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Adaptive Sampling

1.1 Introduction

Adaptive sampling is a method of unequal
probability sampling whereby the selec-
tion of sampling units at any stage of the
sampling process depends on information
from the units already selected. In general
terms, it means that if you find what you
are looking for at a particular location, you
sample in the vicinity of that location with
the hope of obtaining even more informa-
tion.

Methods of estimation were initially de-
veloped in the three pioneering papers of
Thompson [23-25] and the sampling book
by Thompson [26]. The material consid-
ered in this review is described briefly by
Seber and Thompson [20], while full de-
tails are given in the bhook by Thompson
and Seber [31].

1.2 Adaptive Cluster
Sampling

Suppose we have a population spread over
a large area that is highly clumped but is
generally sparse or empty between clumps.
If one selects a simple random sample
{without replacement} of units, then most
of the units selected will be empty. Density
estimation based on this meager informa-
tion will then have poor precision. Fur-

thermore, if the population species is rare,
we will get little physiological information
about individuals. It would be better to
begin with an initial sample and, if indi-
viduals are detected on one of the selected
units, then sample the neighboring units
of that unit as well. If further individuals
are encountered on a unit in the neighbor-
hood, then the neighborhood of that unit
iz also added to the sample, and so on,
thus building up a cluster of units. We call
this adaptive cluster sampling. If the ini-
tial sample includes a unit from a clump,
then the rest of the clump will generally be
sampled. Such an approach will give us a
greater number of individuals.

As well as counting individuals, we may
wish to measure some other characteristic
of the unit, for example, plant biomass or
pollution level, or even just note the pres-
ence or absence of some characteristic us-
ing an indicator variable. In addition to
rare-species and pollution studies, we can
envisage a wide range of populations that
would benefit from adaptive sampling, for
example, populations that form large ag-
gregations such as fish, marine mammals,
and shrimp. We can also add mineral de-
posits and rare infectious diseases in hu-
man populations (e.g., AIDS) to our list.
Recently the method has been used in sam-
pling houses for a rare characteristic [5] and
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in sampling animal habitats {15].

To set out the steps involved in adap-
tive cluster sampling, we begin with a fi-
nite population of N units indexed by their
“labels” (1,2,...,N). With unit ¢ is as-
sociated a variable of interest y; for i =
1,2,...,N. The object is to select a sam-
ple, observe the g-values for the umits in
the sample, and then estimate some func-
tion of the population y-values such as the
population total Zi\;l y; = T or the popu-
lation mean g = 7/N.

The first step is to define, for each unit 4,
a neighborhood consisting of that unit and
a get of “neighboring” units. For example,
we could choose all the adjacent units with
a common boundary, which, together with
unit i, form a cross. Neighborhoods can be
defined to have a variety of patterns; the
units (plots) in a neighborhood do not have
to be contiguous. However, they must have
a symmetry property; that is, if unit 7 is in
the neighborhood of unit 4, then unit i is
in the neighborhood of unit 5. We assumne,
for the moment, that these neighborhoods
do not depend on ;.

The next step is to specify a condition
C (for instance, y > ¢, where ¢ is a spec-
ified constant). We now take an initial
random sample of 1; units selected with
or without replacement from the N units
in the population. Whenever the y-value
of a unit 7 in the initial sample satisfies
¢, all units in the neighborhood of unit ¢
are added to the sample. If in turn any of
the added units satisfies the condition, still
more units are added. The process is con-
tinued until a cluster of units is obtained
that contains a “boundary” of units called
edge units that do not satisfy €. If a unit
selected in the initial sample does not sat-
isfy C, then there is no augmentation and
we have a cluster of size one. The process is
demonstrated in Figure 1, where the units
are plots and the neighborhoods form a
cross. Here g; is the murnber of animals on
plot ¢, and ¢ = 0, so that a neighborhood

is added every time animals are found. In
Figure 1la we see one of the initial plots
that happens to contain one animal. As it
is on the edge of a “clump,” we see that
the adaptive process leads to the cluster of
plots ir: Figure 1b.

We note that even if the units in the
initial sample are distinct, as in sampling
without replacement, repeats can occur in
the final sample, as clusters may overlap
on their edge units or even coincide. For
example, if two non edge units in the same
cluster are selected in the initial sample,
then that whole cluster occurs twice in the
final sample. The final sample then con-
sists of m1 (not necessarily distinet) clus-
ters, one for each unit selected in the initial
sample.

1.3 Applications and
Extensions

In applications, other methods are some-
times used for obtaining the initial! sam-
ple. For instance, in forestry, the units are
trees and these are usually selected by a
method of unequal probability sampling,
where the probability of selecting a tree
is proportional to the basal area of a tree
(the cross-sectional area of a tree at the
basal height—usually 4.5 feet in the USA).
Roesch [16] described a number of estima-
tors for this situation.

In ecology, larger sample units other
than single plots are often used. For ex-
ample, a common sampling unit is the strip
transect, which we might call the primary
unit. In its adaptive modification, the strip
would be divided up into smaller secondary
units, and if we found animals in a sec-
ondary unit, we would sample units on ei-
ther side of that unit, with still further
searching if additional animals are sighted
while on this search. Strips are widely used
in both aerial and ship surveys of animals
and marine mammals. Here the aircraft
or vessel travels down a line (called a line
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Figure 1: (a) Initial sample plot. (b) Clus-
ter obtained by adding adaptively.
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transect), and the area is surveyed on ei-
ther side out to a given distance. Thomp-
son [24] showed how the above theory can
be applied to this sampling situation. He
pointed out that a primary unit need not
be a contiguous set of secondary units. For
example, in some wildlife surveys, the se-
lection of sites chosen for observation is
done systematically {with a random start-
ing point), and a single systematic selec-
tion then forms the primary unit. We can
then select several such primary units with-
out replacement and add adaptively as be-
fore. Such a selection of secondary units
will tend to give better coverage of the pop-
ulation and then a simple random sample.

Clearly other ways of choosing a pri-
mary unit to give better coverage are pos-
sible. Munholland and Borkowski [13, 14]
suggest using a Latin square + 1 design
selected from a square grid of secondary
units (plots). The Latin square gives a sec-
ondary unit in every row and column of the
grid, and the extra (i.e., +1) unit ensures
that any pair of units has a positive prob-
ahility of being included in the initial sam-
ple. The latter requirement is needed for
unbiased variance estimation.

In some sitnations, it 18 hard to know
what ¢ should be for the condition ¥ > .
If we choose ¢ too low or too high, we end
up with a feast or famine of extra plots.
Thompson [28] suggested using the data
themselves, in fact, the order statistics.
For example, ¢ could be the rth largest g-
value in the initial sample statistic, so that
the neighborhoods are now determined by
the y-values. This method would be par-
ticularly useful in pollution studies, where
the location of “hot spots” is itnportant.

Another problem, regularly encountered
with animal population studies, is that
not all animals are detected. Thompson
and Seber [30] developed tools for handling
incomplete detectability for a wide vari-
ety of designs, including adaptive designs,
thus extending the work of Steinhorst and
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Samuel [22].

Often we are In a multivariate situation
where one needs to record several charac-
teristics or measurements on each unit, e.g.

the numbers of different species. Thomp-

son [27] pointed out that any function of
the variables can be used to define the cri-
terion ¢, and he obtained unbiased esti-
mates of the mean vector and covariance
matrix for these variables.

We can use any of the above methods
in conjunction with stratification. If we
do not allow the clusters to cross stratum
boundaries, then individual stratum esti-
mates are independent and can be com-
bined in the usual fashion. Thompson [25]
extended this theory to allow for the case
where clusters do overlap. Such an ap-
proach makes more efficient use of sample
information.

Finally, there are two further develop-
ments relating to design, namely, selecting
networks without replacement and a two-
stage sampling procedure [17, 18].

1.4 Unbiased Estimation

Although the cluster is the natural sample
group, it is not a convenient entity to use
for theoretical developments because of the
double role that edge units can play. If an
edge unit is selected in the initial sample,
then it forms a cluster of size 1. If it is not
selected in the initial sample, then it can
still be selected by being a member of any
cluster for which it is an edge unit. We
therefore introduce the idea of the network
A; for unit ¢, defined to he the cluster gen-
erated by unit ¢ but with its edge units
removed. In Figure 1b we get the sampled
network by omitting the empty units from
the sampled cluster. Here the selection of
any unit in the network leads to the selec-
tion of @ll of the network. If unit ¢ is the
only unit in a cluster satisfying C, then 4;
consists of just unit 4 and forms a network
of size 1. We also define any unit that does

not satisfy ' to be a network of size 1,
as its selection does not lead to the inclu-
sion of any other units. This means that
all clusters of size 1 are also networks of
size 1. Thus, any cluster consisting of more
than one unit can be gplit into a network
and further networks of size 1 (one for each
edge unit). In contrast to having clusters
that may overlap on their edge units, the
distinct networks are disjoint and form a
partition of the N units,

Since the probability of selecting a unit
will depend on the size of the network it
is in, we are in the situation of umequal-
probability sampling and the wusual es-
timates based on equal-probability sam-
pling will be biased. However, we have
the well-known Horvitz—Thompson (HT)
and Hansen—Hurwitz (HH) estimators (cf.
Refs. 8 and 9) for this situation, the latter
being used in sampling with replacement.
These estimators, however, require know-
ing the probability of selection of each unit
in the final sample. Unfortunately these
probabilities are only known for units in
networks selected by the initial sample and
not for the edge units attached to these
networks. Therefore, in what follows, we
ignore all edge units that are not in the
initial sample and use only network infor-
mation when it comes to computing the
final estimators.

Motivated by the HT estimator for the
population mean j, we consider

N
.1 I;
= E;:%EU@],

where I; takes the value 1 if the initial sam-
ple intersects network A;, and 0 otherwise;
it is an unbiased estimator for sampling
with or without replacement.

Another possible estimator (motivated
by the HH estimator) that is also obviously
unbiased for sampling with or without re-



placement, is
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where f; is the number of times that the
#th unit in the final sample appears in the
estimator, that is, the number of units in
the initial sample that fall in (intersect} A,
determined by unit 4; f; = 0 if no units in
the initial sample intersect 4;. It can be
shown that

1 &
n& = E w; = 1, say,
™

where w; is the mean of the observations
in A;; i.e., @ is the mean of the ny (not
necessarily distinet) network means.

1.5 Adaptive Allocation

There are other ways of adaptively adding
to an initial sample. For instance, suppose
the population is divided up into strata or
primary units each conststing of secondary
units. An initial sample of secondary units
is taken in each primary unit. If some cri-
terion is satisfied such as § > ¢, then a fur-
ther sample of units is taken from the same
primary unit. Kremers [12] developed an
unbiased estimator for this situation.

If the clumps tend to be big enough so
that they are spread over several primary
units, we could use what is found in a par-
ticular primary unit to determine the level
of the sampling in the next. This is the ba-
sis for the theory developed by Thompson
et al. [29]. Other forms of augmenting the
initial sample that give biased estimates
are described by Francis [6,7] and Jolly and
Hampton [10,11}. This kind of adaptive
sampling based on allocating more units
rather than adding more neighborhoods is
called adaptive allocation.
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1.6 RaoBlackwell
Moadification

An adaptive sample can be defined as one
for which the probability of obtaining the
sample depends only on the distinct un-
ordered y-observations in the sample, and
not on the y-values outside the sample. In
this case d, the set of distinet unordered
labels in the sample together with their as-
sociated y-values, is minimal sufficient for
g.  This is proved for “conventional de
signs” by Cassel et al. [3] and Chaud-
huri and Stenger [4], and their proofs read-
ily extend to the case of adaptive designs.
(This extension ig implicit in Basu [1}.)
This means that an unbiased estimator
that is not a function of d can be “im-
proved” by taking the expectation of the
estimator conditional on d to give an es-
timator with smaller variance. For exam-
ple, consider three wunbiased estimators of
i, namely 7, (the mean of the initial sam-
ple of n; units), &, and 3. Each of these
depends on the order of selection, as they
depend on which n, units are in the ini-
tial sample; i also depends on repeat se-
lections; and when the initial sample is
selected with replacement, all three esti-
mators depend on repeat selections. Since
none of the three estimators is a function
of the minimal sufficient statistic d, we can
apply the Rac-Blackwell theorem. If T
is any one of the three estimators, then
E{T|d] will give a better unbiased estimate,
i.e., one with smaller variance. We find
that this estimator now uses all the units
including the edge units.

Finally we mention the “model-based”
or  “superpopulation” approach (cf.
Sarndal et al. [19], for example). Here
the population vector y of y-values is
considered to be a realization of a random
vector Y with some joint distribution
I, which may depend on an unknown
parameter ¢. In a Bayesian framework ¢
will have a known prior distribution. For
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this model-based approach, Thompson
and Seber [31] indicate which of the
results for conventional designs carry over
to adaptive designs and which do not.
They also show in their Chapter 10 that
optimal designs tend to be adaptive.

1.7 Relative Efficiency

An important question one might ask
about adaptive sampling is “How does it
compare with, say, simple random sam-
pling?’  This question is discussed by
Thompson and Seber [31, Chapter 5], and
some guidelines are given. Cost considera-
tions are also important. Simple examples
given by them throughout their book sug-
gest that there are large gains in efficiency
to be had with clustered populations. Two
simulation studies which shed light on this
are by Brown [2] and Smith et al. [21].
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