
1
Welcome to Visual Basic 2010

WHAT YOU WILL LEARN IN THIS CHAPTER:

➤ Using event-driven programming

➤ Installing Visual Basic 2010

➤ A tour of the Visual Basic 2010 integrated development environment
(IDE)

➤ Creating a simple Windows program

➤ Using the integrated Help system

This is an exciting time to enter the world of programming with Visual Basic 2010 and
Windows 7. Windows 7 represents the latest Windows operating system from Microsoft and is
packed with a lot of new features to make Windows programming fun. Much has changed in
the Windows user interface, and Visual Basic 2010 makes it easy to write professional-looking
Windows applications as well as web applications and web services. Haven’t upgraded to
Windows 7 yet? No worries, Visual Basic 2010 also enables you to write professional-looking
applications for previous versions of Windows as well.

The goal of this book is to help you use the Visual Basic 2010 programming language, even if
you have never programmed before. You will start slowly and build on what you have learned
in subsequent chapters. So take a deep breath, let it out slowly, and tell yourself you can do this.
No sweat! No kidding!

Programming a computer is a lot like teaching a child to tie his shoes. Until you find the correct
way of giving the instructions, not much is accomplished. Visual Basic 2010 is a language you
can use to tell your computer how to do things; but, like a child, the computer will understand
only if you explain things very clearly. If you have never programmed before, this sounds like an
arduous task, and sometimes it can be. However, Visual Basic 2010 offers an easy-to-use lan-
guage to explain some complex tasks. Although it never hurts to have an understanding of what
is happening at the lowest levels, Visual Basic 2010 frees the programmer from having to deal
with the mundane complexities of writing Windows applications. You are free to concentrate
on solving real problems.

CO
PYRIG

HTED
 M

ATERIA
L



2 ❘ CHAPTER 1 WELCOME TO VISUAL BASIC 2010

Visual Basic 2010 helps you create solutions that run on the Microsoft Windows operating systems,
such as Windows 7, Windows Server 2008, and Windows Mobile 6.1. If you are looking at this book,
you might have already felt the need or desire to create such programs. Even if you have never written
a computer program before, as you progress through the Try It Out exercises in this book, you will
become familiar with the various aspects of the Visual Basic 2010 language, as well as its foundations
in the Microsoft .NET Framework. You will find that it is not nearly as difficult as you imagined.
Before you know it, you will feel quite comfortable creating a variety of different types of programs
with Visual Basic 2010.

Visual Basic 2010 can also be used to create web applications and web services, as well as mobile
applications that can run on Pocket PCs or smartphones. However, you will begin by focusing on
Windows applications before extending your boundaries to other platforms.

EVENT-DRIVEN PROGRAMMING

A Windows program is quite different from yesteryear’s MS-DOS program. A DOS program follows a
relatively strict path from beginning to end. Although this does not necessarily limit the functionality
of the program, it does limit the road the user has to take to get to it. A DOS program is like walking
down a hallway; to get to the end you have to walk down the entire hallway, passing any obstacles that
you may encounter. A DOS program would only let you open certain doors along your stroll.

Windows, on the other hand, opened up the world of event-driven programming. Events in this context
include clicking a button, resizing a window, or changing an entry in a text box. The code that you
write responds to these events. In terms of the hallway analogy: In a Windows program, to get to
the end of the hall you just click the end of the hall. The hallway itself can be ignored. If you get to the
end and realize that is not where you wanted to be, you can just set off for the new destination without
returning to your starting point. The program reacts to your movements and takes the necessary actions
to complete your desired tasks.

Another big advantage in a Windows program is the abstraction of the hardware, which means that
Windows takes care of communicating with the hardware for you. You do not need to know the
inner workings of every laser printer on the market just to create output. You do not need to study
the schematics for graphics cards to write your own game. Windows wraps up this functionality by
providing generic routines that communicate with the drivers written by hardware manufacturers. This
is probably the main reason why Windows has been so successful. The generic routines are referred
to as the Windows application programming interface (API), and most of the classes in the .NET
Framework take care of communicating with those APIs.

Before Visual Basic 1.0 was introduced to the world in 1991, developers had to be well versed in C and
C++ programming, as well as the building blocks of the Windows system itself, the Windows API.
This complexity meant that only dedicated and properly trained individuals were capable of turning
out software that could run on Windows. Visual Basic changed all of that, and it has been estimated
that there are now as many lines of production code written in Visual Basic as in any other language.

Visual Basic changed the face of Windows programming by removing the complex burden of writ-
ing code for the user interface (UI). By allowing programmers to draw their own UI, it freed them to
concentrate on the business problems they were trying to solve. When the UI is drawn, the programmer
can then add the code to react to events.



Installing Visual Basic 2010 ❘ 3

Visual Basic has also been extensible from the very beginning. Third-party vendors quickly saw the
market for reusable modules to aid developers. These modules, or controls, were originally referred
to as VBXs (named after their file extension). Prior to Visual Basic 5.0, if you did not like the way
a button behaved, you could either buy or create your own, but those controls had to be written in
C or C++. Database access utilities were some of the first controls available. Version 5 of Visual
Basic introduced the concept of ActiveX, which enabled developers to create their own ActiveX
controls.

When Microsoft introduced Visual Basic 3.0, the programming world changed significantly. Now
you could build database applications directly accessible to users (so-called front-end applications)
completely with Visual Basic. There was no need to rely on third-party controls. Microsoft accom-
plished this task with the introduction of Data Access Objects (DAOs), which enabled programmers
to manipulate data with the same ease as manipulating the user interface.

Versions 4.0 and 5.0 extended the capabilities of Version 3.0 to enable developers to target the new
Windows 95 platform. They also made it easier for developers to write code, which could then be
manipulated to make it usable to other language developers. Version 6.0 provided a new way to access
databases with the integration of ActiveX Data Objects (ADOs). The ADO feature was developed
by Microsoft to aid web developers using Active Server Pages (ASP) to access databases. All of the
improvements to Visual Basic over the years have ensured its dominant place in the programming
world — it helps developers write robust and maintainable applications in record time.

With the release of Visual Basic .NET in February 2002, most of the restrictions that used to exist
were obliterated. In the past, Visual Basic was criticized and maligned as a ‘‘toy’’ language, because it
did not provide all of the features of more sophisticated languages such as C++ and Java. Microsoft
removed these restrictions with Visual Basic .NET, which was rapidly adopted as a very powerful
development tool. This trend has continued with the release of Visual Basic 2003, Visual Basic 2005,
Visual Basic 2008, and the latest release, Visual Basic 2010. Each new release of the Visual Basic .NET
programming language offers many new features, improvements, and trends, making it a great choice
for programmers of all levels.

INSTALLING VISUAL BASIC 2010

You may own Visual Basic 2010 in one of the following forms:

➤ As part of Visual Studio 2010, a suite of tools and languages that also includes C# (pro-
nounced ‘‘C-sharp’’) and Visual C++. The Visual Studio 2010 product line includes Visual
Studio Professional Edition or Visual Studio Tools Team Editions. The Team Edition versions
come with progressively more tools for building and managing the development of larger,
enterprise-wide applications.

➤ As Visual Basic 2010 Express Edition (a free edition for students and beginners), which
includes the Visual Basic 2010 language, and a smaller set of the tools and features available
with Visual Studio 2010.

Both of these products enable you to create your own applications for the Windows platform. The
installation procedure is straightforward. In fact, the Visual Studio Installer is smart enough to figure
out exactly what your computer requires to make it work.



4 ❘ CHAPTER 1 WELCOME TO VISUAL BASIC 2010

The descriptions in the following Try It Out exercise are based on installing Visual Studio 2010 Pro-
fessional Edition Beta 1. Most of the installation processes are straightforward, and you can accept
the default installation options for most environments. Therefore, regardless of which edition you are
installing, the installation process should be smooth when accepting the default installation options.

TRY IT OUT Installing Visual Basic 2010

The Visual Studio 2010 DVD has an auto-run feature, but if the Setup screen does not appear after
inserting the DVD, you need to run Setup.exe from the root directory of the DVD. To do this, follow
these steps:

1. Click the Windows Start menu at the bottom left of your screen and then select Run or browse to
the Setup program on the DVD. In the Run dialog, you can click the Browse button to locate the
Setup.exe program on your DVD. Then click the OK button to start the setup program. After the
setup program initializes, you will see the initial screen, as shown in Figure 1-1.

2. The dialog shown in Figure 1-1 shows the order in which the installation will occur. To
function properly, Visual Studio 2010 requires various updates to be installed depending on
the operating system that you have (e.g., Service Pack 3 on Windows XP). The setup program
will automatically inform you of these updates if they are not installed. You should install those
updates first and then return to the Visual Studio 2010 setup program. The individual updates
required are different from the service releases listed as the third option in Figure 1-1. Step 1 of the
setup program will install Visual Studio 2010, so click the Install Visual Studio 2010 link shown in
Figure 1-1.

FIGURE 1-1

3. The next step in the installation process asks whether you want to send the setup information
from the installation of Visual Studio 2010 to Microsoft. This is a good idea to help streamline the
installation process of future editions of Visual Studio, and no personal information is sent. After



Installing Visual Basic 2010 ❘ 5

you have selected or cleared the check box, indicating whether or not you want this information
sent, click the Next button.

4. The third step in the installation process is the license agreement. Read the license agreement and
then select the option button indicating your acceptance of the licensing terms. Then click the
Next button to continue.

5. As with most setup programs, you are then presented with a list of installation options, as shown
in Figure 1-2. You can install the .NET Development Environment, which is the option you need
to choose for this book, and you can also install the C++ Development Environment. After check-
ing the .NET Development Environment installation option, click the Install button to have this
feature installed.

FIGURE 1-2

6. The first components to be installed are the runtime components for C++ followed by the
Microsoft .NET Framework version 4.0. During installation of this component you will be
required to restart your computer. After your computer has restarted and you log back in, the
setup program will continue.

NOTE Note to Windows Vista and Windows 7 users: You may be prompted that
the setup program needs to run, in which case you will need to grant permission
to let the setup program continue. After the setup program continues, you can sit
back and relax while all of the features are being installed. The setup program
can take 20 minutes or more depending on the installation features chosen and
the speed of your computer.



6 ❘ CHAPTER 1 WELCOME TO VISUAL BASIC 2010

7. Once the installation has been completed, you are presented with a dialog informing you of the
status of the installation. Here you can see any problems that the setup program encountered. At
this point you are encouraged to update your computer with the latest security patches, and a link
is provided in the notes to Windows Update. When you have finished reviewing the setup status,
click the Finish button to move on to the next step.

8. If you chose to have your setup information sent to Microsoft, the next step is a dialog sending
the setup information. This dialog requires no action on your part and will automatically close
when finished. The next dialog is the one shown earlier in Figure 1-1 with the option to install the
production documentation enabled. Click the Install Product Documentation link to install the
MSDN library.

9. The first step in installing the MSDN library is choosing whether to send the setup information to
Microsoft. Make the appropriate choice and then click the Next button to continue. Again, it is
recommended to send this information to help streamline future MSDN library installations.

10. Read and accept the license agreement. After you click the option button to accept the license
agreement, click the Next button to continue.

11. Like the installation of Visual Studio 2010, the MSDN library installation provides you with
options to choose the installation that best suits your needs. If you chose to install the complete
Visual Studio 2010 product set, then you’ll most likely want to choose the full installation of the
MSDN library. After making your installation option choice, click the Install button to begin the
installation.

12. After the MSDN documentation has been installed, you are presented with a dialog informing you
of the status of the installation. Click the Finish button to be returned to the initial Setup screen
again. The Check for Service Releases option is now available.

NOTE It is a good idea to select the Check for Service Releases option, as
Microsoft has done a good job of making software updates available through the
Internet. These updates can include anything from additional documentation to
bug fixes. You will be given the choice to install any updates through a Service
Pack CD or the Internet. Obviously, the Internet option requires an active
connection. Since updates can be quite large, a fast connection is highly
recommended.

After you have performed the update process, Visual Studio 2010 is ready to use. Now the real fun can
begin — so get comfortable, relax, and enter the world of Visual Basic 2010.

THE VISUAL STUDIO 2010 IDE

You don’t need Visual Basic 2010 to write applications in the Visual Basic .NET language. The capa-
bility to run Visual Basic .NET code is included with the .NET Framework. You could write all of
your Visual Basic .NET code using a text editor such as Notepad. You could also hammer nails



The Visual Studio 2010 IDE ❘ 7

using your shoe as a hammer, but that slick pneumatic nailer sitting there is a lot more efficient. In
the same way, by far the easiest way to write in Visual Basic .NET code is by using the Visual Studio
2010 IDE. This is what you see when working with Visual Basic 2010 — the windows, boxes, and so
on. The IDE provides a wealth of features unavailable in ordinary text editors — such as code check-
ing, visual representations of the finished application, and an explorer that displays all of the files that
make up your project.

The Profile Setup Page
An IDE is a way of bringing together a suite of tools that makes developing software a lot easier.
Fire up Visual Studio 2010 and see what you’ve got. If you used the default installation, go to your
Windows Start menu and then select All Programs ➪ Microsoft Visual Studio 2010 ➪ Microsoft Visual
Studio 2010. A splash screen will briefly appear, and then you see the Choose Default Environment
Settings dialog. Select the Visual Basic Development Settings option and click Start Visual Studio. After
Visual Studio configures the environment based on the chosen settings, the Microsoft Development
Environment will appear, as shown in Figure 1-3.

The Menu
By now, you may be eager to start writing some code; but hold off and begin your exploration of the
IDE by looking at the menu and toolbar, which are not really all that different from the toolbars and
menus available in other Windows applications (although they differ from the Ribbon in Microsoft
Office 2007 and some of the newer Windows applications).

FIGURE 1-3



8 ❘ CHAPTER 1 WELCOME TO VISUAL BASIC 2010

The Visual Studio 2010 menu is dynamic, which means items are added or removed depending on what
you are trying to do. When looking at the blank IDE, the menu bar consists only of the File, Edit, View,
Tools, Test, Window, and Help menus. When you start working on a project, however, the full Visual
Studio 2010 menu appears, as shown in Figure 1-4.

FIGURE 1-4

At this point, there is no need to cover each menu topic in detail. You will become familiar with each
of them as you progress through the book. Here is a quick rundown of what activities each menu item
pertains to:

➤ File: Most software programs have a File menu. It has become the standard where you should
find, if nothing else, a way to exit the application. In this case, you can also find ways of open-
ing and closing single files and whole projects.

➤ Edit: The Edit menu provides access to the common items you would expect: Undo, Redo,
Cut, Copy, Paste, and Delete.

➤ View: The View menu provides quick access to the windows that exist in the IDE, such as the
Solution Explorer, Properties window, Output window, Toolbox, and so on.

➤ Project: The Project menu enables you to add various files to your application, such as forms
and classes.

➤ Build: The Build menu becomes important when you have completed your application and
want to run it without the use of the Visual Basic 2010 environment (perhaps running it
directly from your Windows Start menu, as you would any other application such as Word
or Access).

➤ Debug: The Debug menu enables you to start and stop running your application within the
Visual Basic 2010 IDE. It also gives you access to the Visual Studio 2010 debugger. The
debugger enables you to step through your code while it is running to see how it is behaving.

➤ Data: The Data menu enables you to use information that comes from a database. You can
view and add data sources, and preview data. Chapters 15 and 16 introduce you to working
with databases.

➤ Tools: The Tools menu has commands to configure the Visual Studio 2010 IDE, as well as
links to other external tools that may have been installed.

➤ Test: The Test menu provides options that enable you to create and view unit tests for your
application to exercise the source code in various scenarios.

➤ Window: The Window menu has become standard for any application that allows more than
one window to be open at a time, such as Word or Excel. The commands on this menu enable
you to switch between the windows in the IDE.

➤ Help: The Help menu provides access to the Visual Studio 2010 documentation. There are
many different ways to access this information (e.g., through the Help contents, an index, or
a search). The Help menu also has options that connect to the Microsoft website to obtain
updates or report problems.



The Visual Studio 2010 IDE ❘ 9

The Toolbars
Many toolbars are available within the IDE, including Formatting, Image Editor, and Text Editor,
which you can add to and remove from the IDE through the View ➪ Toolbars menu option. Each one
provides quick access to frequently used commands, preventing you from having to navigate through
a series of menu options. For example, the leftmost icon (New Project) on the default toolbar (called
the Standard toolbar), shown in Figure 1-5, is available from the menu by navigating to File ➪ New
Project.

New Web Site

New 
Project

Open
File

Save Cut Paste

Add New Item

Save All

Copy Find

Uncomment
the selected lines

Comment out
the selected lines

Redo

Undo

Navigate
Forward

Navigate
Backward

Start
Debugging

Stop
Debugging

Solution
Explorer

Object
Browser

Extension
Manager

Break All

Step Into

Step Over

Step Out

Properties
Window

Toolbax

Error List

Immediate

FIGURE 1-5

The toolbar is segmented into groups of related options, which are separated by vertical bars:

➤ The first six icons provide access to the commonly used project and file manipulation options
available through the File and Project menus, such as opening and saving files.

➤ The next group of icons is for editing (Cut, Copy, and Paste). The next icon is for finding and
replacing items in your code.

➤ The third group of icons is used for commenting out and un-commenting sections of code.
This can be useful in debugging when you want to comment out a section of code to deter-
mine what results the program might produce by not executing those lines of code.

➤ The fourth group of icons is for undoing and redoing edits and for navigating through
your code.

➤ The fifth group of icons provides the ability to start (via the green triangle), pause, and stop
your application. You can also use the last three icons in this group to step into your code
line by line, step over entire sections of code, and step out of a procedure. These icons will be
covered in depth in Chapter 10.

➤ The final group of icons provides quick links to the Solution Explorer, Properties window,
Object Browser, Toolbox, Error List, Extension Manager, and the Immediate window. If any
of these windows is closed, clicking the appropriate icon will bring it back into view.

If you forget what a particular icon does, you can hover your mouse pointer over it so that a tooltip
appears displaying the name of the toolbar option.

You could continue to look at each of the windows in the IDE by clicking the View menu and choosing
the appropriate window, but as you can see, they are all empty at this stage and therefore not very
revealing. The best way to look at the capabilities of the IDE is to use it while writing some code.



10 ❘ CHAPTER 1 WELCOME TO VISUAL BASIC 2010

CREATING A SIMPLE APPLICATION

To finish your exploration of the IDE, you need to create a project so that the windows shown earlier
in Figure 1-3 have some interesting content for you to look at.

TRY IT OUT Creating a Hello User Project

Code file Chapter 1\Hello User.zip available for download at Wrox.com.

In this Try It Out exercise, you are going to create a very simple application called Hello User that will
allow you to enter a person’s name and display a greeting to that person in a message box.

1. Click the New Project button on the toolbar.

2. In the New Project dialog, select Visual Basic in the Installed Templates tree-view box to the left
and then select Windows beneath it. The Templates pane on the right will display all of the
available templates for the project type chosen. Select the Windows Forms Application template.
Finally, type Hello User in the Name text box and click OK. Your New Project dialog should look
like Figure 1-6.

FIGURE 1-6

Visual Studio 2010 allows you to target your application to a specific version of the Microsoft .NET
Framework. The combo box at the top of the Templates pane in the New Project dialog has version



Creating a Simple Application ❘ 11

4.0 selected, but you can target your application to version 3.5, version 3.0, or even version 2.0 of the
.NET Framework.

The IDE will then create an empty Windows application for you. So far, your Hello User program
consists of one blank window, called a Windows Form (or sometimes just a form), with the default
name of Form1.vb, as shown in Figure 1-7.

Whenever Visual Studio 2010 creates a new file, either as part of the project creation process or when
you create a new file, it will use a name that describes what it is (in this case, a form) followed by a
number.

Windows in the Visual Studio 2010 IDE
At this point, you can see that the various windows in the IDE are beginning to show their
purposes, and you should take a brief look at them now before you come back to the Try It Out
exercise.

NOTE Note that if any of these windows are not visible on your screen, you can
use the View menu to show them. Also, if you do not like the location of any
particular window, you can move it by clicking its title bar (the blue bar at the top)
and dragging it to a new location. The windows in the IDE can float (stand out on
their own) or be docked (as they appear in Figure 1-7).

FIGURE 1-7



12 ❘ CHAPTER 1 WELCOME TO VISUAL BASIC 2010

The following list introduces the most common windows:

➤ Toolbox: The Toolbox contains reusable controls and components that can be added to your
application. These range from buttons to data connectors to customized controls that you
have either purchased or developed.

➤ Design window: The Design window is where a lot of the action takes place. This is where
you will draw your user interface on your forms. This window is sometimes referred to as the
Designer.

➤ Solution Explorer: The Solution Explorer window contains a hierarchical view of your solu-
tion. A solution can contain many projects, whereas a project contains forms, classes, mod-
ules, and components that solve a particular problem.

➤ Properties: The Properties window shows what properties the selected object makes avail-
able. Although you can set these properties in your code, sometimes it is much easier to set
them while you are designing your application (for example, drawing the controls on your
form). You will notice that the File Name property has the value Form1.vb. This is the physi-
cal filename for the form’s code and layout information.

TRY IT OUT Creating a Hello User Project (continued)

Code file Chapter 1\Hello User.zip available for download at Wrox.com.

Next, you’ll give your form a name and set a few properties for it:

FIGURE 1-8

figure1. Change the name of your form to something more indicative of your
application. Click Form1.vb in the Solution Explorer window. Then, in
the Properties window, change the File Name property from Form1.vb to
HelloUser.vb and press Enter, as shown in Figure 1-8. When changing
properties you must either press Enter or click another property for it to
take effect.

2. Note that the form’s filename has also been updated in the Solution
Explorer to read HelloUser.vb.

3. Click the form displayed in the Design window. The Properties window will
change to display the form’s Form properties (instead of the File properties,
which you have just been looking at).

NOTE Note that the Properties window is dramatically different. This difference is
the result of two different views of the same file. When the form name is
highlighted in the Solution Explorer window, the physical file properties of the
form are displayed. When the form in the Design window is highlighted, the visual
properties and logical properties of the form are displayed.

figure

The Properties window allows you to set a control’s properties easily. Properties are a particular
object’s set of internal data; they usually describe appearance or behavior. In Figure 1-9 you can



Creating a Simple Application ❘ 13

see that properties are displayed alphabetically. The properties can also be
grouped together in categories — Accessibility, Appearance, Behavior,
Data, Design, Focus, Layout, Misc, and Window Style.

FIGURE 1-9

figure

4. Right now, the title (Text property) of your form (displayed in the bar at
the top of the form) is Form1. This is not very descriptive, so change it to
reflect the purpose of this application. Locate the Text property in the Prop-
erties window. Change the Text property’s value to Hello from Visual Basic

2010 and press Enter. Note that the form’s title has been updated to reflect the
change.

NOTE If you have trouble finding properties, click the little AZ icon on the toolbar
toward the top of the Properties window. This changes the property listing from
being ordered by category to being ordered by name.

5. You are now finished with this procedure. Click the Start button on the Visual Studio 2010 tool-
bar (the green triangle) to run the application. As you work through the book, whenever we say
‘‘run the project’’ or ‘‘start the project,’’ just click the Start button. An empty window with the
title Hello from Visual Basic 2010 is displayed.

FIGURE 1-10

That was simple, but your little application isn’t doing much at the moment.
Let’s make it a little more interactive. To do this, you are going to add some
controls — a label, a text box, and two buttons — to the form. This will
enable you to see how the Toolbox makes adding functionality quite sim-
ple. You may be wondering at this point when you will actually look at some
code. Soon! The great thing about Visual Basic 2010 is that you can develop
a fair amount of your application without writing any code. Sure, the code is
still there, behind the scenes, but, as you will see, Visual Basic 2010 writes a
lot of it for you.

The Toolbox
The Toolbox is accessed through the View ➪ Toolbox menu option, by click-
ing the Toolbox icon on the Standard menu bar, or by pressing Ctrl+Alt+X.
Alternatively, the Toolbox tab is displayed on the left of the IDE; hovering
your mouse over this tab will cause the Toolbox window to fly out, partially
covering your form.

The Toolbox contains a Node-type view of the various controls and compo-
nents that can be placed onto your form. Controls such as text boxes, buttons,
radio buttons, and combo boxes can be selected and then drawn onto your
form. For the HelloUser application, you will be using only the controls in the
Common Controls node. Figure 1-10 shows a listing of common controls for
Windows Forms.



14 ❘ CHAPTER 1 WELCOME TO VISUAL BASIC 2010

Controls can be added to your forms in any order, so it doesn’t matter if you add the label control after
the text box or the buttons before the label.

TRY IT OUT Adding Controls to the Hello User Application

Code file Chapter 1\Hello User.zip available for download at Wrox.com.

In the following Try It Out exercise, you start adding controls.

1. Stop the project if it is still running, because you now want to add some controls to your form.
The simplest way to stop your project is to click the close (X) button in the top-right corner of the
form. Alternatively, you can click the blue square on the toolbar (which displays a ToolTip that
says ‘‘Stop Debugging’’ if you hover over it with your mouse pointer).

2. Add a Label control to the form. Click Label in the Toolbox, drag it over to the form’s Designer
and drop it in the desired location. (You can also place controls on your form by double-clicking
the required control in the Toolbox or clicking the control in the Toolbox and then drawing it
on the form.)

FIGURE 1-11

figure4. If the Label control you have just drawn is not in the desired
location, no problem. When the control is on the form, you can
resize it or move it around. Figure 1-11 shows what the control
looks like after you place it on the form. To move it, click the
control and drag it to the desired location. The label will auto-
matically resize itself to fit the text that you enter in the Text

property.

5. After drawing a control on the form, you should at least config-
ure its name and the text that it will display. You will see that the
Properties window to the right of the Designer has changed to
Label1, telling you that you are currently examining the proper-
ties for the label. In the Properties window, set your new label’s
Text property to Enter Your Name. Note that after you press
Enter or click on another property, the label on the form has
automatically resized itself to fit the text in the Text property.
Now set the Name property to lblName.

FIGURE 1-12

figure.
5. Directly beneath the label, you want to add a text box so

that you can enter a name. You are going to repeat the proce-
dure you followed for adding the label, but this time make sure
you select the TextBox control from the toolbar. After you have
dragged and dropped (or double-clicked) the control into the
appropriate position as shown in Figure 1-12, use the Properties
window to set its Name property to txtName. Notice the sizing
handles on the left and right side of the control. You can use
these handles to resize the text box horizontally.

6. In the bottom left corner of the form, add a Button control
in exactly the same manner as you added the label and text



Creating a Simple Application ❘ 15

box. Set its Name property to btnOK and its Text property to
&OK. Your form should now look similar to the one shown in
Figure 1-13.

FIGURE 1-13

figure

The ampersand (&) is used in the Text property of buttons to
create a keyboard shortcut (known as a hot key). The letter with
the & sign placed in front of it will become underlined (as shown
in Figure 1-13) to signal users that they can select that button by
pressing the Alt+letter key combination, instead of using the
mouse (on some configurations the underline doesn’t appear
until the user presses Alt). In this particular instance, pressing
Alt+O would be the same as clicking the OK button. There is no
need to write code to accomplish this.

FIGURE 1-14

figure

7. Now add a second Button control to the bottom right corner
of the form by dragging the Button control from the Toolbox
onto your form. Notice that as you get close to the bottom right
of the form, a blue snap line appears, as shown in Figure 1-14.
This snap line enables you to align this new Button control with
the existing Button control on the form. The snap lines assist
you in aligning controls to the left, right, top, or bottom of each
other, depending on where you are trying to position the new
control. The light blue line provides you with a consistent mar-
gin between the edge of your control and the edge of the form.
Set the Name property to btnExit and the Text property to E&xit.
Your form should look similar to Figure 1-15.

FIGURE 1-15

figure

Now, before you finish your sample application, the following
section briefly discusses some coding practices that you should be
using.

Modified Hungarian Notation
You may have noticed that the names given to the controls look
a little funny. Each name is prefixed with a shorthand identifier
describing the type of control it is. This makes it much easier to
understand what type of control you are working with as you
look through the code. For example, say you had a control called
simply Name, without a prefix of lbl or txt. You would not know
whether you were working with a text box that accepted a name
or with a label that displayed a name. Imagine if, in the previous
Try It Out exercise, you had named your label Name1 and your text box Name2 — you would very
quickly become confused. What if you left your application for a month or two and then came back to
it to make some changes?



16 ❘ CHAPTER 1 WELCOME TO VISUAL BASIC 2010

When working with other developers, it is very important to keep the coding style consistent. One of
the most commonly used styles for control names within application development in many languages
was designed by Dr. Charles Simonyi, who worked for the Xerox Palo Alto Research Center (XPARC)
before joining Microsoft. He came up with short prefix mnemonics that allowed programmers to easily
identify the type of information a variable might contain. Because Simonyi is from Hungary, and the
prefixes make the names look a little foreign, this naming system became known as Hungarian Nota-
tion. The original notation was used in C/C++ development, so the notation for Visual Basic 2010 is
termed Modified Hungarian Notation. Table 1-1 shows some of the commonly used prefixes that you
will be using in this book.

TABLE 1-1: Common Prefixes in Visual Basic 2010

CONTROL PREFIX

Button btn

ComboBox cbo

CheckBox chk

Label lbl

ListBox lst

MainMenu mnu

RadioButton rdb

PictureBox pic

TextBox txt

Hungarian Notation can be a real time-saver when you are looking at either code someone else wrote
or code that you wrote months earlier. However, by far the most important thing is to be consistent in
your naming. When you start coding, choose a convention for your naming. It is recommended that you
use the de facto standard Modified-Hungarian for Visual Basic 2010, but it is not required. After you
pick a convention, stick to it. When modifying others’ code, use theirs. A standard naming convention
followed throughout a project will save countless hours when the application is maintained. Now let’s
get back to the application. It’s time to write some code.

The Code Editor
Now that you have the HelloUser form defined, you have to add some code to make it actually do
something interesting. You have already seen how easy it is to add controls to a form. Providing the
functionality behind those on-screen elements is no more difficult. To add the code for a control, you
just double-click the control in question. This opens the Code Editor in the main window, shown in
Figure 1-16.



Creating a Simple Application ❘ 17

FIGURE 1-16

Note that an additional tab has been created in the main window. Now you have the Design tab and
the Code tab, each containing the name of the form you are working on. You draw the controls on
your form in the Design tab, and you write code for your form in the Code tab. One thing to note here
is that Visual Studio 2010 has created a separate file for the code. The visual definition and the code
behind it exist in separate files: HelloUser.Designer.vb and HelloUser.vb. This is actually the reason
why building applications with Visual Basic 2010 is so slick and easy. Using the design mode you can
visually lay out your application; then, using Code view, you add just the bits of code to implement
your desired functionality.

Note also the two combo boxes at the top of the window. These provide shortcuts to the various parts
of your code. The combo box on the left is the Class Name combo box. If you expand this combo box,
you will see a list of all the objects within your form. The combo box on the right is the Method Name
combo box. If you expand this combo box, you will see a list of all defined functions and events for the
object selected in the Class Name combo box. If this particular form had a lot of code behind it, these
combo boxes would make navigating to the desired code area very quick — jumping to the selected
area in your code. However, all of the code for this project so far fits in the window, so there aren’t a
lot of places to get lost.

TRY IT OUT Adding Code to the Hello User Project

Code file Chapter 1\Hello User.zip available for download at Wrox.com.

1. To begin adding the necessary code, click the Design tab to show the form again. Then double-
click the OK button. The code window will open with the following code. This is the shell of
the button’s Click event and the place where you enter the code that you want to run when you
click the button. This code is known as an event handler, sometimes also referred to as an event
procedure:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click

End Sub

As a result of the typographic constraints in publishing, it is not possible to put the Sub declaration
on one line. Visual Basic 2010 allows you to break up lines of code by using the underscore



18 ❘ CHAPTER 1 WELCOME TO VISUAL BASIC 2010

character (_) to signify a line continuation. The space before the underscore is required. Any
whitespace preceding the code on the following line is ignored.

Sub is an example of a keyword. In programming terms, a keyword is a special word that is used
to tell Visual Basic 2010 to do something special. In this case, it tells Visual Basic 2010 that this is
a subroutine, a procedure that does not return a value. Anything that you type between the lines
Private Sub and End Sub will make up the event procedure for the OK button.

2. Now add the bolded code to the procedure:

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click
‘Display a message box greeting to the user
MessageBox.Show("Hello, " & txtName.Text & _

"! Welcome to Visual Basic 2010.", _
"Hello User Message")

End Sub

Throughout this book, you will be presented with code that you should enter into your program if
you are following along. Usually, we will make it pretty obvious where you put the code, but as we
go, we will explain anything that looks out of the ordinary. The code with the gray background is
code that you should enter.

3. After you have added the preceding code, go back to the Design tab and double-click the Exit
button. Add the following bolded code to the btnExit_Click event procedure:

Private Sub btnExit_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnExit.Click
‘End the program and close the form
Me.Close()

End Sub

4. Now that the code is finished, the moment of truth has arrived and you can see your creation.
First, however, save your work by using File ➪ Save All from the menu or by clicking the Save All
button on the toolbar. The Save Project dialog is displayed, as shown in Figure 1-17, prompting
you for a name and location for saving the project.

FIGURE 1-17

By default, a project is saved in a folder with the project name; in this case Hello User. Since this
is the only project in the solution, there is no need to create a separate folder for the solution,
which contains the same name as the project, thus the ‘‘Create directory for solution’’ check box
is unselected.



Creating a Simple Application ❘ 19

FIGURE 1-18

figure

5. Now click the Start button on the toolbar. At this point Visual
Studio 2010 will compile the code. Compiling is the activity of
taking the Visual Basic 2010 source code that you have written
and translating it into a form that the computer understands.
After the compilation is complete, Visual Studio 2010 runs (also
known as executes) the program, and you’ll be able to see the
results.

Any errors that Visual Basic 2010 encounters will be displayed
as tasks in the Error List window. Double-clicking a task trans-
ports you to the offending line of code. You will learn more
about how to debug the errors in your code in Chapter 3.

FIGURE 1-19

figure

6. When the application loads, you see the main form. Enter a
name and click OK or press the Alt+O key combination (see
Figure 1-18).

A window known as a message box appears as shown in
Figure 1-19, welcoming the person whose name was entered
in the text box on the form — in this case, Wendy.

7. After you close the message box by clicking the OK
button, click the Exit button on your form. The applica-
tion closes and you will be returned to the Visual Studio
2010 IDE.

How It Works

The code that you added to the Click event for the OK button will take the name that was entered in the
text box and use it as part of the message that was displayed in Figure 1-19.

The first line of text you entered in this procedure (’Display a message box greeting to the user) is actu-
ally a comment, text that is meant to be read by the human programmer who is writing or maintaining the
code, not by the computer. Comments in Visual Basic 2010 begin with a single quote (’), and everything
following on that line is considered a comment and ignored by the compiler. Comments are discussed in
detail in Chapter 3.

The MessageBox.Show method displays a message box that accepts various parameters. As used in your
code, you have passed the string text to be displayed in the message box. This is accomplished through
the concatenation of string constants defined by text enclosed in quotes. Concatenation of strings into one
long string is performed through the use of the ampersand (&) character.

The code that follows concatenates a string constant of ‘‘Hello,’’ followed by the value contained in the
Text property of the txtName text box control, followed by a string constant of ‘‘! Welcome to Visual

Basic 2010.’’ The second parameter passed to the MessageBox.Show method is the caption to be used in
the title bar of the Message Box dialog.

Finally, the underscore (_) character used at the end of the lines in the following code enables you to
split your code onto separate lines. This tells the compiler that the rest of the code for the parameter is
continued on the next line. This is very useful when building long strings because it enables you to view



20 ❘ CHAPTER 1 WELCOME TO VISUAL BASIC 2010

the entire code fragment in the Code Editor without having to scroll the Code Editor window to the right
to view the entire line of code.

Private Sub btnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnOK.Click
‘Display a message box greeting to the user
MessageBox.Show("Hello, " & txtName.Text & _

"! Welcome to Visual Basic 2010.", _
"Hello User Message")

End Sub

The next procedure that you added code for was the Exit button’s Click event. Here you simply enter the
code: Me.Close().The Me keyword refers to the form itself. The Close method of the form closes the form
and releases all resources associated with it, thus ending the program:

Private Sub btnExit_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnExit.Click
‘End the program and close the form
Me.Close()

End Sub

USING THE HELP SYSTEM

The Help system included in Visual Basic 2010 is an improvement over the Help systems in earliest
versions of Visual Basic. As you begin to learn Visual Basic 2010, you will probably become very
familiar with the Help system. However, a brief overview would be useful, just to help speed your
searches for information.

FIGURE 1-20

figure

The Help menu contains the items shown in Figure 1-20.

As you can see, this menu contains a few more items than the
typical Windows application. The main reason for this is the
vastness of the documentation. Few people could keep it all in
their heads — but luckily that is not a problem, because you can
always quickly and easily refer to the Help system or search the
forums for people who are experiencing or have experienced a
similar programming task. Think of it as a safety net for your
brain.

You can also quickly access the Help documentation for a par-
ticular subject by simply clicking on a keyword in the Code
Editor and pressing the F1 key.

SUMMARY

Hopefully, you are beginning to see that developing basic applications with Visual Basic 2010 is
not very difficult. You have taken a look at the IDE and have seen how it can help you put together soft-
ware very quickly. The Toolbox enables you to add controls to your form and design a user interface



Summary ❘ 21

very quickly and easily. The Properties window makes configuring those controls a snap, while the
Solution Explorer gives you a bird’s-eye view of the files that make up your project. You even wrote a
little code.

In the coming chapters, you will go into even more detail and get comfortable writing code. Before
you get too far into Visual Basic 2010 itself, however, the next chapter provides an introduction to the
Microsoft .NET Framework, which is what gives all of the .NET languages their ease of use, ease of
interoperability, and simplicity in learning.

EXERCISE

The answers for this exercise and those at the end of each chapter in this book can be found in
Appendix A.

Code file Chapter 1\Exercise 1.zip available for download at Wrox.com.

1. Create a Windows application with a Textbox control and a Button control that will display what-
ever is typed in the text box when the user clicks the button.



22 ❘ CHAPTER 1 WELCOME TO VISUAL BASIC 2010

� WHAT YOU LEARNED IN THIS CHAPTER

TOPIC CONCEPTS

The integrated development
environment (IDE)

How to create projects in the IDE, how to navigate between
Design View and Code View, and how to run and debug
projects.

Adding controls to your form in
the Designer

How to use the toolbox to drag and drop controls onto your form
and how to move and resize controls on your form.

Setting the properties of your
controls

How to display text in the control and to name the controls to
something meaningful.

Adding code to your form in the
code window

How to add code to control what your program does.


