
CHAPTER ONE

Introduction to the
FDTD Method

As a major computational electromagnetics tool, the finite-difference time-domain
(FDTD) method, proposed by K. S. Yee [1], is in widespread use as a solver
for a variety of electromagnetic problems. Although the focus of this book is
on simulation techniques and engineering applications, we begin by reviewing
some of the basic concepts of the FDTD method, including update equations,
numerical dispersion, stability properties, and the absorbing boundary condition.
Readers desiring to gain additional details about the FDTD method are referred to
the literature [2–9] on this subject.

1.1 THE FDTD METHOD

The FDTD method is a numerical technique based on the finite-difference concept
used to solve Maxwell’s equations for electric and magnetic field distributions in the
time and spatial domains. The FDTD method utilizes the central difference approx-
imation to discretize the two Maxwell’s curl equations—Faraday’s and Ampère’s
laws—in the time and spatial domains, and then solves the resulting equations
numerically to derive the electric and magnetic field distributions at each time step
using an explicit leapfrog scheme. The FDTD solution thus derived is second-order
accurate and is stable if the time step satisfies the Courant condition.

In Yee’s scheme [1], the computational domain is discretized by using a rectan-
gular grid. The electric fields are located along the edges of the electric elements,
while the magnetic fields are sampled at the centers of the electric element surfaces
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Figure 1.1 Position of the electric and magnetic fields in Yee’s scheme.

and are oriented normal to these surfaces, this being consistent with the duality
property of the electric and magnetic fields in Maxwell’s equations. A typical
electric unit is shown in Fig. 1.1.

The FDTD utilizes rectangular pulses as base functions in both the time and
spatial domains, implying that the electric field is distributed uniformly along the
edge of the electric element, while the distribution of the magnetic fields is uniform
on the surface of the electric unit. In addition, in the time domain, the electric
fields are sampled at times n �t and are assumed to be uniform in the time
period (n − 1

2 �t) to (n + 1
2 �t). Similarly, the magnetic fields are sampled at

(n + 1
2 �t) and are assumed to be uniform in the period n �t to (n + 1) �t .

The FDTD algorithm constructs a solution to the following two Maxwell curl
equations:

∇ × �E = −μ
∂ �H
∂t

− σM
�H (Faraday’s law) (1.1a)

∇ × �H = ε
∂ �E
∂t

+ σ �E (Ampère’s law) (1.1b)

In the Cartesian coordinate system, we can rewrite (1.1a) and (1.1b) as the following
six coupled partial differential equations:

∂Hx

∂t
= 1

μx

(
∂Ey

∂z
− ∂Ez

∂y
− σMxHx

)
(1.2a)

∂Hy

∂t
= 1

μy

(
∂Ez

∂x
− ∂Ex

∂z
− σMyHy

)
(1.2b)
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∂Hz

∂t
= 1

μz

(
∂Ex

∂y
− ∂Ey

∂x
− σMzHz

)
(1.2c)

∂Ex

∂t
= 1

εx

(
∂Hz

∂y
− ∂Hy

∂z
− σxEx

)
(1.2d)

∂Ey

∂t
= 1

εy

(
∂Hx

∂z
− ∂Hz

∂x
− σyEy

)
(1.2e)

∂Ez

∂t
= 1

εz

(
∂Hy

∂x
− ∂Hx

∂y
− σzEz

)
(1.2f)

where ε and σ , μ and σM are the electric and magnetic parameters of the material,
respectively. The anisotropic material can be described by using different values
of dielectric parameters along the different directions. Equations (1.2a) to (1.2f)
form the foundation of the FDTD algorithm for modeling the interaction of elec-
tromagnetic waves with arbitrary three-dimensional objects embedded in arbitrary
media and excited by a given excitation source. Using the conventional notations,
discretized fields in the time and spatial domains can be written in the following
format:

En
x (i + 1

2 , j, k) = Ex((i + 1
2 ) �x, j �y, k �z, n �t) (1.3a)

En
y (i, j + 1

2 , k) = Ey(i �x, (j + 1
2 ) �y, k �z, n �t) (1.3b)

En
z (i, j, k + 1

2 ) = Ez(i �x, j �y, (k + 1
2 ) �z, n �t) (1.3c)

H
n+ 1

2
x (i, j + 1

2 , k + 1
2 )

= Hx(i �x, (j + 1
2 ) �y, (k + 1

2 ) �z, (n + 1
2 ) �t) (1.3d)

H
n+ 1

2
y (i + 1

2 , j, k + 1
2 )

= Hy((i + 1
2 ) �x, j �y, (k + 1

2 ) �z, (n + 1
2 ) �t) (1.3e)

H
n+ 1

2
z (i + 1

2 , j + 1
2 , k)

= Hz((i + 1
2 ) �x, (j + 1

2 ) �y, k �z, (n + 1
2 ) �t) (1.3f)

It is useful to note that the electric and magnetic fields in the discretized version are
staggered in both time and space. For example, the electric and magnetic fields are
sampled at the time steps n �t and (n + 1

2 ) �t , respectively, and are also displaced
from each other in space, as shown in Fig. 1.1. Therefore, we need to interpolate the
sampled electric and magnetic fields in order to measure the electric and magnetic
fields in the continuous spatial and time domains. Ignoring this field-sampling offset
in the Fourier transforms may result in a significant error at high frequencies.
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Using the notations in (1.3a) to (1.3f), we can represent Maxwell’s equations
(1.2a) to (1.2f) in the following explicit formats [2]:

Hn+1/2
x (i, j + 1

2 , k + 1
2 ) = μx − 0.5�tσMx

μx + 0.5�tσMx

Hn−1/2
x (i, j + 1

2 , k + 1
2 )

+ �t

μx + 0.5�tσMx

[
En

y (i, j + 1
2 , k + 1) − En

y (i, j + 1
2 , k)

�z

−En
z (i, j + 1, k + 1

2 ) − En
z (i, j, k + 1

2 )

�y

]
(1.4a)

Hn+1/2
y (i + 1

2 , j, k + 1
2 ) = μy − 0.5�tσMy

μy + 0.5�tσMy

Hn−1/2
y (i + 1

2 , j, k + 1
2 )

+ �t

μy + 0.5�tσMy

[
En

z (i + 1, j, k + 1
2 ) − En

z (i, j, k + 1
2 )

�x

−En
x (i + 1

2 , j, k + 1) − En
x (i + 1

2 , j, k)

�z

]
(1.4b)

Hn+1/2
z (i + 1

2 , j + 1
2 , k) = μz − 0.5�tσMz

μz + 0.5�tσMz

Hn−1/2
z (i + 1

2 , j + 1
2 , k)

+ �t

μz + 0.5�tσMz

[
En

x (i + 1
2 , j + 1, k) − En

x (i + 1
2 , j, k)

�y

−En
y (i + 1, j + 1

2 , k) − En
y (i, j + 1

2 , k)

�x

]
(1.4c)

En+1
x (i + 1

2 , j, k) = εx − 0.5�tσx

εx + 0.5�tσx

En
x (i + 1

2 , j, k)

+ �t

εx + 0.5�tσx

[
H

n+1/2
z (i + 1

2 , j + 1
2 , k) − H

n+1/2
z (i + 1

2 , j − 1
2 , k)

�y

−H
n+1/2
y (i + 1

2 , j, k + 1
2 ) − H

n+1/2
y (i + 1

2 , j, k − 1
2 )

�z

]
(1.4d)
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En+1
y (i, j + 1

2 , k) = εy − 0.5�tσy

εy + 0.5�tσy

En
y (i, j + 1

2 , k)

+ �t

εy + 0.5�tσy

[
H

n+1/2
x (i, j + 1

2 , k + 1
2 ) − H

n+1/2
x (i, j + 1

2 , k − 1
2 )

�z

−H
n+1/2
z (i + 1

2 , j + 1
2 , k) − H

n+1/2
z (i − 1

2 , j + 1
2 , k)

�x

]
(1.4e)

En+1
z (i, j, k + 1

2 ) = εz − 0.5�tσz

εz + 0.5�tσz

En
z (i, j, k + 1

2 )

+ �t

εz + 0.5�tσz

[
H

n+1/2
y (i + 1

2 , j, k + 1
2 ) − H

n+1/2
y (i − 1

2 , j, k + 1
2 )

�x

−H
n+1/2
x (i, j + 1

2 , k + 1
2 ) − H

n+1/2
x (i, j − 1

2 , k + 1
2 )

�y

]
(1.4f)

We point out that for simplicity we have omitted the explicit indices for the
material parameters, which share the same indices with the corresponding field
components. Equations (1.4a) through (1.4f) do not contain any explicit boundary
information, and we need to augment them with an appropriate boundary con-
dition in order to truncate the computational domain. In the FDTD simulation,
some of the commonly used boundary conditions include those associated with
the perfect electric conductor (PEC), the perfect magnetic conductor (PMC), the
absorbing boundary condition (ABC), and the periodic boundary condition (PBC).
In addition to the boundary conditions above, we also need to handle the interfaces
between different media in an inhomogeneous environment. In accordance with the
assumption of the locations of the electric and magnetic fields, the magnetic field
is located along the line segment joining the two centers of adjacent cells. Conse-
quently, the effective magnetic parameter corresponding to this magnetic field is
the weighted average of the parameters of the material that fills the two adjacent
cells. Unlike the magnetic field, the loop used to compute the electric field is likely
to be distributed among four adjacent cells; therefore, the effective electric param-
eter corresponding to this electric field is equal to the weighted average of electric
parameters of the material that fills these four cells. In addition, the curved PEC
and dielectric surfaces require use of the conformal FDTD technique [3,4,9,10] for
accurate modeling.

In recent years, research on the FDTD method has focused on the following three
topics: improving the conventional FDTD algorithm and employing the conformal
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version instead to reduce the error introduced by the staircasing approximation;
using a subgridding scheme in the FDTD technique to increase the local res-
olution [11–13], and employing the alternative direction implicit (ADI) FDTD
algorithm [14,15] to increase the time step. In addition, new FDTD algorithms such
as the multiresolution time-domain (MRTD) method [16] and the pseudospectrum
time-domain (PSTD) technique [17] have been proposed with a view to lowering
the spatial sampling. Yet another strategy, which has been found to be more robust
than the MRTD and PSTD techniques, is to parallelize the conformal code [18,19]
and enhance it either with subgridding, the ADI algorithm, or both. The parallel
FDTD algorithm gains computational efficiency by distributing the burden on a
cluster. It also enables one to solve large problems that could be beyond the scope
of a single processor because of central processing unit time limitations.

1.2 NUMERICAL DISPERSION

If a medium is dispersive, the propagation velocities of electromagnetic waves will
vary with frequency in such a medium. In a nondispersive medium—for example,
in free space—the radian frequency and the wave numbers satisfy the relationship

(ω

c

)2 = k2
x + k2

y + k2
z (1.5)

where kx, ky , and kz are the propagation constants along the x-, y-, and z-directions,
respectively. Even when the medium is nondispersive, electromagnetic waves inside
the FDTD mesh travel along different directions at different speeds, a phenomenon
known as the numerical dispersion error . This error is a function of the FDTD cell
size and shape as well as the shape of the differencing format used to discretize
the differential equations.

We now proceed to investigate the numerical dispersion characteristics of the
FDTD method in the Cartesian coordinate system. We begin by representing a
plane wave function as

ψ(x, y, z, t) = ψ0 exp[j (ωt − kxx − kyy − kzz)] (1.6)

where the radian frequency ω = 2πf . If the discretizations in the x-, y-, and
z-directions and the time step are �x, �y, �z, and �t , respectively, the expression
in (1.6) can be written as

ψn(I, J, K) = ψ0 exp[j (ωn �t − kxI �x − kyJ �y − kzK �z)] (1.7)

where n, I, J , and K are the indices in time and space, respectively. In free space,
electromagnetic waves satisfy the following wave equation:

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
− 1

c2

∂2

∂t2

)
ψ = 0 (1.8)
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where c is the velocity of light in free space. Using central differencing in both the
time and spatial domains, we can discretize (1.8) to get

ψn(i + 1, j, k) − 2ψn(i, j, k) + ψn(i − 1, j, k)

�x2

+ ψn(i, j + 1, k) − 2ψn(i, j, k) + ψn(i, j − 1, k)

�y2

+ ψn(i, j, k + 1) − 2ψn(i, j, k) + ψn(i, j, k − 1)

�z2

= ψn+1(i, j, k) − 2ψn(i, j, k) + ψn−1(i, j, k)

�t2
(1.9)

Substituting (1.7) into (1.9), we have

(
1

c �t
sin

ω �t

2

)2

=
(

1

�x
sin

kx �x

2

)2

+
(

1

�y
sin

ky �y

2

)2

+
(

1

�z
sin

kz �z

2

)2

(1.10)

It is evident that (1.10) reduces to (1.5) as �x → 0, �y → 0, and �z → 0,
implying that the numerical dispersion error decreases when the cell size is
reduced. In addition, the numerical dispersion error is different along different
propagation directions, and we illustrate this phenomenon next through a simple
two-dimensional example of propagation in a uniform mesh (i.e., for �x = �y).
We assume that a line source oriented along the z-direction is located in free
space. In Fig. 1.2 we plot the distribution of its radiated field Ez in the x –y plane.
It is evident that the numerical dispersion error is smaller along the diagonals
when φ = 45◦

, 135◦
, 225◦, and 315◦ than in other directions.

(a) Δ = l/7 (b) Δ = l/10 (c) Δ = l/15

Figure 1.2 Numerical dispersion of the FDTD method.
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1.3 STABILITY ANALYSIS

One of the critical issues that we must address when developing a code that
utilizes the marching-on-time technique is the stability of the algorithm. The sta-
bility characteristic of the FDTD algorithm depends on the nature of the physical
model, the differencing technique employed, and the quality of the mesh struc-
ture. To understand the nature of the stability characteristic, we solve (1.10) for ω

to get

ω = 2

�t
sin−1

(
c �t

√
1

�x2
sin2 kx �x

2
+ 1

�y2
sin2 ky �y

2
+ 1

�z2
sin2 kz �z

2

)
(1.11)

If ω is an imaginary number, we know from (1.6) that the electromagnetic waves
will either attenuate rapidly to zero or grow exponentially and become divergent,
depending on whether the imaginary part is positive or negative. To ensure that ω

is a real number instead, the expression inside parentheses in (1.11) must satisfy
the condition

c �t

√
1

�x2
sin2 kx �x

2
+ 1

�y2
sin2 ky �y

2
+ 1

�z2
sin2 kz �z

2
≤ 1 (1.12)

Since the maximum possible value of the sine-squared term under the square
root is 1, the time step must satisfy

�t ≤ 1

c
√

1/�x2 + 1/�y2 + 1/�z2
(1.13)

for the solution to be stable. The criterion above is called the stability condition

for the FDTD method and is referred to as the Courant condition (or the Courant,
Friedrichs, and Lewy criterion) [19]. Equation (1.13) indicates that the time step
is determined by the cell sizes in the x-, y-, and z-directions and the speed of light
in the medium.

To help the reader gain further physical insight into (1.13), we simplify (1.13) to
a one-dimensional case, where the Courant condition is simplified to c �t ≤ �x.
The time required for the field to propagate from the nth to the (n + 1)th node is
obviously �t = �x/c. In FDTD simulations, let us suppose that we choose a time
step �t >�x/c. Then the algorithm yields a nonzero field value before the wave
can reach the (n + 1)th node, traveling at the speed of light. This would violate
causality and result in an unstable solution.
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1.4 BOUNDARY CONDITIONS

It is well known that boundary conditions play a very important role in FDTD
simulations, because they are used to truncate the computational domain when
modeling an open region problem. Although the original FDTD algorithm was
proposed as early as 1966, it was not really used to solve practical problems until the
early 1980s, when Mur’s absorbing boundary [20] was proposed. Although Mur’s
absorbing boundary condition is relatively simple, and it has been used successfully
to solve many engineering problems, it has room for improvement in terms of
the accuracy of the solution it generates. To improve its accuracy, Mei and Fang
[21] introduced the superabsorption technique, and Chew [25] proposed employing
Liao’s boundary condition, both of which exhibit better characteristics than those of
Mur, especially for obliquely incident waves. However, many of these absorbing
boundary conditions were found to suffer from either an instability problem or
an inaccurate solution, and the quest for robust and effective boundary conditions
continued unabated until the perfectly matched layer (PML) was introduced by
Berenger [23], and several other versions [24–27] have been proposed since then.
In contrast to the other boundary conditions, such as those of Mur and Liao, an
infinite PML can absorb the incoming waves at all frequencies as well as for all
incident angles. The perfect electric conductor (PEC) is a natural boundary for
electromagnetic waves, since it totally reflects the waves falling on it. When the
PEC condition is applied to truncate the FDTD computational domain, it simply
forces the tangential electric fields on the domain boundary to be zero. In common
with the PEC, the perfect magnetic conductor (PMC) is also a natural type of
boundary condition for electromagnetic waves, and it is also totally reflecting.
However, unlike the PEC, the PMC is not physical but is merely an artifice. Both
the PEC and PMC are often used to take advantage of the symmetry of the object
geometry with a view to reducing the size of the computational domain. In this
section we focus on the time convolution PML [27], one of the most popular PML
formats. Although the PML is named to be an absorbing boundary condition, in
fact, it is an anisotropic material (albeit mathematical) which is inserted in the
periphery of the computational domain to absorb the outgoing waves.

Before introducing the PML boundary conditions, we investigate their role in
FDTD simulations. In the FDTD method, Maxwell’s equations that govern the rela-
tionship between the electric and magnetic fields in the time and spatial domains
are translated into difference equations, which do not explicitly contain any bound-
ary information. It is necessary, therefore, to combine the difference equations with
the appropriate boundary conditions in order to carry out the mesh truncation as a
preamble to solving these equations. Generally speaking, we require two types of
boundary conditions in FDTD simulations: the interface condition between differ-
ent media, and the outer boundary condition for mesh truncation. In this chapter
we discuss only the latter: the boundary that is used to truncate the computational
domain.
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The time-convolution PML is based on the stretched coordinate PML [25,26],
and the six coupled Maxwell’s equations in the time-convolution PML can be
written in the following form:

jωεẼx + σxẼx = 1

Sy

∂H̃z

∂y
− 1

Sz

∂H̃y

∂z
(1.14a)

jωεẼy + σyẼy = 1

Sz

∂H̃x

∂z
− 1

Sx

∂H̃z

∂x
(1.14b)

jωεẼz + σzẼz = 1

Sx

∂H̃y

∂x
− 1

Sy

∂H̃x

∂y
(1.14c)

jωμxH̃x + σMxH̃x = 1

Sz

∂Ẽy

∂z
− 1

Sy

∂Ẽz

∂y
(1.14d)

jωμyH̃y + σMyH̃y = 1

Sx

∂Ẽz

∂x
− 1

Sz

∂Ẽx

∂z
(1.14e)

jωμzH̃z + σMzH̃z = 1

Sy

∂Ẽx

∂y
− 1

Sx

∂Ẽy

∂x
(1.14f)

To derive the update equations for the time-convolution PML from (1.14a), we
first take its Laplace transform to obtain the following equation in the time domain:

εx

∂Ex

∂t
+ σxEx = S̄y(t) ∗ ∂Hz

∂y
− S̄z(t) ∗ ∂Hy

∂z
(1.15)

where S̄y and S̄z are the Laplace transforms of 1/Sy and 1/Sz, respectively.
The time-convolution PML is derived by converting (1.15) to a form that is

suitable for explicit updating. Furthermore, to overcome the shortcomings of the
split-field and unsplit PMLs insofar as the effectiveness at low frequencies and
the absorption of the surface waves are concerned, we modify Sx, Sy , and Sz as
follows:

Sx = Kx + σx,PML

αx + jωε0
, Sy = Ky + σy,PML

αy + jωε0
, Sz = Kz + σz,PML

αz + jωε0

where αx,y,z and σx,y,z,PML are real numbers and K is greater than 1. S̄x, S̄y , and
S̄z can be obtained from the Laplace transforms:

S̄x = δ(t)

Kx

− σx

ε0Kx

exp

[
−

(
σx,PML

ε0Kx

+ αx,PML

ε0

)
tu(t)

]
= δ(t)

Kx

+ ξx(t) (1.16)

S̄y = δ(t)

Ky

− σy

ε0Ky

exp

[
−

(
σy,PML

ε0Ky

+ αy,PML

ε0

)
tu(t)

]
= δ(t)

Ky

+ ξy(t) (1.17)
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S̄z = δ(t)

Kz

− σz

ε0Kz

exp

[
−

(
σz,PML

ε0Kz

+ αz,PML

ε0

)
tu(t)

]
= δ(t)

Kz

+ ξz(t) (1.18)

where δ(t) and u(t) are an impulse function and a step function, respectively.
Substituting (1.17) and (1.18) into (1.15), we have

εxε0
∂Ex

∂t
+ σxEx = 1

Ky

∂Hz

∂y
− 1

Kz

∂Hy

∂z
+ ξy(t) ∗ ∂Hz

∂y
− ξz(t) ∗ ∂Hy

∂z
(1.19)

It is not numerically efficient to compute the convolution appearing directly in
(1.19), and to address this issue and calculate it efficiently, we introduce a quantity
Z0y(m):

Z0y(m) =
∫ (m+1)�t

m�t

ξy(τ ) dτ

= − σy

ε0K2
y

∫ (m+1)�t

m�t

exp

[
−

(
σy,PML

ε0Ky

+ αy,PML

ε0

)
τ

]
dτ

= ay exp

[
−

(
σy,PML

Ky

+ αy,PML

)
m �t

ε0

]
(1.20)

where

ay = σy,PML

σy,PMLKy + K2
yαy

(
exp

[
−

(
σy,PML

Ky

+ αy

)
m �t

ε0

]
− 1

)
(1.21)

A similar expression can be derived for Z0z(m). Using (1.20) and (1.21), (1.19)
can be written as

εxε0
En+1

x (i + 1
2 , j, k)−En

x (i + 1
2 , j, k)

�t
+σx

En+1
x (i + 1

2 , j, k)+En
x (i + 1

2 , j, k)

2

= H
n+1/2
z (i + 1

2 , j + 1
2 , k) − H

n+1/2
z (i + 1

2 , j − 1
2 , k)

Ky �y

− H
n+1/2
y (i + 1

2 , j, k + 1
2 ) − H

n+1/2
y (i + 1

2 , j, k − 1
2 )

Kz �z

+
N−1∑
m=0

Z0y(m)
H

n−m+1/2
z (i + 1

2 , j + 1
2 , k) − H

n−m+1/2
z (i + 1

2 , j − 1
2 , k)

Ky �y

−
N−1∑
m=0

Z0z(m)
H

n−m+1/2
y (i + 1

2 , j, k + 1
2 ) − H

n−m+1/2
y (i + 1

2 , j, k − 1
2 )

Kz �z

(1.22)
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Finally, the update formula of (1.22) takes the form

εxε0
En+1

x (i + 1
2 , j, k)−En

x (i + 1
2 , j, k)

�t
+σx

En+1
x (i + 1

2 , j, k)+En
x (i + 1

2 , j, k)

2

= H
n+1/2
z (i + 1

2 , j + 1
2 , k) − H

n+1/2
z (i + 1

2 , j − 1
2 , k)

Ky �y

− H
n+1/2
y (i + 1

2 , j, k + 1
2 ) − H

n+1/2
y (i + 1

2 , j, k − 1
2 )

Kz �z

+ ψn+1/2
exy (i + 1

2 , j, k) − ψn+1/2
exz (i + 1

2 , j, k) (1.23)

where

ψn+1/2
exy (i + 1

2 , j, k) = byψ
n−1/2
exy (i + 1

2 , j, k)

+ ay

H
n+1/2
z (i + 1

2 , j + 1
2 , k) − H

n+1/2
z (i + 1

2 , j − 1
2 , k)

�y

(1.24)

ψn+1/2
exz (i + 1

2 , j, k) = bzψ
n−1/2
exz (i + 1

2 , j, k)

+ az

H
n+1/2
y (i + 1

2 , j, k + 1
2 ) − H

n+1/2
y (i + 1

2 , j, k − 1
2 )

�z
(1.25)

bx = exp

[
−

(
σx,PML

Kx

+ αx

) (
�t

ε0

)]
(1.26a)

by = exp

[
−

(
σy,PML

Ky

+ αy

) (
�t

ε0

)]
(1.26b)

bz = exp

[
−

(
σz,PML

Kz

+ αz

) (
�t

ε0

)]
(1.26c)

Equation (1.23) is the desirable update equation that we have been seeking to
retain the advantages of the unsplit PML, and at the same time, overcome its
drawback. In common with the conventional FDTD method, electric field updating
inside the PML region requires only the magnetic fields around it and the value of
ψ at the previous time step. The same statement is also true for the magnetic field
update. The time-domain convolution PML does not require additional information
exchange in the parallel FDTD simulation over and above that in the conventional
FDTD method.
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Suppose that x is the distance measured from the outer boundary of the compu-
tational domain; then the conductivity distribution in the PML region is given by

σ(x) = σmax

(
d − x

d

)m

(1.27)

where the index m is taken to be either 2 or 4. In addition, in (1.27), d is the
thickness of the PML region and σmax is the maximum value of the conductivity,
which can be expressed as

σmax = m + 1

200π
√

εr �x
(1.28)

Suppose that y is a distance measured from the outer boundary of the compu-
tational domain; the distribution of Ky is given by

Ky(y) = 1 + (Kmax − 1)
|d − y|m

dm
(1.29)

Implementation of the time-convolution PML in the FDTD code is relatively
simpler than for most other types of PMLs. Also, this type of PML does not
depend on the properties of the materials being simulated. In addition, it shows
performance at low frequencies.

Numerical experiments have proven that the performance of the PML is not
very sensitive to the choice of K . For example, we do not observe any significant
variation in the reflection property of the PML when the value of Kmax varies from
1 to 15. However, the value of α in (1.21) and (1.26) plays an important role in
determining the reflection level of the time-domain convolution PML. We have
found, by carrying out numerical experiments, that the value of α to be chosen
depends not only on the cell size inside the PML region but also on the width of
the excitation pulse used in the FDTD simulation; furthermore, it is not possible
to employ a single α value to cover all possible cell sizes and pulse shapes that
we might use. Fortunately, however, we can easily find a suitable value of α for
a narrow range of cell size and pulse shape. For example, for a Gaussian pulse
modulated with a sinusoidal function (f3dB = 1 GHz and fmodulation = 1 GHz), the
highest frequency of spectrum of the excitation pulse is about 5 GHz, and the cell
sizes in the FDTD simulations are selected to be 0.0001 to 0.006 m. For this case,
the value of α can be chosen as follows:

αx = η
0.06

300π �x
, αy = η

0.06

300π �y
, αz = η

0.06

300π �z
(1.30)

where η = 1. We should point out that if we change the width of the excitation
pulse while keeping the cell size unchanged, there will be significant reflection
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from the PML layer, and therefore the value of α should be a function of the width
of the excitation pulse. A recommended choice for α, expressed in terms of η, is

η =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

1 + 0.6(λmin − λref)/λref
, λmin >λref

1 λmin = λref
1

1 + (λref − λmin)/λref
, λmin < λref

(1.31)

where λref is the shortest wavelength in the spectrum of the reference excitation
pulse and λmin is the shortest wavelength in the FDTD simulations. It is useful
to point out that we have introduced α in the time-convolution PML to improve
performance at the lower frequencies. The reflection level of this PML will revert
to the same level as that of others if we set α = 0.

The most important features of the time-convolution PML are that its update pro-
cedure is not related to the properties of the material that fills in the computational
domain, and that its performance is good even at low frequencies.
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EXERCISES

1.1 Formula (1.20) plays an important role in the time-convolution PML. Derive
(1.20) from (1.16) to (1.19).

1.2 Develop a PML code and select the parameter σmax in (1.28) to achieve
minimum reflection from the PML layers.

1.3 To improve the reflection from the PML layers at low frequencies, you need
to select a proper α value in (1.30). Develop a PML code and select a proper
α value to improve PML performance at low frequencies.


