
1
 Application and Page
Frameworks

 WHAT ’ S IN THIS CHAPTER?

 Choosing application location and page structure options

 Working with page directives, page events, and application folders

 Choosing compilation options

 The evolution of ASP.NET continues! The progression from Active Server Pages 3.0 to ASP.NET 1.0
was revolutionary, to say the least. And now the revolution continues with the latest release of ASP.
NET — version 4. The original introduction of ASP.NET 1.0 fundamentally changed the Web
programming model. ASP.NET 4 is just as revolutionary in the way it will increase your productivity.
As of late, the primary goal of ASP.NET is to enable you to build powerful, secure, dynamic
applications using the least possible amount of code. Although this book covers the new features
provided by ASP.NET 4, it also covers all the offerings of ASP.NET technology.

 If you are new to ASP.NET and building your fi rst set of applications in ASP.NET 4, you may be
amazed by the vast amount of wonderful server controls it provides. You may marvel at how it
enables you to work with data more effectively using a series of data providers. You may be impressed
at how easily you can build in security and personalization.

 The outstanding capabilities of ASP.NET 4 do not end there, however. This chapter looks at many
exciting options that facilitate working with ASP.NET pages and applications. One of the fi rst steps
you, the developer, should take when starting a project is to become familiar with the foundation you
are building on and the options available for customizing that foundation.

 APPLICATION LOCATION OPTIONS

 With ASP.NET 4, you have the option — using Visual Studio 2010 — to create an application with
a virtual directory mapped to IIS or a standalone application outside the confi nes of IIS. Whereas,
the early Visual Studio .NET 2002/2003 IDEs forced developers to use IIS for all Web applications,
Visual Studio 2008/2010 (and Visual Web Developer 2008/2010 Express Edition, for that matter)
includes a built - in Web server that you can use for development, much like the one used in the past
with the ASP.NET Web Matrix.

➤

➤

➤

c01.indd 1c01.indd 1 2/2/10 4:36:43 PM2/2/10 4:36:43 PM

CO
PYRIG

HTED
 M

ATERIA
L

2 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

This built-in Web server was previously presented to developers as a code sample
called Cassini. In fact, the code for this mini Web server is freely downloadable from
the ASP.NET team Web site found at www.asp.net.

 The following section shows you how to use the built - in Web server that comes with Visual Studio 2010.

 Built - in Web Server

 By default, Visual Studio 2010 builds applications without the use of IIS. You can see this when you
select File ➪ New ➪ Web Site in the IDE. By default, the location provided for your application is in
 C:\Users\BillEvjen\Documents\Visual Studio 10\WebSites if you are using Windows 7 (shown
in Figure 1 - 1). It is not C:\Inetpub\wwwroot\ as it would have been in Visual Studio .NET 2002/2003.
By default, any site that you build and host inside C:\Users\BillEvjen\Documents\Visual Studio 10\
WebSites (or any other folder you create) uses the built - in Web server that is part of Visual Studio 2010. If
you use the built - in Web server from Visual Studio 2010, you are not locked into the WebSites folder; you
can create any folder you want in your system.

FIGURE 1-1

 To change from this default, you have a handful of options. Click the Browse button in the New Web Site
dialog. The Choose Location dialog opens, shown in Figure 1 - 2.

c01.indd 2c01.indd 2 2/2/10 4:36:47 PM2/2/10 4:36:47 PM

 If you continue to use the built - in Web server
that Visual Studio 2010 provides, you can
choose a new location for your Web application
from this dialog. To choose a new location,
select a new folder and save your .aspx pages
and any other associated fi les to this directory.
When using Visual Studio 2010, you can run
your application completely from this location.
This way of working with the ASP.NET pages
you create is ideal if you do not have access to
a Web server because it enables you to build
applications that do not reside on a machine
with IIS. This means that you can even develop
ASP.NET applications on operating systems such
as Windows 7 Home Edition.

 IIS

 From the Choose Location dialog, you can also
change where your application is saved and which
type of Web server your application employs. To
use IIS (as you probably did when you used Visual
Studio .NET 2002/2003), select the Local IIS
button in the dialog. This changes the results in
the text area to show you a list of all the virtual
application roots on your machine. You are
required to run Visual Studio as an administrator
user if you want to see your local IIS instance.

 To create a new virtual root for your
application, highlight Default Web Site. Two
accessible buttons appear at the top of the dialog
box (see Figure 1 - 3). When you look from left to
right, the fi rst button in the upper - right corner
of the dialog box is for creating a new Web
application — or a virtual root. This button
is shown as a globe inside a box. The second
button enables you to create virtual directories
for any of the virtual roots you created. The
third button is a Delete button, which allows
you to delete any selected virtual directories or
virtual roots on the server.

 After you have created the virtual directory you want, click the Open button. Visual Studio 2010 then goes
through the standard process to create your application. Now, however, instead of depending on the built - in
Web server from ASP.NET 4, your application will use IIS. When you invoke your application, the URL now
consists of something like http://localhost/MyWeb/Default.aspx , which means it is using IIS.

 FTP

 Not only can you decide on the type of Web server for your Web application when you create it using
the Choose Location dialog, but you can also decide where your application is going to be located. With the
previous options, you built applications that resided on your local server. The FTP option enables you to

FIGURE 1-3

FIGURE 1-2

Application Location Options ❘ 3

c01.indd 3c01.indd 3 2/2/10 4:36:58 PM2/2/10 4:36:58 PM

4 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

actually store and even code your applications
while they reside on a server somewhere else in
your enterprise — or on the other side of the
planet. You can also use the FTP capabilities
to work on different locations within the same
server. Using this capability provides a wide
range of possible options. You can see this in
Figure 1 - 4.

 To create your application on a remote server
using FTP, simply provide the server name, the
port to use, and the directory — as well as any
required credentials. If the correct information is
provided, Visual Studio 2010 reaches out to the
remote server and creates the appropriate fi les
for the start of your application, just as if it were
doing the job locally. From this point on, you
can open your project and connect to the remote
server using FTP.

 Web Site Requiring FrontPage Extensions

 The last option in the Choose Location dialog is the Remote
Site option. Clicking this button provides a dialog that
enables you to connect to a remote or local server that utilizes
FrontPage Extensions. This option is displayed in Figure 1 - 5.

 THE ASP.NET PAGE STRUCTURE OPTIONS

 ASP.NET 4 provides two paths for structuring the code of
your ASP.NET pages. The fi rst path utilizes the code - inline
model. This model should be familiar to classic ASP 2.0/3.0
developers because all the code is contained within a single
 .aspx page. The second path uses ASP.NET ’ s code - behind
model, which allows for code separation of the page ’ s business logic from its presentation logic. In this model,
the presentation logic for the page is stored in an .aspx page, whereas the logic piece is stored in a separate
class fi le: .aspx.vb or .aspx.cs . Using the code - behind model is considered the best practice because it
provides a clean model in separation of pure UI elements from code that manipulates these elements. It is
also seen as a better means in maintaining code.

 One of the major complaints about Visual Studio .NET 2002 and 2003 is that it forced you to use the code -
 behind model when developing your ASP.NET pages because it did not understand the code - inline model. The
code - behind model in ASP.NET was introduced as a new way to separate the presentation code and business
logic. Listing 1 - 1 shows a typical .aspx page generated using Visual Studio .NET 2002 or 2003.

 LISTING 1 - 1: A typical .aspx page from ASP.NET 1.0/1.1

 < %@ Page Language="vb" AutoEventWireup="false" Codebehind="WebForm1.aspx.vb"
 Inherits="WebApplication.WebForm1"% >
 < !DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
 < HTML >
 < HEAD >
 < title > WebForm1 < /title >
 < meta name="GENERATOR" content="Microsoft Visual Studio .NET 7.1" >
 < meta name="CODE_LANGUAGE" content="Visual Basic .NET 7.1" >

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 1-4

FIGURE 1-5

c01.indd 4c01.indd 4 2/2/10 4:36:59 PM2/2/10 4:36:59 PM

 < meta name="vs_defaultClientScript" content="JavaScript" >
 < meta name="vs_targetSchema"
 content="http://schemas.microsoft.com/intellisense/ie5" >
 < /HEAD >
 < body >
 < form id="Form1" method="post" runat="server" >
 < P > What is your name? < br >
 < asp:TextBox id="TextBox1" runat="server" > < /asp:TextBox > < BR >
 < asp:Button id="Button1" runat="server" Text="Submit" > < /asp:Button > < /P >
 < P > < asp:Label id="Label1" runat="server" > < /asp:Label > < /P >
 < /form >
 < /body >
 < /HTML >

 The code - behind fi le created within Visual Studio .NET 2002/2003 for the .aspx page is shown in
Listing 1 - 2.

 LISTING 1 - 2: A typical .aspx.vb/.aspx.cs page from ASP.NET 1.0/1.1

Public Class WebForm1
 Inherits System.Web.UI.Page

#Region " Web Form Designer Generated Code "

 'This call is required by the Web Form Designer.
 < System.Diagnostics.DebuggerStepThrough() > Private Sub InitializeComponent()

 End Sub
 Protected WithEvents TextBox1 As System.Web.UI.WebControls.TextBox
 Protected WithEvents Button1 As System.Web.UI.WebControls.Button
 Protected WithEvents Label1 As System.Web.UI.WebControls.Label

 'NOTE: The following placeholder declaration is required by the Web Form
 Designer.
 'Do not delete or move it.
 Private designerPlaceholderDeclaration As System.Object

 Private Sub Page_Init(ByVal sender As System.Object, ByVal e As
 System.EventArgs) Handles MyBase.Init
 'CODEGEN: This method call is required by the Web Form Designer
 'Do not modify it using the code editor.
 InitializeComponent()
 End Sub

#End Region

 Private Sub Page_Load(ByVal sender As System.Object, ByVal e As
 System.EventArgs) Handles MyBase.Load
 'Put user code to initialize the page here
 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As
 System.EventArgs) Handles Button1.Click
 Label1.Text = "Hello " & TextBox1.Text
 End Sub
End Class

 In this code - behind page from ASP.NET 1.0/1.1, you can see that a lot of the code that developers never
have to deal with is hidden in the #Region section of the page. Because ASP.NET 4 is built on top of
.NET 4, it can take advantage of the .NET Framework capability of partial classes. Partial classes enable
you to separate your classes into multiple class fi les, which are then combined into a single class when the
application is compiled. Because ASP.NET 4 combines all this page code for you behind the scenes when

Available for
download on
Wrox.com

Available for
download on
Wrox.com

 The ASP.NET Page Structure Options ❘ 5

c01.indd 5c01.indd 5 2/2/10 4:37:00 PM2/2/10 4:37:00 PM

6 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

the application is compiled, the code - behind fi les you work with in ASP.NET 4 are simpler in appearance
and the model is easier to use. You are presented with only the pieces of the class that you need. Next, this
chapter presents a look at both the inline and code - behind models from ASP.NET 4.

 Inline Coding

 With the .NET Framework 1.0/1.1, developers went out of their way (and outside Visual Studio .NET)
to build their ASP.NET pages inline and avoid the code - behind model that was so heavily promoted by
Microsoft and others. Visual Studio 2010 (as well as Visual Web Developer 2010 Express Edition) allows
you to build your pages easily using this coding style. To build an ASP.NET page inline instead of using the
code - behind model, you simply select the page type from the Add New Item dialog and make sure that
the Place Code in Separate File check box is not selected. You can get at this dialog (see Figure 1 - 6) by right -
 clicking the project or the solution in the Solution Explorer and selecting Add New Item.

 From here, you can see the check box you need to unselect if you want to build your ASP.NET pages inline. In
fact, many page types have options for both inline and code - behind styles. Table 1 - 1 shows your inline
options when selecting fi les from this dialog.

FIGURE 1-6

TABLE 1-1

FILE OPTIONS USING INLINE CODING FILE CREATED

Web Form .aspx fi le

AJAX Web Form .aspx fi le

Master Page .master fi le

AJAX Master Page .master fi le

Web User Control .ascx fi le

Web Service .asmx fi le

c01.indd 6c01.indd 6 2/2/10 4:37:01 PM2/2/10 4:37:01 PM

 By using the Web Form option with a few controls, you get a page that encapsulates not only the
presentation logic, but the business logic as well. This is illustrated in Listing 1 - 3.

 LISTING 1 - 3: A simple page that uses the inline coding model

 < %@ Page Language="VB" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" >

 < script runat="server" >
 Protected Sub Button1_Click(ByVal sender As Object,
 ByVal e As System.EventArgs)

 Label1.Text = "Hello " & Textbox1.Text
 End Sub
 < /script >

 < html xmlns="http://www.w3.org/1999/xhtml" >
 < head runat="server" >
 < title > Simple Page < /title >
 < /head >
 < body >
 < form id="form1" runat="server" >
 What is your name? < br / >
 < asp:Textbox ID="Textbox1" Runat="server" > < /asp:Textbox > < br / >
 < asp:Button ID="Button1" Runat="server" Text="Submit"
 OnClick="Button1_Click" / >
 < p > < asp:Label ID="Label1" Runat="server" > < /asp:Label > < /p >
 < /form >
 < /body >
 < /html >

 < %@ Page Language="C#" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" >

 < script runat="server" >
 protected void Button1_Click(object sender, System.EventArgs e)
 {
 Label1.Text = "Hello " + Textbox1.Text;
 }
 < /script >

 From this example, you can see that all the business logic is encapsulated in between < script > tags.
The nice feature of the inline model is that the business logic and the presentation logic are contained
within the same fi le. Some developers fi nd that having everything in a single viewable instance makes
working with the ASP.NET page easier. Another great thing is that Visual Studio 2010 provides
IntelliSense when working with the inline coding model and ASP.NET 4. Before Visual Studio 2005,
this capability did not exist. Visual Studio .NET 2002/2003 forced you to use the code - behind
model and, even if you rigged it so your pages were using the inline model, you lost all IntelliSense
capabilities.

 Code - Behind Model

 The other option for constructing your ASP.NET 4 pages is to build your fi les using the code -
 behind model.

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

VB

C#C#

 The ASP.NET Page Structure Options ❘ 7

c01.indd 7c01.indd 7 2/2/10 4:37:01 PM2/2/10 4:37:01 PM

8 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

It is important to note that the more preferred method is the code-behind model rather
than the inline model. This method employs the proper segmentation between
presentation and business logic in many cases. You will fi nd that many of the
examples in this book use an inline coding model because it works well in showing an
example in one listing. Even though the example is using an inline coding style, it is
my recommendation that you move the code to employ the code-behind model.

 To create a new page in your ASP.NET solution that uses the code - behind model, select the page type you
want from the New File dialog. To build a page that uses the code - behind model, you fi rst select the page
in the Add New Item dialog and make sure the Place Code in Separate File check box is selected. Table 1 - 2
shows you the options for pages that use the code - behind model.

TABLE 1-2

FILE OPTIONS USING CODE-BEHIND FILE CREATED

Web Form .aspx fi le; .aspx.vb or .aspx.cs fi le

AJAX Web Form .aspx fi le; .aspx.vb or .aspx.cs fi le

Master Page .master fi le; .master.vb or .master.cs fi le

AJAX Master Page .master.vb or .master.cs fi le

Web User Control .ascx fi le; .ascx.vb or .ascx.cs fi le

Web Service .asmx fi le; .vb or .cs fi le

 The idea of using the code - behind model is to separate the business logic and presentation logic into
separate fi les. Doing this makes working with your pages easier, especially if you are working in a team
environment where visual designers work on the UI of the page and coders work on the business logic that
sits behind the presentation pieces. Earlier in Listings 1 - 1 and 1 - 2, you saw how pages using the code - behind
model in ASP.NET 1.0/1.1 were constructed. To see the difference in ASP.NET 4, look at how its code -
 behind pages are constructed. These differences are illustrated in Listing 1 - 4 for the presentation piece and
Listing 1 - 5 for the code - behind piece.

L ISTING 1 - 4: An .aspx page that uses the ASP.NET 4 code - behind model

 < %@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
 Inherits="_Default" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" >

 < html xmlns="http://www.w3.org/1999/xhtml" >
 < head runat="server" >
 < title > Simple Page < /title >
 < /head >
 < body >
 < form id="form1" runat="server" >
 What is your name? < br / >
 < asp:Textbox ID="Textbox1" Runat="server" > < /asp:Textbox > < br / >
 < asp:Button ID="Button1" Runat="server" Text="Submit"
 OnClick="Button1_Click" / >
 < p > < asp:Label ID="Label1" Runat="server" > < /asp:Label > < /p >
 < /form >
 < /body >
 < /html >

 < %@ Page Language="C#" CodeFile="Default.aspx.cs" Inherits="_Default" % >

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

VB

C#C#

c01.indd 8c01.indd 8 2/2/10 4:37:02 PM2/2/10 4:37:02 PM

 LISTING 1 - 5: A code - behind page

Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 Label1.Text = "Hello " & TextBox1.Text
 End Sub
End Class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

public partial class _Default : System.Web.UI.Page
{
 protected void Button1_Click(object sender, EventArgs e)
 {
 Label1.Text = "Hello " + Textbox1.Text;
 }
}

 The .aspx page using this ASP.NET 4 code - behind model has some attributes in the Page directive that
you should pay attention to when working in this mode. The fi rst is the CodeFile attribute. This attribute
in the Page directive is meant to point to the code - behind page that is used with this presentation page. In
this case, the value assigned is Default.aspx.vb or Default.aspx.cs . The second attribute needed is
the Inherits attribute. This attribute was available in previous versions of ASP.NET, but was little used
before ASP.NET 2.0. This attribute specifi es the name of the class that is bound to the page when the page is
compiled. The directives are simple enough in ASP.NET 4. Look at the code - behind page from Listing 1 - 5.

 The code - behind page is rather simple in appearance because of the partial class capabilities that .NET 4
provides. You can see that the class created in the code - behind fi le uses partial classes, employing the Partial
keyword in Visual Basic 2010 and the partial keyword from C# 2010. This enables you to simply place the
methods that you need in your page class. In this case, you have a button - click event and nothing else.

 Later in this chapter, you look at the compilation process for both of these models.

 ASP.NET 4 PAGE DIRECTIVES

 ASP.NET directives are something that is a part of every ASP.NET page. You can control the behavior of
your ASP.NET pages by using these directives. Here is an example of the Page directive:

 < %@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
 Inherits="_Default" % >

 Eleven directives are at your disposal in your ASP.NET pages or user controls. You use these directives in
your applications whether the page uses the code - behind model or the inline coding model.

 Basically, these directives are commands that the compiler uses when the page is compiled. Directives are
simple to incorporate into your pages. A directive is written in the following format:

 < %@ [Directive] [Attribute=Value] % >

 From this, you can see that a directive is opened with a < %@ and closed with a % > . Putting these directives
at the top of your pages or controls is best because this is traditionally where developers expect to see them

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

VB

C#C#

 ASP.NET 4 Page Directives ❘ 9

c01.indd 9c01.indd 9 2/2/10 4:37:08 PM2/2/10 4:37:08 PM

10 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

(although the page still compiles if the directives are located at a different place). Of course, you can also
add more than a single attribute to your directive statements, as shown in the following:

 < %@ [Directive] [Attribute=Value] [Attribute=Value] % >

 Table 1 - 3 describes the directives at your disposal in ASP.NET 4.

TABLE 1-3

DIRECTIVE DESCRIPTION

Assembly Links an assembly to the page or user control for which it is associated.

Control Page directive meant for use with user controls (.ascx).

Implements Implements a specifi ed .NET Framework interface.

Import Imports specifi ed namespaces into the page or user control.

Master Enables you to specify master page–specifi c attributes and values to use when

the page parses or compiles. This directive can be used only with master pages

(.master).

MasterType Associates a class name to a page to get at strongly typed references or members

contained within the specifi ed master page.

OutputCache Controls the output caching policies of a page or user control.

Page Enables you to specify page-specifi c attributes and values to use when the page

parses or compiles. This directive can be used only with ASP.NET pages (.aspx).

PreviousPageType Enables an ASP.NET page to work with a postback from another page in the

application.

Reference Links a page or user control to the current page or user control.

Register Associates aliases with namespaces and class names for notation in custom server

control syntax.

TABLE 1-4

ATTRIBUTE DESCRIPTION

AspCompat Permits the page to be executed on a single-threaded apartment thread

when given a value of True. The default setting for this attribute is False.

Async Specifi es whether the ASP.NET page is processed synchronously or

asynchronously.

AsyncTimeout Specifi es the amount of time in seconds to wait for the asynchronous task

to complete. The default setting is 45 seconds.

AutoEventWireup Specifi es whether the page events are autowired when set to True. The

default setting for this attribute is True.

Buffer Enables HTTP response buff ering when set to True. The default setting for

this attribute is True.

ClassName Specifi es the name of the class that is bound to the page when the page is

compiled.

 The following sections provide a quick review of each of these directives.

 @Page

 The @Page directive enables you to specify attributes and values for an ASP.NET page (.aspx) to be used
when the page is parsed or compiled. This is the most frequently used directive of the bunch. Because the
ASP.NET page is such an important part of ASP.NET, you have quite a few attributes at your disposal.
Table 1 - 4 summarizes the attributes available through the @Page directive.

c01.indd 10c01.indd 10 2/2/10 4:37:10 PM2/2/10 4:37:10 PM

 ASP.NET 4 Page Directives ❘ 11

ATTRIBUTE DESCRIPTION

ClientIDMode Specifi es the algorithm that the page should use when generating ClientID

values for server controls that are on the page. The default value is AutoID

(the mode that was used for ASP.NET pages prior to ASP.NET 4). This is a

new attribute of ASP.NET 4.

ClientTarget Specifi es the target user agent a control should render content for. This

attribute needs to be tied to an alias defi ned in the <clientTarget>

section of the web.config fi le.

CodeFile References the code-behind fi le with which the page is associated.

CodeFileBaseClass Specifi es the type name of the base class to use with the code-behind

class, which is used by the CodeFile attribute.

CodePage Indicates the code page value for the response.

CompilationMode Specifi es whether ASP.NET should compile the page or not. The available

options include Always (the default), Auto, or Never. A setting of Auto

means that if possible, ASP.NET will not compile the page.

CompilerOptions Compiler string that indicates compilation options for the page.

CompileWith Takes a String value that points to the code-behind fi le used.

ContentType Defi nes the HTTP content type of the response as a standard MIME type.

Culture Specifi es the culture setting of the page. ASP.NET 3.5 and 4 include

the capability to give the Culture attribute a value of Auto to enable

automatic detection of the culture required.

Debug Compiles the page with debug symbols in place when set to True.

Description Provides a text description of the page. The ASP.NET parser ignores this

attribute and its assigned value.

EnableEventValidation Specifi es whether to enable validation of events in postback and callback

scenarios. The default setting of True means that events will be validated.

EnableSessionState Session state for the page is enabled when set to True. The default

setting is True.

EnableTheming Page is enabled to use theming when set to True. The default setting for

this attribute is True.

EnableViewState View state is maintained across the page when set to True. The default

value is True.

EnableViewStateMac Page runs a machine-authentication check on the page’s view state when

the page is posted back from the user when set to True. The default value

is False.

ErrorPage Specifi es a URL to post to for all unhandled page exceptions.

Explicit Visual Basic Explicit option is enabled when set to True. The default

setting is False.

Language Defi nes the language being used for any inline rendering and script blocks.

LCID Defi nes the locale identifi er for the Web Form’s page.

LinePragmas Boolean value that specifi es whether line pragmas are used with the

resulting assembly.

MasterPageFile Takes a String value that points to the location of the master page used

with the page. This attribute is used with content pages.

MaintainScrollPositionOn
Postback

Takes a Boolean value, which indicates whether the page should be

positioned exactly in the same scroll position or whether the page should be

regenerated in the uppermost position for when the page is posted back to

itself.

continues

c01.indd 11c01.indd 11 2/2/10 4:37:10 PM2/2/10 4:37:10 PM

12 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

 Here is an example of how to use the @Page directive:

 < %@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
 Inherits="_Default" % >

ATTRIBUTE DESCRIPTION

MetaDescription Allows you to specify a page’s description in a meta tag for SEO purposes.

This is a new attribute in ASP.NET 4.

MetaKeywords Allows you to specify a page’s keywords in a meta tag for SEO purposes.

This is a new attribute in ASP.NET 4.

ResponseEncoding Specifi es the response encoding of the page content.

SmartNavigation Specifi es whether to activate the ASP.NET Smart Navigation feature for

richer browsers. This returns the postback to the current position on the

page. The default value is False. Since ASP.NET 2.0, SmartNavigation

has been deprecated. Use the SetFocus() method and the

MaintainScrollPositionOnPostback property instead.

Src Points to the source fi le of the class used for the code behind of the page

being rendered.

Strict Compiles the page using the Visual Basic Strict mode when set to True.

The default setting is False.

StylesheetTheme Applies the specifi ed theme to the page using the ASP.NET themes feature.

The diff erence between the StylesheetTheme and Theme attributes is

that StylesheetTheme will not override preexisting style settings in the

controls, whereas Theme will remove these settings.

Theme Applies the specifi ed theme to the page using the ASP.NET themes feature.

Title Applies a page’s title. This is an attribute mainly meant for content pages

that must apply a page title other than what is specifi ed in the master page.

Trace Page tracing is enabled when set to True. The default setting is False.

TraceMode Specifi es how the trace messages are displayed when tracing is enabled.

The settings for this attribute include SortByTime or SortByCategory.

The default setting is SortByTime.

Transaction Specifi es whether transactions are supported on the page. The settings for

this attribute are Disabled, NotSupported, Supported, Required, and

RequiresNew. The default setting is Disabled.

UICulture The value of the UICulture attribute specifi es what UI Culture to use for

the ASP.NET page. ASP.NET 3.5 and 4 include the capability to give the

UICulture attribute a value of Auto to enable automatic detection of the

UICulture.

ValidateRequest When this attribute is set to True, the form input values are checked

against a list of potentially dangerous values. This helps protect your Web

application from harmful attacks such as JavaScript attacks. The default

value is True.

ViewStateEncryptionMode Specifi es how the ViewState is encrypted on the page. The options include

Auto, Always, and Never. The default is Auto.

WarningLevel Specifi es the compiler warning level at which to stop compilation of the

page. Possible values are 0 through 4.

TABLE 1-4 (continued)

c01.indd 12c01.indd 12 2/2/10 4:37:11 PM2/2/10 4:37:11 PM

TABLE 1-5

ATTRIBUTE DESCRIPTION

AutoEventWireup Specifi es whether the master page’s events are autowired when set to True.

Default setting is True.

ClassName Specifi es the name of the class that is bound to the master page when compiled.

CodeFile References the code-behind fi le with which the page is associated.

CompilationMode Specifi es whether ASP.NET should compile the page. The available options

include Always (the default), Auto, or Never. A setting of Auto means that if

possible, ASP.NET will not compile the page.

CompilerOptions Compiler string that indicates compilation options for the master page.

CompileWith Takes a String value that points to the code-behind fi le used for the master page.

Debug Compiles the master page with debug symbols in place when set to True.

Description Provides a text description of the master page. The ASP.NET parser ignores this

attribute and its assigned value.

EnableTheming Indicates the master page is enabled to use theming when set to True. The default

setting for this attribute is True.

EnableViewState Maintains view state for the master page when set to True. The default value

is True.

Explicit Indicates that the Visual Basic Explicit option is enabled when set to True. The

default setting is False.

Inherits Specifi es the CodeBehind class for the master page to inherit.

Language Defi nes the language that is being used for any inline rendering and script blocks.

LinePragmas Boolean value that specifi es whether line pragmas are used with the resulting

assembly.

MasterPageFile Takes a String value that points to the location of the master page used with the

master page. It is possible to have a master page use another master page, which

creates a nested master page.

Src Points to the source fi le of the class used for the code behind of the master page

being rendered.

Strict Compiles the master page using the Visual Basic Strict mode when set to True.

The default setting is False.

WarningLevel Specifi es the compiler warning level at which you want to abort compilation of the

page. Possible values are from 0 to 4.

 ASP.NET 4 Page Directives ❘ 13

 @Master

 The @Master directive is quite similar to the @Page directive except that the @Master directive is meant
for master pages (.master). In using the @Master directive, you specify properties of the templated page
that you will be using in conjunction with any number of content pages on your site. Any content pages
(built using the @Page directive) can then inherit from the master page all the master content (defi ned in
the master page using the @Master directive). Although they are similar, the @Master directive has fewer
attributes available to it than does the @Page directive. The available attributes for the @Master directive are
shown in Table 1 - 5.

 Here is an example of how to use the @Master directive:

 < %@ Master Language="VB" CodeFile="MasterPage1.master.vb"
 AutoEventWireup="false" Inherits="MasterPage" % >

c01.indd 13c01.indd 13 2/2/10 4:37:12 PM2/2/10 4:37:12 PM

14 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

 @Control

 The @Control directive is similar to the @Page directive except that @Control is used when you build an
ASP.NET user control. The @Control directive allows you to defi ne the properties to be inherited by the
user control. These values are assigned to the user control as the page is parsed and compiled. The available
attributes are fewer than those of the @Page directive, but quite a few of them allow for the modifi cations
you need when building user controls. Table 1 - 6 details the available attributes.

TABLE 1-6

ATTRIBUTE DESCRIPTION

AutoEventWireup Specifi es whether the user control’s events are autowired when set to True. Default

setting is True.

ClassName Specifi es the name of the class that is bound to the user control when the page is

compiled.

ClientIDMode Specifi es the algorithm that the page should use when generating ClientID values

for server controls that are on the page. The default value is AutoID (the mode

that was used for ASP.NET pages prior to ASP.NET 4). This is a new attribute of

ASP.NET 4.

CodeFileBaseClass Specifi es the type name of the base class to use with the code-behind class, which

is used by the CodeFile attribute.

CodeFile References the code-behind fi le with which the user control is associated.

CompilerOptions Compiler string that indicates compilation options for the user control.

CompileWith Takes a String value that points to the code-behind fi le used for the user control.

Debug Compiles the user control with debug symbols in place when set to True.

Description Provides a text description of the user control. The ASP.NET parser ignores this

attribute and its assigned value.

EnableTheming User control is enabled to use theming when set to True. The default setting for this

attribute is True.

EnableViewState View state is maintained for the user control when set to True. The default value

is True.

Explicit Visual Basic Explicit option is enabled when set to True. The default setting

is False.

Inherits Specifi es the CodeBehind class for the user control to inherit.

Language Defi nes the language used for any inline rendering and script blocks.

LinePragmas Boolean value that specifi es whether line pragmas are used with the resulting

assembly.

Src Points to the source fi le of the class used for the code behind of the user control

being rendered.

Strict Compiles the user control using the Visual Basic Strict mode when set to True.

The default setting is False.

WarningLevel Specifi es the compiler warning level at which to stop compilation of the user control.

Possible values are 0 through 4.

 The @Control directive is meant to be used with an ASP.NET user control. The following is an example of
how to use the directive:

 < %@ Control Language="VB" Explicit="True"
 CodeFile="WebUserControl.ascx.vb" Inherits="WebUserControl"
 Description="This is the registration user control." % >

c01.indd 14c01.indd 14 2/2/10 4:37:13 PM2/2/10 4:37:13 PM

 @Import

 The @Import directive allows you to specify a namespace to be imported into the ASP.NET page or
user control. By importing, all the classes and interfaces of the namespace are made available to the page
or user control. This directive supports only a single attribute: Namespace .

 The Namespace attribute takes a String value that specifi es the namespace to be imported. The @Import
directive cannot contain more than one attribute/value pair. Because of this, you must place multiple
namespace imports in multiple lines as shown in the following example:

 < %@ Import Namespace="System.Data" % >
 < %@ Import Namespace="System.Data.SqlClient" % >

 Several assemblies are already being referenced by your application. You can fi nd a list of these imported
namespaces by looking in the root web.config fi le found at C:\Windows\Microsoft.NET\Framework\
v4.0. xxxxx \Config . You can fi nd this list of assemblies being referenced from the < assemblies > child
element of the < compilation > element. The settings in the root web.config fi le are as follows:

 < assemblies >
 < add assembly="mscorlib" / >
 < add assembly="Microsoft.CSharp, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a" / >
 < add assembly="System, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" / >
 < add assembly="System.Configuration, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a" / >
 < add assembly="System.Web, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a" / >
 < add assembly="System.Data, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" / >
 < add assembly="System.Web.Services, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a" / >
 < add assembly="System.Xml, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" / >
 < add assembly="System.Drawing, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a" / >
 < add assembly="System.EnterpriseServices, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a" / >
 < add assembly="System.Web.Mobile, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a" / >
 < add assembly="System.IdentityModel, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" / >
 < add assembly="System.Runtime.Serialization, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" / >
 < add assembly="System.Xaml, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" / >
 < add assembly="System.ServiceModel, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" / >
 < add assembly="System.ServiceModel.Activation, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/ >
 < add assembly="System.ServiceModel.Channels, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/ >
 < add assembly="System.ServiceModel.Web, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/ >
 < add assembly="System.Activities, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/ >
 < add assembly="System.ServiceModel.Activities, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/ >
 < add assembly="System.WorkflowServices, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/ >
 < add assembly="System.Xaml.Hosting, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/ >
 < add assembly="System.Core, Version=4.0.0.0, Culture=neutral,

 ASP.NET 4 Page Directives ❘ 15

c01.indd 15c01.indd 15 2/2/10 4:37:14 PM2/2/10 4:37:14 PM

16 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

 PublicKeyToken=b77a5c561934e089" / >
 < add assembly="System.Web.Extensions, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35" / >
 < add assembly="System.Data.DataSetExtensions, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" / >
 < add assembly="System.Xml.Linq, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" / >
 < add assembly="System.ComponentModel.DataAnnotations, Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=31bf3856ad364e35"/ >
 < add assembly="System.Web.DynamicData, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/ >
 < add assembly="System.Data.Entity, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" / >
 < add assembly="System.Web.Entity, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089"/ >
 < add assembly="System.Data.Linq, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" / >
 < add assembly="System.Data.Entity.Design, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089" / >
 < add assembly="System.Web.ApplicationServices, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35" / >
 < add assembly="*" / >
 < /assemblies >

 Because of this reference in the root web.config fi le, these assemblies need not be referenced in a
 References folder, as you would have done in ASP.NET 1.0/1.1. You can actually add or delete assemblies
that are referenced from this list. For example, if you have a custom assembly referenced continuously by
each and every application on the server, you can simply add a similar reference to your custom assembly
next to these others. Note that you can perform this same task through the application - specifi c web.config
fi le of your application as well.

 Even though assemblies might be referenced, you must still import the namespaces of these assemblies
into your pages. The same root web.config fi le contains a list of namespaces automatically imported into
each and every page of your application. This is specifi ed through the < namespaces > child element of the
 < pages > element.

 < namespaces >
 < add namespace="System" / >
 < add namespace="System.Collections" / >
 < add namespace="System.Collections.Generic" / >
 < add namespace="System.Collections.Specialized" / >
 < add namespace="System.ComponentModel" / >
 < add namespace="System.ComponentModel.DataAnnotations" / >
 < add namespace="System.Configuration" / >
 < add namespace="System.Data.Entity.Design" / >
 < add namespace="System.Data.Linq" / >
 < add namespace="System.Linq" / >
 < add namespace="System.Text" / >
 < add namespace="System.Text.RegularExpressions" / >
 < add namespace="System.Web" / >
 < add namespace="System.Web.Caching" / >
 < add namespace="System.DynamicData" / >
 < add namespace="System.Web.SessionState" / >
 < add namespace="System.Web.Security" / >
 < add namespace="System.Web.Profile" / >
 < add namespace="System.Web.UI" / >
 < add namespace="System.Web.UI.WebControls" / >
 < add namespace="System.Web.UI.WebControls.WebParts" / >
 < add namespace="System.Web.UI.HtmlControls" / >
 < add namespace="System.Xml.Linq" / >
 < /namespaces >

c01.indd 16c01.indd 16 2/2/10 4:37:15 PM2/2/10 4:37:15 PM

 From this XML list, you can see that quite a number of namespaces are imported into each and every one of
your ASP.NET pages. Again, you can feel free to modify this selection in the root web.config fi le or even
make a similar selection of namespaces from within your application ’ s web.config fi le.

 For instance, you can import your own namespace in the web.config fi le of your application to make the
namespace available on every page where it is utilized.

 < ?xml version="1.0"? >
 < configuration >
 < system.web >
 < pages >
 < namespaces >
 < add namespace="MyCompany.Utilities" / >
 < /namespaces >
 < /pages >
 < /system.web >
 < /configuration >

 Remember that importing a namespace into your ASP.NET page or user control gives you the opportunity
to use the classes without fully identifying the class name. For example, by importing the namespace
 System.Data.OleDb into the ASP.NET page, you can refer to classes within this namespace by using the
singular class name (OleDbConnection instead of System.Data.OleDb.OleDbConnection).

 @Implements

 The @Implements directive gets the ASP.NET page to implement a specifi ed .NET Framework interface.
This directive supports only a single attribute: Interface .

 The Interface attribute directly specifi es the .NET Framework interface. When the ASP.NET page or user
control implements an interface, it has direct access to all its events, methods, and properties.

 Here is an example of the @Implements directive:

 < %@ Implements Interface="System.Web.UI.IValidator" % >

 @Register

 The @Register directive associates aliases with namespaces and class names for notation in custom server
control syntax. You can see the use of the @Register directive when you drag and drop a user control onto
any of your .aspx pages. Dragging a user control onto the .aspx page causes Visual Studio 2010 to create
a @Register directive at the top of the page. This registers your user control on the page so that the control
can then be accessed on the .aspx page by a specifi c name.

 The @Register directive supports fi ve attributes, as described in Table 1 - 7.

 ASP.NET 4 Page Directives ❘ 17

TABLE 1-7

ATTRIBUTE DESCRIPTION

Assembly The assembly you are associating with the TagPrefix.

Namespace The namespace to relate with TagPrefix.

Src The location of the user control.

TagName The alias to relate to the class name.

TagPrefix The alias to relate to the namespace.

 Here is an example of how to use the @Register directive to import a user control to an ASP.NET page:

 < %@ Register TagPrefix="MyTag" Namespace="MyName.MyNamespace"
 Assembly="MyAssembly" % >

c01.indd 17c01.indd 17 2/2/10 4:37:16 PM2/2/10 4:37:16 PM

18 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

 @Assembly

 The @Assembly directive attaches assemblies, the building blocks of .NET applications, to an ASP.NET
page or user control as it compiles, thereby making all the assembly ’ s classes and interfaces available to
the page. This directive supports two attributes: Name and Src .

 Name : Enables you to specify the name of an assembly used to attach to the page fi les. The name
of the assembly should include the fi lename only, not the fi le ’ s extension. For instance, if the fi le is
 MyAssembly.vb , the value of the name attribute should be MyAssembly .

 Src : Enables you to specify the source of the assembly fi le to use in compilation.

 The following provides some examples of how to use the @Assembly directive:

 < %@ Assembly Name="MyAssembly" % >
 < %@ Assembly Src="MyAssembly.vb" % >

 @PreviousPageType

 This directive is used to specify the page from which any cross - page postings originate. Cross - page posting
between ASP.NET pages is explained later in the section “ Cross - Page Posting .”

 The @PreviousPageType directive is a directive that works with the cross - page posting capability that ASP.
NET 4 provides. This simple directive contains only two possible attributes: TypeName and VirtualPath :

 TypeName : Sets the name of the derived class from which the postback will occur.

 VirtualPath : Sets the location of the posting page from which the postback will occur.

 @MasterType

 The @MasterType directive associates a class name to an ASP.NET page to get at strongly typed references
or members contained within the specifi ed master page. This directive supports two attributes:

 TypeName : Sets the name of the derived class from which to get strongly typed references or members.

 VirtualPath : Sets the location of the page from which these strongly typed references and members
will be retrieved.

 Details of how to use the @MasterType directive are shown in Chapter 5. Here is an example of its use:

 < %@ MasterType VirtualPath="~/Wrox.master" % >

 @OutputCache

 The @OutputCache directive controls the output caching policies of an ASP.NET page or user control. This
directive supports the ten attributes described in Table 1 - 8.

➤

➤

➤

➤

➤

➤

TABLE 1-8

ATTRIBUTE DESCRIPTION

CacheProfile Allows for a central way to manage an application’s cache profi le. Use the

CacheProfile attribute to specify the name of the cache profi le detailed in the

web.config fi le.

Duration The duration of time in seconds that the ASP.NET page or user control is cached.

Location Location enumeration value. The default is Any. This is valid for .aspx pages only

and does not work with user controls (.ascx). Other possible values include Client,

Downstream, None, Server, and ServerAndClient.

NoStore Specifi es whether to send a no-store header with the page.

Shared Specifi es whether a user control’s output can be shared across multiple pages. This

attribute takes a Boolean value and the default setting is false.

c01.indd 18c01.indd 18 2/2/10 4:37:16 PM2/2/10 4:37:16 PM

 Here is an example of how to use the @OutputCache directive:

 < %@ OutputCache Duration="180" VaryByParam="None" % >

 Remember that the Duration attribute specifi es the amount of time in seconds during which this page is to
be stored in the system cache.

 @Reference

 The @Reference directive declares that another ASP.NET page or user control should be compiled along
with the active page or control. This directive supports just a single attribute:

 VirtualPath : Sets the location of the page or user control from which the active page will be
referenced.

 Here is an example of how to use the @Reference directive:

 < %@ Reference VirtualPath="~/MyControl.ascx" % >

 ASP.NET PAGE EVENTS

 ASP.NET developers consistently work with various events in their server - side code. Many of the events that
they work with pertain to specifi c server controls. For instance, if you want to initiate some action when
the end user clicks a button on your Web page, you create a button - click event in your server - side code, as
shown in Listing 1 - 6.

 LISTING 1 - 6: A sample button - click event shown in VB

Protected Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 Label1.Text = TextBox1.Text
End Sub

 In addition to the server controls, developers also want to initiate actions at specifi c moments when the ASP.
NET page is being either created or destroyed. The ASP.NET page itself has always had a number of events
for these instances. The following list shows you all the page events you could use in ASP.NET 1.0/1.1:

 AbortTransaction

 CommitTransaction

 DataBinding

 Disposed

 Error

 Init

 Load

 PreRender

 Unload

 One of the more popular page events from this list is the Load event, which is used in VB as shown in
Listing 1 - 7.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

 ASP.NET Page Events ❘ 19

ATTRIBUTE DESCRIPTION

SqlDependency Enables a particular page to use SQL Server cache invalidation.

VaryByControl Semicolon-separated list of strings used to vary the output cache of a user control.

VaryByCustom String specifying the custom output caching requirements.

VaryByHeader Semicolon-separated list of HTTP headers used to vary the output cache.

VaryByParam Semicolon-separated list of strings used to vary the output cache.

c01.indd 19c01.indd 19 2/2/10 4:37:17 PM2/2/10 4:37:17 PM

20 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

 LISTING 1 - 7: Using the Page_Load event

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 Handles Me.Load

 Response.Write("This is the Page_Load event")
End Sub

 Besides the page events just shown, ASP.NET 4 has the following events:

 InitComplete : Indicates the initialization of the page is completed.

 LoadComplete : Indicates the page has been completely loaded into memory.

 PreInit : Indicates the moment immediately before a page is initialized.

 PreLoad : Indicates the moment before a page has been loaded into memory.

 PreRenderComplete : Indicates the moment directly before a page has been rendered in the browser.

 An example of using any of these events, such as the PreInit event, is shown in Listing 1 - 8.

 LISTING 1 - 8: Using page events

 < script runat="server" language="vb" >
 Protected Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs)
 Page.Theme = Request.QueryString("ThemeChange")
 End Sub
 < /script >

 < script runat="server" >
 protected void Page_PreInit(object sender, System.EventArgs e)
 {
 Page.Theme = Request.QueryString["ThemeChange"];
 }
 < /script >

 If you create an ASP.NET 4 page and turn on tracing, you can see the order in which the main page events
are initiated. They are fi red in the following order:

 1. PreInit

 2. Init

 3. InitComplete

 4. PreLoad

 5. Load

 6. LoadComplete

 7. PreRender

 8. PreRenderComplete

 9. Unload

 With the addition of these choices, you can now work with the page and the controls on the page at
many different points in the page - compilation process. You see these useful page events in code examples
throughout the book.

 DEALING WITH POSTBACKS

 When you are working with ASP.NET pages, be sure you understand the page events just listed.
They are important because you place a lot of your page behavior inside these events at specifi c points
in a page lifecycle.

➤

➤

➤

➤

➤

VBVB

C#C#

c01.indd 20c01.indd 20 2/2/10 4:37:18 PM2/2/10 4:37:18 PM

 In Active Server Pages 3.0, developers had their pages post to other pages within the application. ASP.NET
pages typically post back to themselves to process events (such as a button - click event).

 For this reason, you must differentiate between posts for the fi rst time a page is loaded by the end user and
 postbacks . A postback is just that — a posting back to the same page. The postback contains all the form
information collected on the initial page for processing if required.

 Because of all the postbacks that can occur with an ASP.NET page, you want to know whether a request
is the fi rst instance for a particular page or is a postback from the same page. You can make this check by
using the IsPostBack property of the Page class, as shown in the following example:

If Page.IsPostBack = True Then
 ' Do processing
End If

if (Page.IsPostBack == true) {
 // Do processing
}

 In addition to checking against a True or False value, you can also fi nd out whether the request is not a
postback in the following manner:

If Not Page.IsPostBack Then
 ' Do processing
End If

if (!Page.IsPostBack) {
 // Do processing
}

 CROSS - PAGE POSTING

 One common feature in ASP 3.0 that is diffi cult to achieve in ASP.NET 1.0/1.1 is the capability to do cross -
 page posting. Cross - page posting enables you to submit a form (say, Page1.aspx) and have this form and all
the control values post themselves to another page (Page2.aspx).

 Traditionally, any page created in ASP.NET 1.0/1.1 simply posted to itself, and you handled the control
values within this page instance. You could differentiate between the page ’ s fi rst request and any postbacks
by using the Page.IsPostBack property, as shown here:

If Page.IsPostBack Then
 ' deal with control values
End If

 Even with this capability, many developers still wanted to be able to post to another page and deal with the
fi rst page ’ s control values on that page. This is something that is possible in ASP.NET today, and it is quite a
simple process.

 For an example, create a page called Page1.aspx that contains a simple form. Listing 1 - 9 shows this page.

 LISTING 1 - 9: Page1.aspx

 < %@ Page Language="VB" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" >

 < script runat="server" >
 Protected Sub Button1_Click(ByVal sender As Object,
 ByVal e As System.EventArgs)

 Label1.Text = "Hello " & TextBox1.Text & " < br / > " &

continues

VBVB

C#C#

VBVB

C#C#

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

VB

 Cross - Page Posting ❘ 21

c01.indd 21c01.indd 21 2/2/10 4:37:19 PM2/2/10 4:37:19 PM

22 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

LISTING 1-9 (continued)

 "Date Selected: " & Calendar1.SelectedDate.ToShortDateString()
 End Sub
 < /script >

 < html xmlns="http://www.w3.org/1999/xhtml" >
 < head runat="server" >
 < title > First Page < /title >
 < /head >
 < body >
 < form id="form1" runat="server" >
 Enter your name: < br / >
 < asp:Textbox ID="TextBox1" Runat="server" >
 < /asp:Textbox >
 < p >
 When do you want to fly? < br / >
 < asp:Calendar ID="Calendar1" Runat="server" > < /asp:Calendar > < /p >
 < br / >
 < asp:Button ID="Button1" Runat="server" Text="Submit page to itself"
 OnClick="Button1_Click" / >
 < asp:Button ID="Button2" Runat="server" Text="Submit page to Page2.aspx"
 PostBackUrl=" < /Page2.aspx" / >
 < p >
 < asp:Label ID="Label1" Runat="server" > < /asp:Label > < /p >
 < /form >
 < /body >
 < /html >

 < %@ Page Language="C#" % >

 < script runat="server" >
 protected void Button1_Click (object sender, System.EventArgs e)
 {
 Label1.Text = "Hello " + TextBox1.Text + " < br / > " +
 "Date Selected: " + Calendar1.SelectedDate.ToShortDateString();
 }
 < /script >

 The code from Page1.aspx , as shown in Listing 1 - 9, is quite interesting. Two buttons are shown on the
page. Both buttons submit the form, but each submits the form to a different location. The fi rst button
submits the form to itself. This is the behavior that has been the default for ASP.NET 1.0/1.1. In fact,
nothing is different about Button1 . It submits to Page1.aspx as a postback because of the use of the
 OnClick property in the button control. A Button1_Click method on Page1.aspx handles the values that
are contained within the server controls on the page.

 The second button, Button2 , works quite differently. This button does not contain an OnClick method
as the fi rst button did. Instead, it uses the PostBackUrl property. This property takes a string value that
points to the location of the fi le to which this page should post. In this case, it is Page2.aspx . This means
that Page2.aspx now receives the postback and all the values contained in the Page1.aspx controls. Look
at the code for Page2.aspx , shown in Listing 1 - 10.

 LISTING 1 - 10: Page2.aspx

 < %@ Page Language="VB" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" >

 < script runat="server" >
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

C#C#

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

VB

c01.indd 22c01.indd 22 2/2/10 4:37:21 PM2/2/10 4:37:21 PM

 Dim pp_Textbox1 As TextBox
 Dim pp_Calendar1 As Calendar

 pp_Textbox1 = CType(PreviousPage.FindControl("Textbox1"), TextBox)
 pp_Calendar1 = CType(PreviousPage.FindControl("Calendar1"), Calendar)

 Label1.Text = "Hello " & pp_Textbox1.Text & " < br / > " &
 "Date Selected: " & pp_Calendar1.SelectedDate.ToShortDateString()
 End Sub
 < /script >

 < html xmlns="http://www.w3.org/1999/xhtml" >
 < head runat="server" >
 < title > Second Page < /title >
 < /head >
 < body >
 < form id="form1" runat="server" >
 < asp:Label ID="Label1" Runat="server" > < /asp:Label >
 < /form >
 < /body >
 < /html >

 < %@ Page Language="C#" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" >

 < script runat="server" >
 protected void Page_Load(object sender, System.EventArgs e)
 {
 TextBox pp_Textbox1;
 Calendar pp_Calendar1;

 pp_Textbox1 = (TextBox)PreviousPage.FindControl("Textbox1");
 pp_Calendar1 = (Calendar)PreviousPage.FindControl("Calendar1");

 Label1.Text = "Hello " + pp_Textbox1.Text + " < br / > " + "Date Selected: " +
 pp_Calendar1.SelectedDate.ToShortDateString();
 }
 < /script >

 You have a couple of ways of getting at the values of the controls that are exposed from Page1.aspx from
the second page. The fi rst option is displayed in Listing 1 - 10. To get at a particular control ’ s value that is
carried over from the previous page, you simply create an instance of that control type and populate this
instance using the FindControl() method from the PreviousPage property. The String value assigned
to the FindControl() method is the Id value, which is used for the server control from the previous page.
After this is assigned, you can work with the server control and its carried - over values just as if it had
originally resided on the current page. You can see from the example that you can extract the Text and
 SelectedDate properties from the controls without any problem.

 Another way of exposing the control values from the fi rst page (Page1.aspx) is to create a Property for the
control, as shown in Listing 1 - 11.

 LISTING 1 - 11: Exposing the values of the control from a property

 < %@ Page Language="VB" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" >

 < script runat="server" >

continues

C#C#

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

VB

Cross - Page Posting ❘ 23

c01.indd 23c01.indd 23 2/2/10 4:37:22 PM2/2/10 4:37:22 PM

24 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

LISTING 1-11 (continued)

 Public ReadOnly Property pp_TextBox1() As TextBox
 Get
 Return TextBox1
 End Get
 End Property

 Public ReadOnly Property pp_Calendar1() As Calendar
 Get
 Return Calendar1
 End Get
 End Property

 Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)
 Label1.Text = "Hello " & TextBox1.Text & " < br / > " &
 "Date Selected: " & Calendar1.SelectedDate.ToShortDateString()
 End Sub
 < /script >

 < %@ Page Language="C#" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" >

 < script runat="server" >
 public TextBox pp_TextBox1
 {
 get
 {
 return TextBox1;
 }
 }

 public Calendar pp_Calendar1
 {
 get
 {
 return Calendar1;
 }
 }

 protected void Button1_Click (object sender, System.EventArgs e)
 {
 Label1.Text = "Hello " + TextBox1.Text + " < br / > " +
 "Date Selected: " + Calendar1.SelectedDate.ToShortDateString();
 }
 < /script >

 Filename Page1b.aspx

 Now that these properties are exposed on the posting page, the second page (Page2.aspx) can more easily
work with the server control properties that are exposed from the fi rst page. Listing 1 - 12 shows you how
 Page2.aspx works with these exposed properties.

 LISTING 1 - 12: Consuming the exposed properties from the fi rst page

 < %@ Page Language="VB" % >
 < %@ PreviousPageType VirtualPath="Page1.aspx" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

C#C#

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

VB

c01.indd 24c01.indd 24 2/2/10 4:37:23 PM2/2/10 4:37:23 PM

 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" >

 < script runat="server" >
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 Label1.Text = "Hello " & PreviousPage.pp_Textbox1.Text & " < br / > " &
 "Date Selected: " &
 PreviousPage.pp_Calendar1.SelectedDate.ToShortDateString()
 End Sub
 < /script >

 < %@ Page Language="C#" % >
 < %@ PreviousPageType VirtualPath="Page1.aspx" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" >

 < script runat="server" >
 protected void Page_Load(object sender, System.EventArgs e)
 {
 Label1.Text = "Hello " + PreviousPage.pp_TextBox1.Text + " < br / > " +
 "Date Selected: " +
 PreviousPage.pp_Calendar1.SelectedDate.ToShortDateString();
 }
 < /script >

 Filename Page2b.aspx

 To be able to work with the properties that Page1.aspx exposes, you have to strongly type the
 PreviousPage property to Page1.aspx . To do this, you use the PreviousPageType directive. This
directive allows you to specifi cally point to Page1.aspx with the use of the VirtualPath attribute. When
that is in place, notice that you can see the properties that Page1.aspx exposes through IntelliSense from
the PreviousPage property. This is illustrated in Figure 1 - 7.

C#C#

Cross - Page Posting ❘ 25

FIGURE 1-7

c01.indd 25c01.indd 25 2/2/10 4:37:24 PM2/2/10 4:37:24 PM

26 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

 As you can see, working with cross - page posting is straightforward. Notice that when you are cross posting
from one page to another, you are not restricted to working only with the postback on the second page.
In fact, you can still create methods on Page1.aspx that work with the postback before moving onto
Page2.aspx . To do this, you simply add an OnClick event for the button in Page1.aspx and a method.
You also assign a value for the PostBackUrl property. You can then work with the postback on Page1.aspx
and then again on Page2.aspx .

 What happens if someone requests Page2.aspx before she works her way through Page1.aspx ? Determining
whether the request is coming from Page1.aspx or whether someone just hit Page2.aspx directly is actually
quite easy. You can work with the request through the use of the IsCrossPagePostBack property that is quite
similar to the IsPostBack property from ASP.NET 1.0/1.1. The IsCrossPagePostBack property enables you
to check whether the request is from Page1.aspx . Listing 1 - 13 shows an example of this.

 LISTING 1 - 13: Using the IsCrossPagePostBack property

 < %@ Page Language="VB" % >
 < %@ PreviousPageType VirtualPath="Page1.aspx" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" >

 < script runat="server" >
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 If Not PreviousPage Is Nothing AndAlso PreviousPage.IsCrossPagePostBack Then
 Label1.Text = "Hello " & PreviousPage.pp_Textbox1.Text & " < br / > " &
 "Date Selected: " &
 PreviousPage.pp_Calendar1.SelectedDate.ToShortDateString()
 Else
 Response.Redirect("Page1.aspx")
 End If
 End Sub
 < /script >

 < %@ Page Language="C#" % >
 < %@ PreviousPageType VirtualPath="Page1.aspx" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" >

 < script runat="server" >
 protected void Page_Load(object sender, System.EventArgs e)
 {
 if (PreviousPage != null & & PreviousPage.IsCrossPagePostBack) {
 Label1.Text = "Hello " + PreviousPage.pp_TextBox1.Text + " < br / > " +
 "Date Selected: " +
 PreviousPage.pp_Calendar1.SelectedDate.ToShortDateString();
 }
 else
 {
 Response.Redirect("Page1.aspx");
 }
 }
 < /script >

 Filename Page2c.aspx

 ASP.NET APPLICATION FOLDERS

 When you create ASP.NET applications, notice that ASP.NET 4 uses a fi le - based approach. When working
with ASP.NET, you can add as many fi les and folders as you want within your application without
recompiling each and every time a new fi le is added to the overall solution. ASP.NET 4 includes the
capability to automatically precompile your ASP.NET applications dynamically.

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

VB

C#C#

c01.indd 26c01.indd 26 2/2/10 4:37:25 PM2/2/10 4:37:25 PM

 ASP.NET 1.0/1.1 compiled everything in your solution into a DLL. This is no longer necessary because ASP.
NET applications now have a defi ned folder structure. By using the ASP.NET-defi ned folders, you can have
your code automatically compiled for you, your application themes accessible throughout your application,
and your globalization resources available whenever you need them. Look at each of these defi ned folders to
see how they work. The fi rst folder reviewed is the App_Code folder.

 App_Code Folder

 The App_Code folder is meant to store your classes, .wsdl fi les, and typed datasets. Any of these items
stored in this folder are then automatically available to all the pages within your solution. The nice thing
about the App_Code folder is that when you place something inside this
folder, Visual Studio 2010 automatically detects this and compiles it if
it is a class (.vb or .cs), automatically creates your XML Web service
proxy class (from the .wsdl fi le), or automatically creates a typed
dataset for you from your .xsd fi les. After the fi les are automatically
compiled, these items are then instantaneously available to any of your
ASP.NET pages that are in the same solution. Look at how to employ a
simple class in your solution using the App_Code folder.

 The fi rst step is to create an App_Code folder. To do this, simply
right - click the solution and choose Add ASP.NET Folder ➪ App_Code.
Right away, you will notice that Visual Studio 2010 treats this folder
differently than the other folders in your solution. The App_Code
folder is shown in a different color (gray) with a document pictured
next to the folder icon. See Figure 1 - 8.

 After the App_Code folder is in place, right - click the folder and select
Add New Item. The Add New Item dialog that appears gives you a few options for the types of fi les that you
can place within this folder. The available options include an AJAX - enabled WCF Service, a Class fi le, a
LINQ to SQL Class, an ADO.NET Entity Data Model, an ADO.NET EntityObject Generator, a Sequence
Diagram, a Text Template, a Text fi le, a DataSet, a Report, and a Class Diagram if you are using Visual
Studio 2010. Visual Web Developer 2010 Express Edition offers only a subset of these fi les. For the fi rst
example, select the fi le of type Class and name the class Calculator.vb or Calculator.cs . Listing 1 - 14
shows how the Calculator class should appear.

 LISTING 1 - 14: The Calculator class

Imports Microsoft.VisualBasic

Public Class Calculator
 Public Function Add(ByVal a As Integer, ByVal b As Integer) As Integer
 Return (a + b)
 End Function
End Class

using System;

public class Calculator
{
 public int Add(int a, int b)
 {
 return (a + b);
 }
}

 Filenames Calculator.vb and Calculator.cs

 What ’ s next? Just save this fi le, and it is now available to use in any pages that are in your solution. To see
this in action, create a simple .aspx page that has just a single Label server control. Listing 1 - 15 shows you
the code to place within the Page_Load event to make this new class available to the page.

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

VB

C#C#

 ASP.NET Application Folders ❘ 27

FIGURE 1-8

c01.indd 27c01.indd 27 2/2/10 4:37:26 PM2/2/10 4:37:26 PM

28 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

 LISTING 1 - 15: An .aspx page that uses the Calculator class

 < %@ Page Language="VB" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" >

 < script runat="server" >
 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 Dim myCalc As New Calculator
 Label1.Text = myCalc.Add(12, 12)
 End Sub
 < /script >

 < %@ Page Language="C#" % >

 < !DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd" >

 < script runat="server" >
 protected void Page_Load(object sender, System.EventArgs e)
 {
 Calculator myCalc = new Calculator();
 Label1.Text = myCalc.Add(12, 12).ToString();
 }
 < /script >

 Filename Calculator.aspx

 When you run this .aspx page, notice that it utilizes the Calculator class without any problem, with no
need to compile the class before use. In fact, right after saving the Calculator class in your solution or
moving the class to the App_Code folder, you also instantaneously receive IntelliSense capability on the
methods that the class exposes (as illustrated in Figure 1 - 9).

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

VB

C#C#

FIGURE 1-9

c01.indd 28c01.indd 28 2/2/10 4:37:28 PM2/2/10 4:37:28 PM

 To see how Visual Studio 2010 works with the App_Code folder, open the Calculator class again in the
IDE and add a Subtract method. Your class should now appear as shown in Listing 1 - 16.

 LISTING 1 - 16: Adding a Subtract method to the Calculator class

Imports Microsoft.VisualBasic

Public Class Calculator
 Public Function Add(ByVal a As Integer, ByVal b As Integer) As Integer
 Return (a + b)
 End Function

 Public Function Subtract(ByVal a As Integer, ByVal b As Integer) As Integer
 Return (a - b)
 End Function
End Class

using System;

public class Calculator
{
 public int Add(int a, int b)
 {
 return (a + b);
 }

 public int Subtract(int a, int b)
 {
 return (a - b);
 }
}

 Filenames Calculator.vb and Calculator.cs

 After you have added the Subtract method to the Calculator class, save the fi le and go back to your
 .aspx page. Notice that the class has been recompiled by the IDE, and the new method is now available to
your page. You see this directly in IntelliSense. Figure 1 - 10 shows this in action.

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

VB

C#C#

 ASP.NET Application Folders ❘ 29

FIGURE 1-10

c01.indd 29c01.indd 29 2/2/10 4:37:29 PM2/2/10 4:37:29 PM

30 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

 Everything placed in the App_Code folder is compiled into a single assembly. The class fi les placed within
the App_Code folder are not required to use a specifi c language. This means that even if all the pages of the
solution are written in Visual Basic 2010, the Calculator class in the App_Code folder of the solution can
be built in C# (Calculator.cs).

 Because all the classes contained in this folder are built into a single assembly, you cannot have classes of
different languages sitting in the root App_Code folder, as in the following example:

\App_Code
 Calculator.cs
 AdvancedMath.vb

 Having two classes made up of different languages in the App_Code folder (as shown here) causes an
error to be thrown. It is impossible for the assigned compiler to work with two different languages.
Therefore, to be able to work with multiple languages in your App_Code folder, you must make some
changes to the folder structure and to the web.config fi le.

 The fi rst step is to add two new subfolders to the App_Code folder — a VB folder and a CS folder. This
gives you the following folder structure:

\App_Code
 \VB
 Add.vb
 \CS
 Subtract.cs

 This still will not correctly compile these class fi les into separate assemblies, at least not until you make
some additions to the web.config fi le. Most likely, you do not have a web.config fi le in your solution at
this moment, so add one through the Solution Explorer. After it is added, change the < compilation > node
so that it is structured as shown in Listing 1 - 17.

 LISTING 1 - 17: Structuring the web.confi g fi le so that classes in the App_Code folder can

use diff erent languages

 < compilation >
 < codeSubDirectories >
 < add directoryName="VB" > < /add >
 < add directoryName="CS" > < /add >
 < /codeSubDirectories >
 < /compilation >

 Now that this is in place in your web.config fi le, you can work with each of the classes in your ASP.NET
pages. In addition, any C# class placed in the CS folder is now automatically compiled just like any of the
classes placed in the VB folder. Because you can add these directories in the web.config fi le, you are not
required to name them VB and CS as we did; you can use whatever name tickles your fancy.

 App_Data Folder

 The App_Data folder holds the data stores utilized by the application. It is a good spot to centrally store
all the data stores your application might use. The App_Data folder can contain Microsoft SQL Express
fi les (.mdf fi les), Microsoft Access fi les (.mdb fi les), XML fi les, and more.

 The user account utilized by your application will have read and write access to any of the fi les contained
within the App_Data folder. By default, this is the ASPNET account. Another reason for storing all your
data fi les in this folder is that much of the ASP.NET system — from the membership and role management
systems to the GUI tools, such as the ASP.NET MMC snap - in and ASP.NET Web Site Administration
Tool — is built to work with the App_Data folder.

c01.indd 30c01.indd 30 2/2/10 4:37:30 PM2/2/10 4:37:30 PM

 App_Themes Folder

 Themes are a way of providing a common look - and - feel to your site across every page. You implement
a theme by using a .skin fi le, CSS fi les, and images used by the server controls of your site. All these
elements can make a theme , which is then stored in the App_Themes folder of your solution. By storing
these elements within the App_Themes folder, you ensure that all the pages within the solution can
take advantage of the theme and easily apply its elements to the controls and markup of the page. Themes
are discussed in great detail in Chapter 6 of this book.

 App_GlobalResources Folder

 Resource fi les are string tables that can serve as data dictionaries for your applications when these applications
require changes to content based on things such as changes in culture. You can add Assembly Resource Files
(.resx) to the App_GlobalResources folder, and they are dynamically compiled and made part of the solution
for use by all your .aspx pages in the application. When using ASP.NET 1.0/1.1, you had to use the resgen.
exe tool and had to compile your resource fi les to a .dll or .exe for use within your solution. Dealing with
resource fi les in ASP.NET 4 is considerably easier. Simply placing your application - wide resources in this
folder makes them instantly accessible. Localization is covered in detail in Chapter 32.

 App_LocalResources Folder

 Even if you are not interested in constructing application - wide resources using the App_GlobalResources
folder, you may want resources that can be used for a single .aspx page. You can do this very simply by
using the App_LocalResources folder.

 You can add resource fi les that are page - specifi c to the App_LocalResources folder by constructing the
name of the .resx fi le in the following manner:

 Default.aspx.resx

 Default.aspx.fi.resx

 Default.aspx.ja.resx

 Default.aspx.en - gb.resx

 Now, the resource declarations used on the Default.aspx page are retrieved from the appropriate fi le in
the App_LocalResources folder. By default, the Default.aspx.resx resource fi le is used if another match
is not found. If the client is using a culture specifi cation of fi - FI (Finnish), however, the Default.aspx.
fi.resx fi le is used instead. Localization of local resources is covered in detail in Chapter 32.

 App_WebReferences Folder

 The App_WebReferences folder is a new name for the previous Web References folder that was used in
versions of ASP.NET prior to ASP.NET 3.5. Now you can use the App_WebReferences folder and have
automatic access to the remote Web services referenced from your application. Chapter 31 covers Web
services in ASP.NET.

 App_Browsers Folder

 The App_Browsers folder holds .browser fi les, which are XML fi les used to identity the browsers making
requests to the application and understanding the capabilities these browsers have. You can fi nd a list of
globally accessible .browser fi les at C:\Windows\Microsoft.NET\Framework\v4.0. xxxxx \Config\
Browsers . In addition, if you want to change any part of these default browser defi nition fi les, just copy
the appropriate .browser fi le from the Browsers folder to your application ’ s App_Browsers folder and
change the defi nition.

➤

➤

➤

➤

 ASP.NET Application Folders ❘ 31

c01.indd 31c01.indd 31 2/2/10 4:37:31 PM2/2/10 4:37:31 PM

32 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

 COMPILATION

 You already saw how Visual Studio 2010 compiles pieces of your application as you work with them (for
instance, by placing a class in the App_Code folder). The other parts of the application, such as the .aspx
pages, can be compiled just as they were in earlier versions of ASP.NET by referencing the pages in the browser.

 When an ASP.NET page is referenced in the browser for the fi rst time, the request is passed to the ASP.NET
parser that creates the class fi le in the language of the page. It is passed to the ASP.NET parser based on the
fi le ’ s extension (.aspx) because ASP.NET realizes that this fi le extension type is meant for its handling and
processing. After the class fi le has been created, the class fi le is compiled into a DLL and then written to the
disk of the Web server. At this point, the DLL is instantiated and processed, and an output is generated for
the initial requester of the ASP.NET page. This is detailed in Figure 1 - 11.

 On the next request, great things happen. Instead of going through the entire process again for the second
and respective requests, the request simply causes an instantiation of the already - created DLL, which sends
out a response to the requester. This is illustrated in Figure 1 - 12.

Request

Response

Parse Generate

Compile

Instantiate,

process, and

render

ASP.NET

Engine

Page

Class

Code-

Behind

Class

Generated

Page

Class

.aspx

File

FIGURE 1-11

Request

Response

Parse Generate

Compile

Instantiate,

process, and

render

ASP.NET

Engine

Page

Class

Code-

Behind

Class

Generated

Page

Class

.aspx

File

2nd Request

Instantiation

2nd Request

FIGURE 1-12

c01.indd 32c01.indd 32 2/2/10 4:37:32 PM2/2/10 4:37:32 PM

 Because of the mechanics of this process, if you made changes to your .aspx code - behind pages, you found it
necessary to recompile your application. This was quite a pain if you had a larger site and did not want your
end users to experience the extreme lag that occurs when an .aspx page is referenced for the fi rst time after
compilation. Many developers, consequently, began to develop their own tools that automatically go out and hit
every single page within their application to remove this fi rst - time lag hit from the end user ’ s browsing experience.

 ASP.NET provides a few ways to precompile your entire application with a single command that you
can issue through a command line. One type of compilation is referred to as in - place precompilation . To
precompile your entire ASP.NET application, you must use the aspnet_compiler.exe tool that comes with
ASP.NET. You navigate to the tool using the Command window. Open the Command window and navigate
to C:\Windows\Microsoft.NET\Framework\v4.0. xxxxx \ . When you are there, you can work with
the aspnet_compiler tool. You can also get to this tool directly from the Visual Studio 2010 Command
Prompt. Choose Start ➪ All Programs ➪ Microsoft Visual Studio 2010 ➪ Visual Studio Tools ➪ Visual
Studio Command Prompt (2010).

 After you get the command prompt, you use the aspnet_compiler.exe tool to perform an in - place
precompilation using the following command:

aspnet_compiler -p "C:\Inetpub\wwwroot\WROX" -v none

 You then get a message stating that the precompilation is successful. The other great thing about this
precompilation capability is that you can also use it to fi nd errors on any of the ASP.NET pages in your
application. Because it hits each and every page, if one of the pages contains an error that won ’ t be triggered
until runtime, you get notifi cation of the error immediately as you employ this precompilation method.

 The next precompilation option is commonly referred to as precompilation for deployment . This
outstanding capability of ASP.NET enables you to compile your application down to some DLLs, which can
then be deployed to customers, partners, or elsewhere for your own use. Not only are minimal steps required
to do this, but also after your application is compiled, you simply have to move around the DLL and some
placeholder fi les for the site to work. This means that your Web site code is completely removed and placed
in the DLL when deployed.

 However, before you take these precompilation steps, create a folder in your root drive called, for example,
 Wrox . This folder is the one to which you will direct the compiler output. When it is in place, you can
return to the compiler tool and give the following command:

aspnet_compiler -v [Application Name] -p [Physical Location] [Target]

 Therefore, if you have an application called ThomsonReuters located at C:\Websites\ThomsonReuters ,
you use the following commands:

aspnet_compiler -v /ThomsonReuters -p C:\Websites\ThomsonReuters C:\Wrox

 Press the Enter key, and the compiler either tells you that it has a problem with one of the command parameters
or that it was successful (shown in Figure 1 - 13). If it was successful, you can see the output placed in the
target directory.

 Compilation ❘ 33

FIGURE 1-13

 In the example just shown, - v is a command for the virtual path of the application, which is provided by
using /ThomsonReuters . The next command is – p , which is pointing to the physical path of the application.

c01.indd 33c01.indd 33 2/2/10 4:37:32 PM2/2/10 4:37:32 PM

34 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

In this case, it is C:\Websites\ThomsonReuters . Finally, the last bit, C:\Wrox , is the location of the
compiler output. Table 1 - 9 describes some of the possible commands for the aspnet_compiler.exe tool.

FIGURE 1-14

TABLE 1-9

COMMAND DESCRIPTION

-m Specifi es the full IIS metabase path of the application. If you use the -m command, you

cannot use the -v or -p command.

-v Specifi es the virtual path of the application to be compiled. If you also use the -p

command, the physical path is used to fi nd the location of the application.

-p Specifi es the physical path of the application to be compiled. If this is not specifi ed, the IIS

metabase is used to fi nd the application.

-u If this command is utilized, it specifi es that the application is updatable.

-f Specifi es to overwrite the target directory if it already exists.

-d Specifi es that the debug information should be excluded from the compilation process.

[targetDir] Specifi es the target directory where the compiled fi les should be placed. If this is not

specifi ed, the output fi les are placed in the application directory.

 After compiling the application, you can go to C:\Wrox to see the output. Here you see all the fi les and the
fi le structures that were in the original application. However, if you look at the content of one of the fi les,
notice that the fi le is simply a placeholder. In the actual fi le, you fi nd the following comment:

This is a marker file generated by the precompilation tool
and should not be deleted!

 In fact, you fi nd a Code.dll fi le in the bin folder where all the page code is located. Because it is in a DLL fi le,
it provides great code obfuscation as well. From here on, all you do is move these fi les to another server using
FTP or Windows Explorer, and you can run the entire Web application from these fi les. When you have an
update to the application, you simply provide a new set of compiled fi les. Figure 1 - 14 shows a sample output.

 Note that this compilation process does not compile every type of Web fi le. In fact, it compiles only the ASP.
NET - specifi c fi le types and leaves out of the compilation process the following types of fi les:

 HTML fi les

 XML fi les

 XSD fi les

➤

➤

➤

c01.indd 34c01.indd 34 2/2/10 4:37:33 PM2/2/10 4:37:33 PM

 web.config fi les

 Text fi les

 You cannot do much to get around this, except in the case of the HTML fi les and the text fi les. For these fi le
types, just change the fi le extensions of these fi le types to .aspx ; they are then compiled into the Code.dll
like all the other ASP.NET fi les.

 BUILD PROVIDERS

 As you review the various ASP.NET folders, note that one of the more interesting folders is the App_Code
folder. You can simply drop code fi les, XSD fi les, and even WSDL fi les directly into the folder for automatic
compilation. When you drop a class fi le into the App_Code folder, the class can automatically be utilized by
a running application. In the early days of ASP.NET, if you wanted to deploy a custom component, you had
to precompile the component before being able to utilize it within your application. Now ASP.NET simply
takes care of all the work that you once had to do. You do not need to perform any compilation routine.

 Which fi le types are compiled in the App_Code folder? As with most things in ASP.NET, this is determined
through settings applied in a confi guration fi le. Listing 1 - 18 shows a snippet of confi guration code taken
from the master web.config fi le found in ASP.NET 4.

 LISTING 1 - 18: Reviewing the list of build providers

 < compilation >
 < buildProviders >
 < add extension=".aspx" type="System.Web.Compilation.PageBuildProvider" / >
 < add extension=".ascx"
 type="System.Web.Compilation.UserControlBuildProvider" / >
 < add extension=".master"
 type="System.Web.Compilation.MasterPageBuildProvider" / >
 < add extension=".asmx"
 type="System.Web.Compilation.WebServiceBuildProvider" / >
 < add extension=".ashx"
 type="System.Web.Compilation.WebHandlerBuildProvider" / >
 < add extension=".soap"
 type="System.Web.Compilation.WebServiceBuildProvider" / >
 < add extension=".resx" type="System.Web.Compilation.ResXBuildProvider" / >
 < add extension=".resources"
 type="System.Web.Compilation.ResourcesBuildProvider" / >
 < add extension=".wsdl" type="System.Web.Compilation.WsdlBuildProvider" / >
 < add extension=".xsd" type="System.Web.Compilation.XsdBuildProvider" / >
 < add extension=".js" type="System.Web.Compilation.ForceCopyBuildProvider" / >
 < add extension=".lic"
 type="System.Web.Compilation.IgnoreFileBuildProvider" / >
 < add extension=".licx"
 type="System.Web.Compilation.IgnoreFileBuildProvider" / >
 < add extension=".exclude"
 type="System.Web.Compilation.IgnoreFileBuildProvider" / >
 < add extension=".refresh"
 type="System.Web.Compilation.IgnoreFileBuildProvider" / >
 < add extension=".edmx"
 type="System.Data.Entity.Design.AspNet.
 EntityDesignerBuildProvider" / >
 < add extension=".xoml" type="System.ServiceModel.Activation.
 WorkflowServiceBuildProvider, System.WorkflowServices,
 Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35" / >
 < add extension=".svc"
 type="System.ServiceModel.Activation.ServiceBuildProvider,
 System.ServiceModel.Activation, Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=31bf3856ad364e35" / >

continues

➤

➤

 Build Providers ❘ 35

c01.indd 35c01.indd 35 2/2/10 4:37:34 PM2/2/10 4:37:34 PM

36 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

LISTING 1-18 (continued)

 < add extension=".xamlx"
 type="System.Xaml.Hosting.XamlBuildProvider,
 System.Xaml.Hosting, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35" / >
 < /buildProviders >
 < /compilation >

 This section contains a list of build providers that can be used by two entities in your development cycle. The
build provider is fi rst used is during development when you are building your solution in Visual Studio 2010.
For instance, placing a .wsdl fi le in the App_Code folder during development in Visual Studio causes the
IDE to give you automatic access to the dynamically compiled proxy class that comes from this .wsdl fi le.
The other entity that uses the build providers is ASP.NET itself. As stated, simply dragging and dropping
a .wsdl fi le in the App_Code folder of a deployed application automatically gives the ASP.NET application
access to the created proxy class.

 A build provider is simply a class that inherits from System.Web.Compilation.BuildProvider. The
 < buildProviders > section in the web.config fi le allows you to list the build provider classes that will
be utilized. The capability to dynamically compile any WSDL fi le is defi ned by the following line in the
confi guration fi le.

 < add extension=".wsdl" type="System.Web.Compilation.WsdlBuildProvider" / >

 This means that any fi le utilizing the .wsdl fi le extension is compiled using the WsdlBuildProvider , a
class that inherits from BuildProvider . Microsoft provides a set number of build providers out of the box
for you to use. As you can see from the set in Listing 1 - 18, a number of providers are available in addition
to the WsdlBuildProvider , including providers such as the XsdBuildProvider , PageBuildProvider ,
 UserControlBuildProvider , MasterPageBuildProvider , and more. Just by looking at the names of
some of these providers you can pretty much understand what they are about. The next section, however,
reviews some other providers whose names might not ring a bell right away.

 Using the Built - in Build Providers

 Two of the providers that this section covers are the ForceCopyBuildProvider and the
 IgnoreFileBuildProvider , both of which are included in the default list of providers.

 The ForceCopyBuildProvider is basically a provider that copies only those fi les for deployment that
use the defi ned extension. (These fi les are not included in the compilation process.) An extension that
utilizes the ForceCopyBuildProvider is shown in the predefi ned list in Listing 1 - 18. This is the .js fi le
type (a JavaScript fi le extension). Any .js fi les are simply copied and not included in the compilation process
(which makes sense for JavaScript fi les). You can add other fi le types that you want to be a part of this copy
process with the command shown here:

 < add extension=".chm" type="System.Web.Compilation.ForceCopyBuildProvider" / >

 In addition to the ForceCopyBuildProvider , you should also be aware of the IgnoreFileBuildProvider
class. This provider causes the defi ned fi le type to be ignored in the deployment or compilation process. This
means that any fi le type defi ned with IgnoreFileBuildProvider is simply ignored. Visual Studio will not
copy, compile, or deploy any fi le of that type. So, if you are including Visio diagrams in your project, you can
simply add the following < add > element to the web.config fi le to have this fi le type ignored. An example is
presented here:

 < add extension=".vsd" type="System.Web.Compilation.IgnoreFileBuildProvider" / >

 With this in place, all .vsd fi les are ignored.

 Using Your Own Build Providers

 In addition to using the predefi ned build providers out of the box, you can also take this build provider stuff
one step further and construct your own custom build providers to use within your applications.

c01.indd 36c01.indd 36 2/2/10 4:37:35 PM2/2/10 4:37:35 PM

 For example, suppose you wanted to construct a Car class dynamically based upon settings applied in a
custom .car fi le that you have defi ned. You might do this because you are using this .car defi nition fi le
in multiple projects or many times within the same project. Using a build provider makes defi ning these
multiple instances of the Car class simpler.

 Listing 1 - 19 presents an example of the .car fi le type.

 LISTING 1 - 19: An example of a .car fi le

 < ?xml version="1.0" encoding="utf-8" ? >
 < car name="EvjenCar" >
 < color > Blue < /color >
 < door > 4 < /door >
 < speed > 150 < /speed >
 < /car >

 Filename Evjen.car

 In the end, this XML declaration specifi es the name of the class to compile as well as some values for
various properties and a method. These elements make up the class. Now that you understand the
structure of the .car fi le type, the next step is to construct the build provider. To accomplish this
task, create a new Class Library project in the language of your choice within Visual Studio. Name the
project CarBuildProvider . The CarBuildProvider contains a single class — Car.vb or Car.cs . This
class inherits from the base class BuildProvider and overrides the GenerateCode() method of the
 BuildProvider class. Listing 1 - 20 presents this class.

 LISTING 1 - 20: The CarBuildProvider

Imports System.IO
Imports System.Web.Compilation
Imports System.Xml
Imports System.CodeDom

Public Class Car
 Inherits BuildProvider

 Public Overrides Sub GenerateCode(ByVal myAb As AssemblyBuilder)
 Dim carXmlDoc As XmlDocument = New XmlDocument()

 Using passedFile As Stream = Me.OpenStream()
 carXmlDoc.Load(passedFile)
 End Using

 Dim mainNode As XmlNode = carXmlDoc.SelectSingleNode("/car")
 Dim selectionMainNode As String = mainNode.Attributes("name").Value

 Dim colorNode As XmlNode = carXmlDoc.SelectSingleNode("/car/color")
 Dim selectionColorNode As String = colorNode.InnerText

 Dim doorNode As XmlNode = carXmlDoc.SelectSingleNode("/car/door")
 Dim selectionDoorNode As String = doorNode.InnerText

 Dim speedNode As XmlNode = carXmlDoc.SelectSingleNode("/car/speed")
 Dim selectionSpeedNode As String = speedNode.InnerText

 Dim ccu As CodeCompileUnit = New CodeCompileUnit()
 Dim cn As CodeNamespace = New CodeNamespace()
 Dim cmp1 As CodeMemberProperty = New CodeMemberProperty()
 Dim cmp2 As CodeMemberProperty = New CodeMemberProperty()
 Dim cmm1 As CodeMemberMethod = New CodeMemberMethod()

continues

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

VB

 Build Providers ❘ 37

c01.indd 37c01.indd 37 2/2/10 4:37:35 PM2/2/10 4:37:35 PM

38 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

LISTING 1-20 (continued)

 cn.Imports.Add(New CodeNamespaceImport("System"))

 cmp1.Name = "Color"
 cmp1.Type = New CodeTypeReference(GetType(System.String))
 cmp1.Attributes = MemberAttributes.Public
 cmp1.GetStatements.Add(New CodeSnippetExpression("return """ &
 selectionColorNode & """"))

 cmp2.Name = "Doors"
 cmp2.Type = New CodeTypeReference(GetType(System.Int32))
 cmp2.Attributes = MemberAttributes.Public
 cmp2.GetStatements.Add(New CodeSnippetExpression("return " &
 selectionDoorNode))

 cmm1.Name = "Go"
 cmm1.ReturnType = New CodeTypeReference(GetType(System.Int32))
 cmm1.Attributes = MemberAttributes.Public
 cmm1.Statements.Add(New CodeSnippetExpression("return " &
 selectionSpeedNode))

 Dim ctd As CodeTypeDeclaration = New CodeTypeDeclaration(selectionMainNode)
 ctd.Members.Add(cmp1)
 ctd.Members.Add(cmp2)
 ctd.Members.Add(cmm1)

 cn.Types.Add(ctd)
 ccu.Namespaces.Add(cn)

 myAb.AddCodeCompileUnit(Me, ccu)
 End Sub

End Class

using System.IO;
using System.Web.Compilation;
using System.Xml;
using System.CodeDom;

namespace CarBuildProvider
{
 class Car : BuildProvider
 {
 public override void GenerateCode(AssemblyBuilder myAb)
 {
 XmlDocument carXmlDoc = new XmlDocument();

 using (Stream passedFile = OpenStream())
 {
 carXmlDoc.Load(passedFile);
 }
 XmlNode mainNode = carXmlDoc.SelectSingleNode("/car");
 string selectionMainNode = mainNode.Attributes["name"].Value;

 XmlNode colorNode = carXmlDoc.SelectSingleNode("/car/color");
 string selectionColorNode = colorNode.InnerText;

 XmlNode doorNode = carXmlDoc.SelectSingleNode("/car/door");
 string selectionDoorNode = doorNode.InnerText;

 XmlNode speedNode = carXmlDoc.SelectSingleNode("/car/speed");
 string selectionSpeedNode = speedNode.InnerText;

C#C#

c01.indd 38c01.indd 38 2/2/10 4:37:36 PM2/2/10 4:37:36 PM

 CodeCompileUnit ccu = new CodeCompileUnit();
 CodeNamespace cn = new CodeNamespace();
 CodeMemberProperty cmp1 = new CodeMemberProperty();
 CodeMemberProperty cmp2 = new CodeMemberProperty();
 CodeMemberMethod cmm1 = new CodeMemberMethod();

 cn.Imports.Add(new CodeNamespaceImport("System"));

 cmp1.Name = "Color";
 cmp1.Type = new CodeTypeReference(typeof(string));
 cmp1.Attributes = MemberAttributes.Public;
 cmp1.GetStatements.Add(new CodeSnippetExpression("return \"" +
 selectionColorNode + "\""));

 cmp2.Name = "Doors";
 cmp2.Type = new CodeTypeReference(typeof(int));
 cmp2.Attributes = MemberAttributes.Public;
 cmp2.GetStatements.Add(new CodeSnippetExpression("return " +
 selectionDoorNode));

 cmm1.Name = "Go";
 cmm1.ReturnType = new CodeTypeReference(typeof(int));
 cmm1.Attributes = MemberAttributes.Public;
 cmm1.Statements.Add(new CodeSnippetExpression("return " +
 selectionSpeedNode));

 CodeTypeDeclaration ctd = new CodeTypeDeclaration(selectionMainNode);
 ctd.Members.Add(cmp1);
 ctd.Members.Add(cmp2);
 ctd.Members.Add(cmm1);

 cn.Types.Add(ctd);
 ccu.Namespaces.Add(cn);

 myAb.AddCodeCompileUnit(this, ccu);
 }
 }
}

Filenames Car.vb and Car.cs

 As you look over the GenerateCode() method, you can see that it takes an instance of AssemblyBuilder .
This AssemblyBuilder object is from the System.Web.Compilation namespace and, because of this, your
Class Library project must have a reference to the System.Web assembly. With all the various objects used
in this Car class, you also have to import in the following namespaces:

Imports System.IO
Imports System.Web.Compilation
Imports System.Xml
Imports System.CodeDom

 When you have done this, one of the tasks remaining in the GenerateCode() method is loading the
 .car fi le. Because the .car fi le is using XML for its form, you are able to load the document easily using
the XmlDocument object. From there, by using the CodeDom, you can create a class that contains two
properties and a single method dynamically. The class that is generated is an abstract representation of what
is defi ned in the provided .car fi le. On top of that, the name of the class is also dynamically driven from the
value provided via the name attribute used in the main < Car > node of the .car fi le.

 The AssemblyBuilder instance that is used as the input object then compiles the generated code along with
everything else into an assembly.

 What does it mean that your ASP.NET project has a reference to the CarBuildProvider assembly in
its project? It means that you can create a .car fi le of your own defi nition and drop this fi le into the

 Build Providers ❘ 39

c01.indd 39c01.indd 39 2/2/10 4:37:37 PM2/2/10 4:37:37 PM

40 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

 App_Code folder. The second you drop the fi le into the App_Code folder, you have instant programmatic
access to the defi nition specifi ed in the fi le.

 To see this in action, you need a reference to the build provider in either the server ’ s machine.config or
your application ’ s web.config fi le. A reference is shown in Listing 1 - 21.

 LISTING 1 - 21: Making a reference to the build provider in the web.confi g fi le

 < configuration >
 < system.web >
 < compilation debug="false" >
 < buildProviders >
 < add extension=".car" type="CarBuildProvider.Car"/ >
 < /buildProviders >
 < /compilation >
 < /system.web >
 < /configuration >

 The < buildProviders > element is a child element of the < compilation > element. The < buildProviders >
element takes a couple of child elements to add or remove providers. In this case, because you want to add a
reference to the custom CarBuildProvider object, you use the < add > element. The < add > element can take
two possible attributes — extension and type . You must use both of these attributes. In the extension
attribute, you defi ne the fi le extension that this build provider will be associated with. In this case, you use
the .car fi le extension. This means that any fi le using this fi le extension is associated with the class defi ned
in the type attribute. The type attribute then takes a reference to the CarBuildProvider class that you
built — CarBuildProvider.Car .

 With this reference in place, you can create the .car fi le that was shown earlier in Listing 1 - 19. Place the
created .car fi le in the App_Code folder. You instantly have access to a dynamically generated class that
comes from the defi nition provided via the fi le. For example, because I used EvjenCar as the value of
the name attribute in the < Car > element, this will be the name of the class generated, and I will fi nd this
exact name in IntelliSense as I type in Visual Studio.

 If you create an instance of the EvjenCar class, you also fi nd that you have access to the properties and the
method that this class exposes. This is shown in Figure 1 - 15.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 1-15

c01.indd 40c01.indd 40 2/2/10 4:37:37 PM2/2/10 4:37:37 PM

 In addition to getting access to the properties and methods of the class, you also gain access to the values
that are defi ned in the .car fi le. This is shown in Figure 1 - 16. The simple code example shown in Figure 1 - 15
is used for this browser output.

 Global.asax ❘ 41

FIGURE 1-16

 Although a Car class is not the most useful thing in the world, this example shows you how to take the build
provider mechanics into your own hands to extend your application ’ s capabilities.

 GLOBAL.ASAX

 If you add a new item to your ASP.NET application, you get the Add New Item dialog. From here, you can
see that you can add a Global Application Class to your applications. This adds a Global.asax fi le. This
fi le is used by the application to hold application - level events, objects, and variables — all of which are
accessible application - wide. Active Server Pages developers had something similar with the Global.asa fi le.

 Your ASP.NET applications can have only a single Global.asax fi le. This fi le supports a number of items.
When it is created, you are given the following template:

 < %@ Application Language="VB" % >

 < script runat="server" >

 Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)
 ' Code that runs on application startup
 End Sub

 Sub Application_End(ByVal sender As Object, ByVal e As EventArgs)
 ' Code that runs on application shutdown
 End Sub

 Sub Application_Error(ByVal sender As Object, ByVal e As EventArgs)
 ' Code that runs when an unhandled error occurs
 End Sub

 Sub Session_Start(ByVal sender As Object, ByVal e As EventArgs)
 ' Code that runs when a new session is started
 End Sub

 Sub Session_End(ByVal sender As Object, ByVal e As EventArgs)
 ' Code that runs when a session ends.
 ' Note: The Session_End event is raised only when the sessionstate mode
 ' is set to InProc in the Web.config file. If session mode is
 ' set to StateServer
 ' or SQLServer, the event is not raised.
 End Sub

 < /script >

c01.indd 41c01.indd 41 2/2/10 4:37:38 PM2/2/10 4:37:38 PM

42 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

 Just as you can work with page - level events in your .aspx pages, you can work with overall application
events from the Global.asax fi le. In addition to the events listed in this code example, the following list
details some of the events you can structure inside this fi le:

 Application_Start : Called when the application receives its very fi rst request. It is an ideal spot in
your application to assign any application - level variables or state that must be maintained across all users.

 Session_Start : Similar to the Application_Start event except that this event is fi red when an
individual user accesses the application for the fi rst time. For instance, the Application_Start event
fi res once when the fi rst request comes in, which gets the application going, but the Session_Start is
invoked for each end user who requests something from the application for the fi rst time.

 Application_BeginRequest : Although it is not listed in the preceding template provided by Visual
Studio 2010, the Application_BeginRequest event is triggered before each and every request that
comes its way. This means that when a request comes into the server, before this request is processed, the
 Application_BeginRequest is triggered and dealt with before any processing of the request occurs.

 Application_AuthenticateRequest : Triggered for each request and enables you to set up custom
authentications for a request.

 Application_Error : Triggered when an error is thrown anywhere in the application by any user of
the application. This is an ideal spot to provide application - wide error handling or an event recording
the errors to the server ’ s event logs.

 Session_End : When running in InProc mode, this event is triggered when an end user leaves the
application.

 Application_End : Triggered when the application comes to an end. This is an event that most ASP.
NET developers won ’ t use that often because ASP.NET does such a good job of closing and cleaning
up any objects that are left around.

 In addition to the global application events that the Global.asax fi le provides access to, you can also use
directives in this fi le as you can with other ASP.NET pages. The Global.asax fi le allows for the following
directives:

 @Application

 @Assembly

 @Import

 These directives perform in the same way when they are used with other ASP.NET page types.

 An example of using the Global.asax fi le is shown in Listing 1 - 22. It demonstrates how to log when
the ASP.NET application domain shuts down. When the ASP.NET application domain shuts down,
the ASP.NET application abruptly comes to an end. Therefore, you should place any logging code in the
 Application_End method of the Global.asax fi le.

 LISTING 1 - 22: Using the Application_End event in the Global.asax fi le

 < %@ Application Language="VB" % >
 < %@ Import Namespace="System.Reflection" % >
 < %@ Import Namespace="System.Diagnostics" % >

 < script runat="server" >

 Sub Application_End(ByVal sender As Object, ByVal e As EventArgs)
 Dim MyRuntime As HttpRuntime =
 GetType(System.Web.HttpRuntime).InvokeMember("_theRuntime",
 BindingFlags.NonPublic Or BindingFlags.Static Or _
 BindingFlags.GetField,
 Nothing, Nothing, Nothing)

 If (MyRuntime Is Nothing) Then
 Return

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

Available for
download on
Wrox.com

VB

Available for
download on
Wrox.com

VB

c01.indd 42c01.indd 42 2/2/10 4:37:39 PM2/2/10 4:37:39 PM

 End If

 Dim shutDownMessage As String =
 CType(MyRuntime.GetType().InvokeMember("_shutDownMessage",
 BindingFlags.NonPublic Or BindingFlags.Instance Or
 BindingFlags.GetField,
 Nothing, MyRuntime, Nothing), System.String)

 Dim shutDownStack As String =
 CType(MyRuntime.GetType().InvokeMember("_shutDownStack",
 BindingFlags.NonPublic Or BindingFlags.Instance Or
 BindingFlags.GetField,
 Nothing, MyRuntime, Nothing), System.String)

 If (Not EventLog.SourceExists(".NET Runtime")) Then
 EventLog.CreateEventSource(".NET Runtime", "Application")
 End If

 Dim logEntry As EventLog = New EventLog()
 logEntry.Source = ".NET Runtime"
 logEntry.WriteEntry(String.Format(
 "shutDownMessage={0}\r\n\r\n_shutDownStack={1}",
 shutDownMessage, shutDownStack), EventLogEntryType.Error)
 End Sub

 < /script >

 < %@ Application Language="C#" % >
 < %@ Import Namespace="System.Reflection" % >
 < %@ Import Namespace="System.Diagnostics" % >

 < script runat="server" >

 void Application_End(object sender, EventArgs e)
 {
 HttpRuntime runtime =

(HttpRuntime)typeof(System.Web.HttpRuntime).InvokeMember("_theRuntime",
 BindingFlags.NonPublic | BindingFlags.Static |
BindingFlags.GetField,
 null, null, null);

 if (runtime == null)
 {
 return;
 }

 string shutDownMessage =
 (string)runtime.GetType().InvokeMember("_shutDownMessage",
 BindingFlags.NonPublic | BindingFlags.Instance | BindingFlags.GetField,
 null, runtime, null);

 string shutDownStack =
 (string)runtime.GetType().InvokeMember("_shutDownStack",
 BindingFlags.NonPublic | BindingFlags.Instance | BindingFlags.GetField,
 null, runtime, null);

 if (!EventLog.SourceExists(".NET Runtime"))
 {
 EventLog.CreateEventSource(".NET Runtime", "Application");
 }

C#C#

 Global.asax ❘ 43

continues

c01.indd 43c01.indd 43 2/2/10 4:37:40 PM2/2/10 4:37:40 PM

44 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

LISTING 1-22 (continued)

 EventLog logEntry = new EventLog();
 logEntry.Source = ".NET Runtime";
 logEntry.WriteEntry(String.Format("\r\n\r\n_" +
 "shutDownMessage={0}\r\n\r\n_shutDownStack={1}",
 shutDownMessage, shutDownStack), EventLogEntryType.Error);
 }

 < /script >

 With this code in place in your Global.asax fi le, start your ASP.NET application. Next, do something to
cause the application to restart. You could, for example, make a change to the web.config fi le while the
application is running. This triggers the Application_End event, and you see the following addition (shown
in Figure 1 - 17) to the event log.

FIGURE 1-17

 WORKING WITH CLASSES THROUGH VISUAL STUDIO 2010

 So far, this chapter has shown you how to work with classes within your ASP.NET projects. In constructing
and working with classes, you will fi nd that Visual Studio 2010 is quite helpful. One particularly useful item
is the class designer fi le. The class designer fi le has an extension of .cd and gives you a visual way to view
your class, as well as all the available methods, properties, and other class items it contains.

 To see this designer in action, create a new Class Library project in the language of your choice. This project
has a single class fi le, Class1.vb or .cs . Delete this fi le and create a new class fi le called Calculator.vb or
 .cs , depending on the language you are using. From here, complete the class by creating a simple Add() and
 Subtract() method. Each of these methods takes in two parameters (of type Integer) and returns a single
 Integer with the appropriate calculation performed.

c01.indd 44c01.indd 44 2/2/10 4:37:41 PM2/2/10 4:37:41 PM

 After you have the Calculator class in place, the easiest way to create your class designer fi le for this
particular class is to right - click on the Calculator.vb fi le directly in the Solution Explorer and select View
Class Diagram from the menu. This creates a ClassDiagram1.cd fi le in your solution.

 Figure 1 - 18 presents the visual fi le, ClassDiagram1.cd .

 Working with Classes Through VS2010 ❘ 45

FIGURE 1-18

 The new class designer fi le gives you a design view of your class. In the document window of Visual Studio,
you see a visual representation of the Calculator class. The class is represented in a box and provides the
name of the class, as well as two available methods that are
exposed by the class. Because of the simplicity of this class,
the details provided in the visual view are limited.

 You can add additional classes to this diagram simply
by dragging and dropping class fi les onto the design
surface. You can then arrange the class fi les on the
design surface as you want. A connection is in place
for classes that are inherited from other class fi les or
classes that derive from an interface or abstract class.
In fact, you can extract an interface from the class you
just created directly in the class designer by right - clicking
on the Calculator class box and selecting Refactor ➪
Extract Interface from the provided menu (if you are
working with C#). This launches the Extract Interface
dialog (shown in Figure 1 - 19) that enables you to
customize the interface creation. FIGURE 1-19

c01.indd 45c01.indd 45 2/2/10 4:37:42 PM2/2/10 4:37:42 PM

46 ❘ CHAPTER 1 APPLICATION AND PAGE FRAMEWORKS

 After you click OK, the ICalculator interface is created and is then visually represented in the class
diagram fi le, as illustrated in Figure 1 - 20.

FIGURE 1-21

FIGURE 1-20

FIGURE 1-22

 In addition to creating items such as interfaces on - the - fl y, you can also modify your Calculator class by
adding additional methods, properties, events, and more through the Class Details pane found in Visual
Studio (see Figure 1 - 21).

 From this view of the class, you can directly add any additional methods, properties, fi elds, or events
without directly typing code in your class fi le. When you enter these items in the Class Details view, Visual
Studio generates the code for you on your behalf. For an example of this, add the additional Multiply()
and Divide() methods that the Calculator class needs. Expanding the plus sign next to these methods
shows the parameters needed in the signature. This is where you add the required a and b parameters. When
you have fi nished, your Class Details screen should appear as shown in Figure 1 - 22.

c01.indd 46c01.indd 46 2/2/10 4:37:42 PM2/2/10 4:37:42 PM

 After you have added new Multiply() and Divide() methods and the required parameters, you see that the
code in the Calculator class has changed to indicate these new methods are present. When the framework
of the method is in place, you also see that the class has not been implemented in any fashion. The C#
version of the Multiply() and Divide() methods created by Visual Studio is presented in Listing 1 - 23.

 LISTING 1 - 23: The framework provided by Visual Studio ’ s class designer

public int Multiply(int a, int b)
{
 throw new System.NotImplementedException();
}

public int Divide(int a, int b)
{
 throw new System.NotImplementedException();
}

 The new class designer fi les give you a powerful way to view and understand your classes better — sometimes
a picture really is worth a thousand words. One interesting last point on the .cd fi le is that Visual Studio
is really doing all the work with this fi le. If you open the ClassDesigner1.cd fi le in Notepad, you see the
results presented in Listing 1 - 24.

 LISTING 1 - 24: The real ClassDesigner1.cd fi le as it appears in Notepad

 < ?xml version="1.0" encoding="utf-8"? >
 < ClassDiagram MajorVersion="1" MinorVersion="1" >
 < Class Name="ClassDiagramEx.Calculator" >
 < Position X="1.25" Y="0.75" Width="1.5" / >
 < TypeIdentifier >
 < HashCode > AAIAAAAAAQAAAAAAAAADAAAAAAAAAAAAAAAAAAAAAAA= < /HashCode >
 < FileName > Calculator.cs < /FileName >
 < /TypeIdentifier >
 < Lollipop Position="0.2" / >
 < /Class >
 < Font Name="Segoe UI" Size="8.25" / >
 < /ClassDiagram >

 As you can see, it is a rather simple XML fi le that defi nes the locations of the class and the items connected
to the class.

 SUMMARY

 This chapter covered a lot of ground. It discussed some of the issues concerning ASP.NET applications as
a whole and the choices you have when building and deploying these new applications. With the help of
Visual Studio 2010, you have options about which Web server to use when building your application and
whether to work locally or remotely through the built - in FTP capabilities.

 ASP.NET 4 and Visual Studio 2010 make it easy to build your pages using an inline coding model or to
select a code - behind model that is simpler to use and easier to deploy than in the past. You also learned
about the cross - posting capabilities and the fi xed folders that ASP.NET 4 has incorporated to make your
life easier. These folders make their resources available dynamically with no work on your part. You saw
some of the outstanding compilation options that are at your disposal. Finally, you looked at ways in which
Visual Studio 2010 makes it easy to work with the classes of your project.

 As you worked through some of the examples, you may have been thinking, “ WOW! ” But wait . . . there ’ s
plenty more to come!

 Summary ❘ 47

c01.indd 47c01.indd 47 2/2/10 4:37:43 PM2/2/10 4:37:43 PM

c01.indd 48c01.indd 48 2/2/10 4:37:44 PM2/2/10 4:37:44 PM

