, \overbrace{c_{i,i}}^{*}, \overbrace{c_{i,j}}^{*}, \overbrace{c_{i,j}$ | For excitatory connections:<br>$(E_{i,j} + A_j \rightleftharpoons C_{i,j}):$ $C_{i,j} = \frac{E_{i,j}^{0}}{1+\frac{1}{kN_j}}$ For inhibitory connections:<br>$(E_{i,j} + B_j \rightleftharpoons C_{i,j}):$ $C_{i,j} = \frac{E_{i,j}^{0}}{1+\frac{1}{k(A_0 - A_j)}}$ where <i>k</i> is the equilibrium<br>constant. By adjusting the<br>values of $E_{i,j}^{0}$ and <i>k</i> , neuron<br><i>i</i> can perform logic<br>operations on the state of<br>neurons <i>j</i> and <i>k</i> . | Various types of logic gamma constructed when the constructed when the threshold value for $C_i$ is defined as 1: AND, OR, NOR, $A_j$ AND NOT $A_k$ . | Concentrations of $A_i$<br>are set at $t = 0$ and<br>the output is<br>obtained at steady<br>state. No time<br>dependence is<br>considered. | 109   |

7:29

P1: OTA/XYZ P2: ABC c01 JWBS019-Filo November 4, 2009



represent inputs and outputs finite-state machines can be

to the system, various

specified.

connections between them,

and the definitions the concentrations that

By changing the number of neurons, the form of the







| 20 | Table 1.3    | Models of Uther Biochemical Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                         |                       |       |
|----|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------|
| )  | Model<br>No. | Model Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Results                                                                                                                                                                                                                                                                                                                                                                                           | Conclusions and<br>Applications                                                                                                                                                                                                                                         | Comments <sup>a</sup> | Refs. |
|    | _            | $\begin{array}{c} X_{6} \\ X_{7} \\ K_{7} \\ K_{8} \\ K_{1} \\ K_{1} \\ K_{1} \\ K_{2} \\ K_{3} \\ K_{1} \\ K_{2} \\ K_{3} \\ K_{3} \\ K_{4} \\ K_{3} \\ K_{4} \\$ | The steady-state concentrations<br>of $E_a$ and $E_i$ show step<br>functions with respect to the<br>value of $x/y$ :<br>$E_a(x, y) = [0; x \ge y, 0; x < y]$<br>$E_i(x, y) = [1; x \ge y, 0; x < y]$<br>The concentrations of $x_1$ and<br>$x_2$ change in a similar way<br>except for the appearance of a<br>curved corner whose<br>magnitude seems to depend on<br>the concentration of $E_0$ . | The enzymic<br>conjugate system<br>described can<br>realize the<br>two-factor model.<br>The system was<br>included as a<br>control element in<br>a feedback system.<br>In this case, a<br>specific<br>configuration of the<br>control element can<br>maintain the value |                       | 76    |
|    | 0            | E <sub>a</sub> : active enzyme E <sub>i</sub> : inactive enzyme x <sub>i</sub> <i>y</i> : excitatory and inhibitory factors, respectively; both factors remain constant during the reaction E <sub>i</sub> : an enzyme with constant activity All the reactions are first order. Inputs: <i>x</i> and <i>y</i> ; outputs: <i>x</i> <sub>1</sub> and <i>x</i> <sub>2</sub> .<br>A <sup>*</sup> $\stackrel{E_1}{\longrightarrow}$ B → P <sup>*</sup> The concentrations of A and P are held constant. The conversion of B to P follows Michaelis–Menten kinetics. I, and I <sub>2</sub> : two external effectors of E <sub>1</sub> Output: steady-state concentration of I <sub>1</sub> and I <sub>2</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Three different mechanisms for<br>the kinetics of E <sub>1</sub> can be used<br>to construct three different<br>logic gates: AND, OR, and<br>XOR. The degree of<br>cooperativity in the binding of<br>E <sub>1</sub> and I <sub>1</sub> or I <sub>2</sub> determines the<br>steepness of the transition<br>from low to high steady-state                                                          | of the end product<br>at a desired level.                                                                                                                                                                                                                               |                       | 115   |
|    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | concentrations of B.                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                         |                       |       |

Table 1.3Models of Other Biochemical Syste

P1: OTA/XYZ P2: ABC c01 JWBS019-Filo November 4, 2009

7:29

\_

| $X_1^*$ $X_2^*$ $X_2^*$ $X_4^*$<br>$E_2$ $E_2$ $E_2$ $E_2$ $E_2$ $E_3$ $E_4$ $E_$ | When no inhibitors are present, the<br>steady-state concentrations of A,<br>B, and C are equivalent. When<br>one of the inhibitors is present,<br>the material is apportioned<br>between A and one of the other<br>species. When both inhibitors are<br>present, conversion of A to the<br>other species is blocked. The<br>steepness of transition between<br>the highest and lowest<br>concentrations of A, the values of<br>these concentrations, and the<br>symmetry of the response depend<br>on the kinetic parameters of the<br>enzymes. | The system can<br>function as a<br>logical AND gate. | 115 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----|
| ible enzymes that follow<br>tetics. $E_5$ is inhibited by the<br>tor I <sub>5</sub> . Concentrations of X <sub>i</sub><br>tus: concentrations of I <sub>5</sub> .<br>Internation of D. The<br>precies marked with (*) are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The concentration of D is high<br>(low) when the concentration of<br>I <sub>5</sub> is low (high). The steepness of<br>transition between the highest<br>and lowest concentrations of D<br>and the value of this<br>concentration depend on the<br>kinetic parameters of the<br>enzymes.                                                                                                                                                                                                                                                        | The system can<br>function as a<br>logical NOT gate. | Ë   |

4

7:29

115

Printer Name: Sheridan

(continued)

| -  | Table 1.3    | (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                |                                                     |                       |       |
|----|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------|-------|
| 22 | Model<br>No. | Model Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Results                                                                                                                                                                                        | Conclusions and<br>Applications                     | Comments <sup>a</sup> | Refs. |
|    | Ś            | $\begin{array}{c} X_{5,1} \\ E_{5,1} \\ E_{5,2} \\ E_{5,3} \\$ | The output reaches its maximum<br>value when one of the inputs or<br>both of them are present in<br>significant amounts. The output<br>is minimized when neither input<br>chemical is present. | The system can<br>function as a<br>logical OR gate. |                       | 115   |
|    | The observ   | wotions are those of the mesent authors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |                                                     |                       |       |

authors. EII bre the Ы ar a obser The

#### KINETIC CHARACTERISTICS OF CYCLIC ENZYME SYSTEMS 23

The works presented in Tables 1.1 to 1.3 [76–86,109–122] deal only with theoretical aspects of the enzymic biochemical devices, and the biochemical devices were not carried into practice. Moreover, Okamoto [85] suggests using silicon technology instead of biomaterials for practical implementation of the device based on the cyclic enzyme system.

This study is also based on the cyclic enzyme system, but its leading concept is to accomplish practical implementation of this system using biomaterials. In this respect, the analytical models developed here are related to several biochemical reactors in which enzymic reactions take place. This practical approach cannot be found in the models reviewed [76–86,109–122].

#### 1.5 OSCILLATIONS IN BIOCHEMICAL SYSTEMS

Many oscillatory patterns can be found in biological systems [123–126]. It is generally recognized in engineering that encoding information in a frequency provides resistance to degradation by noise and enhanced precision of control. Rapp [124] suggested that many biological oscillations can be envisaged to reflect the biochemical implementation of this control strategy.

Intracellular communication often proceeds in a pulsatile, rhythmic manner [126]. Moreover, an increasing number of hormones are found to be secreted in a pulsatile manner, and the physiological efficiency of these signals appears to be closely related to their frequency [126]. Based on this understanding, a number of classes of drug therapies have been shown to require a periodic, pulsatile regimen of delivery for efficacy or optimization [131], and several delivery strategies have been proposed to respond to this need [127–131].

## **1.6 KINETIC CHARACTERISTICS OF CYCLIC ENZYME SYSTEMS**

Many examples of enzymatic cyclic systems have been developed in practice [87–107]. These systems can be utilized to construct the biochemical device proposed by Okamoto et al. [76–86]. The kinetic properties of five enzymes that catalyze reactions in which cofactors are required, and therefore can participate in a cyclic enzyme system, are summarized in Table 1.4 [132–144]. These enzymes are glucose-6-phosphate dehydrogenase (G6PDH, E.C. 1.1.1.49), glutathione reductase (GR, E.C. 1.6.4.2), glucose dehydrogenase (GDH, E.C. 1.1.1.47), L-lactate dehydrogenase (LDH, E.C. 1.1.1.27), and alcohol dehydrogenase (ADH, E.C. 1.1.1.1).

|                                        |                                                                         |                                                                                                                                                                                                                                                                       |                                                                                                          | Reaction  |                                                                                                                                                                                                                                            |       |
|----------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Enzyme                                 | Process                                                                 | $K_m$ values                                                                                                                                                                                                                                                          | Conditions                                                                                               | Mechanism | Other Findings                                                                                                                                                                                                                             | Refs. |
| <b>G6PDH</b><br>From brewer's<br>yeast | Glucose-6-phosphate<br>+ NADP →<br>gluconate-6-<br>phosphate +<br>NADPH | $K_{m,\text{Adp}} = 6.9 \times 10^{-5} \text{ M}$<br>$K_{m,\text{NADP}} = 3.3 \times 10^{-5} \text{ M}$<br>In the presence of<br>MgCl <sub>2</sub> 0.01 M:<br>$K_{m,\text{GeP}} = 5.8 \times 10^{-5} \text{ M}$<br>$K_{m,\text{NADP}} = 2.0 \times 10^{-5} \text{ M}$ | 0.063 M Tris buffer,<br>pH 8 at 25°C                                                                     |           | The enzyme is inhibited<br>by NADPH, which is<br>competitive with<br>NADP. The<br>inhibition constant<br>$K_1 = 2.7 \times 10^{-5}$ M.<br>The reaction is<br>reversible and the<br>equilibrium constant<br>is $6 \pm 0.7 \times 10^{-7}$ M | 132   |
| From Candida<br>utilis                 |                                                                         | $K_{m,G6P} = 2.3 \times 10^{-4} M$<br>$K_{m,NADP} = 6.7 \times 10^{-5} M$                                                                                                                                                                                             | 93 mM glycine–<br>NaOH buffer pH<br>9.1, also containing<br>9.3 mM MgCl <sub>2</sub> and<br>0.93 mM EDTA |           |                                                                                                                                                                                                                                            | 133   |
| <b>GR</b><br>From baker's<br>yeast     | Oxidized glutathione<br>+ NADPH →<br>reduced glutathione<br>+ NADP      | $K_{m,GSSG} = 6.1 \times 10^{-5} M$<br>$K_{m,NADPH} = 7.6 \times 10^{-6} M$                                                                                                                                                                                           | Phosphate buffer, pH<br>7.6 at 25°C                                                                      |           |                                                                                                                                                                                                                                            | 134   |
| From sea<br>urchin egg                 |                                                                         | $K_{m,\text{OADPH}} = 1 \times 10^{-4} \text{ M}$<br>$K_{m,\text{NADPH}} = 5 \times 10^{-6} \text{ M}$                                                                                                                                                                | 0.1 M potassium–<br>phosphate buffer,<br>pH 7.2, containing<br>1 mM EDTA                                 |           | Addition of 1 mM<br>EDTA increases the<br>enzyme activity.<br>Further addition of<br>EDTA shows no<br>further effect.                                                                                                                      | 135   |

 Table 1.4
 Kinetic Properties of Enzymes Used in Cyclic Systems

P1: OTA/XYZ P2: ABC c01 JWBS019-Filo November 4, 2009

7:29

| 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         | 137                                                                                                   |                                    | 138                                                                                                                   | 139                                                                                                                                                 | 140                                             | continued) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------|
| The reaction is<br>reversible and the<br>equilibrium constant<br>is $2.9-3.3 \times 10^{-7}$ M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                         | The reaction is<br>reversible and the<br>equilibrium constant<br>is $30 \times 10^{-7}$ M at<br>pH 7. |                                    |                                                                                                                       |                                                                                                                                                     | )                                               |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |                                                                                                       |                                    |                                                                                                                       | Ordered<br>Bi-Bi                                                                                                                                    |                                                 |            |
| 0.05 M phosphate<br>buffer, pH 7.6<br>at 21–22°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         | 0.05 M phosphate<br>buffer, pH 7                                                                      | 0.05 M phosphate<br>buffer, pH 7.6 | Phosphate buffer,<br>pH 8.2                                                                                           | Acetate-borate<br>buffer, pH 9 at<br>25°C                                                                                                           |                                                 |            |
| $ \begin{array}{c c} {}^{\mathrm{AD}} = 4.3 \times 10^{-6} \mathrm{M} \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $ | $34.9 \times 10^{-2}$<br>$3.13 \times 10^{-2}$<br>$32.6 \times 10^{-2}$ | $_{ m AD} = 15 \times 10^{-2}  { m M}$<br>$_{ m AD} = 1.5 \times 10^{-5}  { m M}$                     | $_{ m ucose}=7	imes10^{-2}{ m M}$  | $u_{\text{cose}} = 0.3-0.7 \text{ M}$<br>$u_{\text{D}} = 0.38 \ \mu \text{M}$<br>$u_{\text{D}} = 0.45 \ \mu \text{M}$ | $u_{\text{ucose}} = 47.5 \times 10^{-3} \text{ M}$<br>$u_{\text{D}} = 4.5 \times 10^{-3} \text{ M}$<br>$u_{\text{D}} = 69 \times 10^{-5} \text{ M}$ | $_{\rm ruvate} = 5.2 \times 10^{-5} \mathrm{M}$ |            |
| $\stackrel{K_{m,N/}}{\operatorname{pH}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.28<br>7.00<br>8.92                                                    | $K_{m,{ m glu}} K_{m,{ m NA}}$                                                                        | $K_{m,{ m glu}}$                   | $K_{m,{ m glu}}^{m,{ m glu}} K_{m,{ m NA}}^{m,{ m NA}}$                                                               | $K_{m,\mathrm{NA}}^{m,\mathrm{glu}}$<br>$K_{m,\mathrm{NA}}$<br>$K_{i,\mathrm{NAI}}$                                                                 | $K_{m,\mathrm{py}}$                             |            |
| $\begin{array}{l} Glucose + NAD \\ \rightarrow glucono- \\ \$.lactone + \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NADH                                                                    |                                                                                                       |                                    |                                                                                                                       |                                                                                                                                                     | Pyruvate +<br>NADH →<br>lactate +<br>NAD        |            |
| <b>GDH</b><br>From beef<br>liver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         | From ox liver                                                                                         |                                    | From rat liver                                                                                                        | From Bacillus<br>Megaterium                                                                                                                         | LDH<br>From rabbit<br>muscle                    |            |

7:29

| Table 1.4 Kinet                    | ic Properties of Enzym                    | es Used in Cyclic Systems (con                                                                                                                                      | ttinued)                                               |                                                                                                                     |                                                                                                                                                          |       |
|------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Enzyme                             | Process                                   | K <sub>m</sub> values                                                                                                                                               | Conditions                                             | Reaction<br>Mechanism                                                                                               | Other Findings                                                                                                                                           | Refs. |
| LDH<br>From rabbit<br>muscle       | Pyruvate + NADH<br>→ Lactate +<br>NAD     | $K_{m,\text{pyruvate}} = 15 \times 10^{-6} \text{ M}$<br>$K_{m,\text{NADH}} = 35 \times 10^{-7} \text{ M}$<br>$K_{\text{PN}} = 6.5 \times 10^{-12} \text{ M}^2$     | 0.05 M sodium<br>phosphate buffer, pH<br>6.8 at 25°C   | Ordered Bi-Bi.<br>$\frac{V_m}{V} = 1 + \frac{K_{m,P}}{[P]}$ $+ \frac{K_{m,N}}{[NADH]}$ $+ \frac{K_{PN}}{[P][NADH]}$ | The reaction is<br>reversible and the<br>equilibrium<br>constant is $2.76 \times 10^{-12}$ M at pH 7<br>and $25^{\circ}$ C. Pyruvate<br>is an inhibitor. | 141   |
|                                    |                                           | $K_{m,\text{pyruvate}} = 1.64 \times 10^{-4} \text{ M}$<br>$K_{m,\text{NADH}} = 1.07 \times 10^{-5} \text{ M}$<br>$K_{\text{PN}} = 1.38 \times 10^{-9} \text{ M}^2$ | 0.25 M phosphate<br>buffer, pH 6.8 at<br>25°C          |                                                                                                                     | Pyruvate and lactate<br>inhibit the enzyme<br>with $K_{1,pynvate} = 2.02 \times 10^{-4}$ M                                                               | 142   |
| From<br>Lactobacillus<br>plantarum | Pyruvate + NADH<br>→ lactate +<br>NAD     | $K_{m,\mathrm{pyruvate}} = 3.7 \times 10^{-4} \mathrm{M}$                                                                                                           | 0.1 M Tris buffer, pH 8                                |                                                                                                                     | $K_{\rm t, lactate} = 0.209  {\rm M}$                                                                                                                    | 143   |
| ADH<br>From baker's<br>yeast       | Ethanol + NAD<br>→ acetaldehyde<br>+ NADH | $ \begin{array}{cccc} {\rm pH} & K_{m,{\rm NAD}} & K_{m,{\rm EH}}, & K_{i,{\rm NAD}} \\ (mM) & (mM) & (mM) \\ 4.9 & 0.224 & 107 & 0.390 \end{array} $               | 0.01 M acetic<br>acid-sodium acetate<br>buffer, pH 4.9 | Ordered Bi-Bi                                                                                                       | The reaction is<br>reversible and the<br>equilibrium<br>constant is 0.98 ×                                                                               | 144   |
|                                    |                                           | 5.95         0.106         43         0.340           7.05         0.108         26         0.270           8.1         0.118         18.5         0.385            | 0.1 M phosphate<br>buffer, pH 5.95,<br>7.05, 8.1       |                                                                                                                     | 10 <sup>-11</sup> M at 25°C                                                                                                                              |       |
|                                    |                                           | 8.9 0.150 10 0.860<br>9.9 0.200 5 2.40                                                                                                                              | 0.01 M glycine-NaOH<br>huffer. pH 8.9, 9.9             |                                                                                                                     |                                                                                                                                                          |       |

| (conti        |
|---------------|
| Systems       |
| Cyclic        |
| Used in       |
| f Enzymes l   |
| Properties of |
| Kinetic ]     |
| Table 1.4     |

26

P1: OTA/XYZ P2: ABC c01 JWBS019-Filo M November 4, 2009

7:29