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1
STRING DATA STRUCTURES

FOR COMPUTATIONAL
MOLECULAR BIOLOGY

Christos Makris and Evangelos Theodoridis

1.1 INTRODUCTION

The topic of the chapter is string data structures with applications in the field of
computational molecular biology. Let � be a finite alphabet consisting of a set of
characters (or symbols). The cardinality of the alphabet denoted by |�| expresses
the number of distinct characters in the alphabet. A string or word is an ordered list
of zero or more characters drawn from the alphabet. A word or string w of length n is
represented by w[1 · · · n] = w[1]w[2] · · · , w[n], where w[i] ∈ � for 1 ≤ i ≤ n and
|w| denotes the length of w. The empty word is the empty sequence (of zero length)
and is denoted by ε. A list of characters of w, appearing in consecutive positions,
is called a substring of w, denoted by w[i · · · j], where i and j are the starting and
ending positions, respectively. If the substring starts at position 1, then it is called
a prefix, whereas if it ends at position n, then it is called a suffix of w. However,
an ordered list of characters of w that are not necessarily consecutive is called a
subsequence of w.

Strings and subsequences appear in a plethora of computational molecular biology
problems because the basic types of DNA, RNA, and protein molecules can be rep-
resented as strings—pieces of DNA as strings over the alphabet {A, C, G, T } (repre-
senting the four bases adenine, cytosine, guanine, and thymine, respectively), pieces
of RNA as strings over the alphabet {A, C, G, U } (with uracil replacing thymine),
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4 STRING DATA STRUCTURES FOR COMPUTATIONAL MOLECULAR BIOLOGY

and proteins as strings over an alphabet of 20, corresponding to the 20 amino acid
residues.

The basic string algorithmic problems that develop in computational molecular
biology are:

� Exact pattern matching: given a pattern P and a text T to locate the occurrences
of P into T

� Approximate pattern matching: given a pattern P , a text T , a similarity metric
distance function d(), and a threshold parameter k to locate all positions i and
j such that d(P, Ti ··· j ) ≤ k

� Sequence alignment: given two string sequences, T1 and T2, try to find the
best alignment between the two sequences according to various criteria. The
alignment can be either local or global. A special case of this problem, which
has great biological significance, is the longest common subsequence prob-
lem in which we try to locate the longest subsequence that is common to both
sequences

� Multiple approximate and exact pattern matching in which more than two
strings are involved into the computation

� String clustering: given a set of stings, cluster them into a set of clusters accord-
ing to the distance between the involved strings; this problem has great biolog-
ical significance because DNA sequence clustering and assembling overlap-
ping DNA sequences are critical operations when extracting useful biological
knowledge

� Efficient implementation of indexing techniques for storing and retrieving in-
formation from biological databases

Besides these classical string algorithmic problems, there are also applications
that demand the processing of strings whose form deviates from the classical def-
inition. The most known category of such variations are the weighted strings that
are used to model molecular weighted sequences [54]. A molecular weighted se-
quence is a molecular sequence (a sequence of either nucleotides or amino acids)
in which in every position can be stored a set of characters each having a certain
weight assigned. This weight can model either the probability of appearance or the
stability of the character’s contribution to the molecular complex. These sequences
appear in applications concerning the DNA assembly process or in the modeling of
the binding sites of regulatory proteins. In the first case, the DNA must be divided
into many short strings that are sequenced separately and then are used to assemble
the sequence of the full string; this reassembling introduces a degree of uncertainty
that initially was expressed with the use of the “don’t care” character denoted as “∗,”
which has the property of matching against any symbol in the given alphabet. It is
possible, though, that scientists are able to be more exact in their modeling and de-
termine the probability of a certain character to appear at a position; j then a position
that previously was characterized as a wild card is replaced by a probability of ap-
pearance for each of the characters of the alphabet and such a sequence is modeled as
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a weighted sequence. In the second case, when a molecular weighted sequence mod-
els the binding site of a regulatory protein, each base in a candidate motif instance
makes some positive, negative, or neutral contribution to the binding stability of the
DNA–protein complex [37, 65], and the weights assigned to each character can be
thought of as modeling those effects. If the sum of the individual contributions is
greater than a threshold, then the DNA–protein complex can be considered stable
enough to be functional.

A related notion is the notion of an indeterminate or (equivalently in the scien-
tific literature) a degenerate string. This specific term refers to strings in which each
position contains a set of characters instead of a simple character; in these strings,
the match operation is replaced by the subset operation. The need for processing
efficiently such strings is driven by applications in computational biology cryptanal-
ysis and musicology [76, 45]. In computational biology, DNA sequences still may be
considered to match each other if letter A (respectively, C) is juxtaposed with letter
T (respectively, G); moreover, indeterminate strings can model effectively polymor-
phism in protein coding regions. In cryptanalysis, undecoded symbols can be mod-
eled as the set or characters that are candidates for the specific position, whereas in
music, single notes may match chords or a set of notes.

Perhaps the most representative application of indeterminate strings is haplotype
inference [42, 63]. A haplotype is a DNA sequence that has been inherited by one
parent. A description of the data from a single copy is called a haplotype, whereas a
description of the mixed data on the two copies is called a genotype. The underlying
data that form a haplotype is either the full DNA sequence in the region or, more com-
monly, is the values of only DNA positions that are single nucleotide polymorphisms
(SNPs). Given an input set D of n genotype vectors, a solution to the haplotype infer-
ence problem is a set of n pairs of binary strings one pair for each genotype; for any
genotype g, the associated binary vectors v1, v2 must be a “feasible resolution” of g
into two haplotypes that could explain how g was created. Several algorithms have
been proposed for the haplotype inference problem such as those based on the “pure
parsimony criteria,” greedy heuristics such as “Clarks rule,” Expectation Maximiza-
tion (EM)-based algorithms, and algorithms for inferring haplotypes from a set of
Trios [42, 63]. Indexing all possible haplotypes that can be inferred from D as well
as gathering statistical information about them can be used to accelerate these hap-
lotype inference algorithms. Moreover, as new biological data are being acquired at
phenomenal rates, biological datasets have become too large to be readily accessible
for homology searches, mining adequate modeling, and integrative understanding.
Scalable and integrative tools that access and analyze these valuable data need to be
developed. The new generation of databases have to (i) encompass terabytes of data,
often local and proprietary; (ii) answer queries involving large and complex inputs
such as a complete genome; and (iii) handle highly complex queries that access more
than one dataset. These queries demand the efficient design of string indexing data
structures in external memory; the most prominent of these structures are: the string
B-tree of Ferragina and Grossi [30], the cache oblivious string dictionaries of Brodal
and Fagerberg [15], the cache-oblivious string B-trees [14], and various heuristic
techniques for externalizing the suffix tree [28].
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In the sequel, (i) we will present the main string indexing data structures (suffix
trees and suffix arrays ), (ii) we will present the main indexing structures for weighted
and indeterminate strings, and (iii) we will present the main external memory string
indexing structures.

1.2 MAIN STRING INDEXING DATA STRUCTURES

In this subsection, we will present the two main string indexing structures, suffix trees
[92] and suffix arrays [67], and depict their special characteristics and capabilities.

1.2.1 Suffix Trees

The suffix tree is the most popular data structure for full string indexing, which was
presented by Weiner in 1973 [92]. It is considered the oldest and most studied data
structure in the area that, besides answering effectively to the pattern matching prob-
lem, can be used for the efficient handling of a plethora of string problems (see [41]
for a set of applications in the area of computational molecular biology). More for-
mally, the suffix tree STT of a text T is a compact digital search tree (trie) that
contains all suffixes of T as keys. It is assumed that before building the suffix tree,
the text T gets padded with an artificial character—the $ character, which does not
belong in the alphabet � from which T was formed. This assumption is used to
guarantee that every suffix is stored to a distinct leaf of the tree (that is, no suffix is a
prefix of another). The leaf of the tree that corresponds to the suffix Ti ···n$ stores the
integer i .

The suffix tree has the following structural properties that are induced by its defi-
nition:

� There are n leaves—a leaf for each suffix of T . The concatenation of the sub-
strings at the edges, which we traverse when moving from the root to the leaf
that stores i , forms the suffix Ti ···n .

� Consider two different suffixes of T , Ti ···n = xa and Tj ···n = xb, that share a
common prefix x . In the suffix tree, the two leaves that correspond to the two
suffixes have a common ancestor u for whom the concatenation of the sub-
strings at the edges that we traverse, moving from the root to the u, forms the
common prefix x . This also can be phrased in a different way. For every internal
node u of a suffix tree, all suffixes that correspond to the leaves of its subtree
share a common prefix x that is represented from the edges of the path from the
root to u. The substring that is created from the concatenation of the substrings
of the edges traversed when moving from the root to u is called the path label
of the node u.

A lot of sequential algorithms have been proposed for building a suffix tree in
linear time. The algorithms provided in [92, 70, 88] are based on the assumption that
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the strings have been formed from alphabets of constant size and basically are based
on similar concepts. On the other hand, and for large alphabets (where we cannot
ignore a time cost similar to its size), an elegant linear time algorithm has been
proposed in [27]. Finally, in [10, 43, 81] parallel algorithms have been presented for
the CRCW PRAM parallel model of computation.

Concerning implementation, a suffix tree STT for a string T of n characters will
have at most 2n − 1 nodes and 2n − 2 edges. The edges of a node can be stored
either in a linear list (unsorted or sorted according to the first character of the edge
label) or in an array of size |�|. In the first case (space-efficient implementation),
a node can be traversed in O(|�|) time, whereas in the second case, a node can be
transversed in O(1) time (though the space complexity for large alphabets is clearly
worse). Between these two extreme choices of implementation, we can choose other
alternatives as search trees or hash tables. The most efficient implementation, espe-
cially in the average case, is based in the use of a hash table. In [70], it the usage of
the hashing scheme of Lampson [61], is proposed which belongs to the class of hash
functions with chaining.

The suffix tree data structure can be extended to store the suffixes of more than
one strings. In this case, we talk about the generalized suffix tree. More formally, a
generalized suffix tree (GST) ({T1, T2, · · · Tk}) of a set of strings {T1, T2, · · · Tk} is the
compact trie that contains all suffixes of these strings as keys. For the construction
of a generalized suffix tree, we can use the known algorithms for constructing suffix
trees by superimposing the suffixes of different strings in the same structure; when
having completed the insertion of the suffixes for a string, the procedure is continued
for the next string by beginning from the root. A generalized suffix tree occupies
O(|T1| + |T2| + · · · + |Tk |) space, and it can be built in O(|T1| + |T2| + · · · + |Tk |)
time [41].

Concerning applications, let us consider the pattern matching problem and see
how the suffix tree deals with the specific problem. Consider a string T for which we
have built the suffix tree STT and suppose that we want to locate the positions within
it where a pattern P appears. By starting from the root of STT , we follow the path that
is defined by P . After the i-th step of this procedure, if we are at an internal node
and we have matched the i leftmost characters of P , then we follow the outgoing
edge that starts with the character Pi+1, whereas if we are at the interior of the edge,
then we test whether the next character at the edge is equal to Pi+1. If this traversal
from the root to the leaves finishes by matching successfully all |P| characters of the
pattern, then according to the aforementioned properties, the suffixes that correspond
to the subtree below the point where the pattern matching procedure ended, share the
pattern P as a common prefix. Hence, the requested pattern appears at the positions
that correspond to the leaves of that subtree. If the match procedure from the root to
the leaf finishes before accessing all characters of the pattern, then no suffixes of T
can have the pattern P as prefix; hence, the pattern does not appear anywhere inside
the text. As a conclusion and with the assumption that in every internal node the
edge that will be followed is being chosen in constant time, at most |P| comparisons
with the characters of the pattern are performed and the time complexity totals (|P| +
α), where α is the size of the answer.
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The suffix tree can answer to numerous other questions optimally besides per-
forming pattern matching efficiently. The interested reader can consult [41] and the
respective chapters in [72] and [3]. Some characteristic applications of the suffix tree
are the longest repeated substring and the longest common substring (LCS) prob-
lems. In the longest repeated substring problem, we seek the longest substring of
a text T that appears in T more than once. Initially, we built the suffix tree STT

in O(|T |) time, and then by performing a traversal of the nodes of the suffix tree,
we compute for every node the number of characters of the string from the root to
the node. Then, we locate the internal node with the label of maximum length; the
positions that are stored in the leaves of the subtrees below that node are the posi-
tions where the longest repeated substring appears. In the LCS problem, we search
for the longest common substring of two strings T1 and T2. Initially and in time
O(|T1| + |T2|), we construct the generalized suffix tree gST ({T1, T2}) of the two se-
quences. In this generalized tree, some leaves will store suffixes of the one string,
some of the other, and some will store suffixes of both strings. We traverse all nodes
of the tree, and we compute for every node the number of the characters from the root
to it; by a similar traversal, we mark the nodes in whose subtrees are stored leaves
of both strings. Then to get our reply, we simply have to select the internal marked
node with the path label of maximum length. Then the positions that correspond to
the leaves of the corresponding subtrees are the positions where the longest common
substring appears. With a similar linear time algorithmic procedure, we can locate
the longest common substring between a set of more than two strings.

Concluding the suffix tree, is the main and better representative for data structures
for full text indexing. The cost for this enhanced functionality is the extra space
complexity. There are cases in which the required space can be 25 times more than
the indexed data. This fact and the poor behavior when being transferred in secondary
memory restricts the use of suffix trees in applications that are limited in the main
memory of a computer system.

Optimizations of the suffix tree structure to face these disadvantages were un-
dertaken by McCreight [70] and more recently by Kurtz [62]. Kurtz reduced the
RAM required to around 20 bytes per input character indexed on the worst case and
to 10,1 bytes per input character on average. Compact encodings of the suffix tree
based on a binary representation of the text have been investigated by Munro and
Clark [20] Munro et al. [73] and Anderson et al. [7]. There are also other works
concerning efficient compression of the suffix tree; the interested reader should con-
sult [32, 38, 39, 73, 80] for further details on this interesting algorithmic area.

1.2.2 Suffix Arrays

The suffix arrays have been introduced in [67] and constitute the main alternative full
text indexing data structure as compared with the suffix tree. The main advantages
of the suffix array are its small memory requirements, its implementation simplicity,
and the fact that the time complexities for constructing and query answering are
independent from the size of the alphabet. Its main disadvantages are that the query
time is usually larger than the respective query time of the suffix tree and that the



P1: OSO
c01 JWBS046-Elloumi December 2, 2010 9:35 Printer Name: Sheridan

1.2 MAIN STRING INDEXING DATA STRUCTURES 9

range of applications where it can be used is smaller than the range of applications
of the suffix tree.

More formally, a suffix array S AT for a string T of n characters is an array that
stores the suffixes of T in lexicographic order. That is, in every position i of the
suffix array, the starting position j of the suffix Tj ···n (S AT [i] = j) is stored in such
a way that the suffixes that are lexicographically smaller than Tj ···n are located in
positions smaller than i , whereas the suffixes that are lexicographically larger than
Tj ···n are located in positions larger than i . Hence, we get TS AT [1]···n <L TS AT [2]···n <L

· · · <L TS AT [n]···n where <L designates the lexicographic order. Because suffix arrays
store the suffixes of T lexicographically ordered they have the following property:
suppose that the suffixes, located at positions i, j , with i < j have a common prefix
x , that is LCP (S AT [i]···n, S AT [ j]···n) = x . Then all suffixes TS AT [w]···n that are located in
positions i ≤ w ≤ j have x as a prefix.

Because the suffix array is basically an array of n elements without the need for
extra pointers, its space requirements are significantly smaller (in terms of constant
factors) from the respective space requirements that characterize the suffix trees.
However, the use of suffix array without extra information does not permit efficient
searching. To understand this concept, let us explain how the suffix tree can solve
the problem of exact pattern matching of a pattern P into a text T . To accomplish
the search, we need to locate two positions i, j with i ≤ j for which the follow-
ing holds: the first |P| characters of the suffixes at position j are lexicographically
smaller or equal from the pattern (that is TS AT [ j]···S AT [ j]+|P| ≤L P), and j is the max-
imum position with this property, whereas the first |P| characters of the suffix at
position i are lexicographically larger or are more equal than the pattern (that is
P ≤L TS AT [i]···S AT [i]+|P|) and i is smaller with that property. According to that, the
suffixes that correspond to positions i, j , and all intermediate positions have P as
a prefix. Consequently, the places where P appears in T can be located by finding
the two extreme positions i, j in the suffix array and then scanning the intermedi-
ate positions. To locate the extreme positions, a binary search needs to be executed
on the suffix array in which at each step of the search procedure, |P| comparisons
are needed and then the procedure moves right or left. Hence, the problem of pat-
tern matching by using the suffix arrays is solved in (|P| log n + α) time, where
α is the size of the answer. This time complexity can be reduced significantly to
(|P| + log n + α) if we use two more arrays of n − 2 elements containing precom-
puted information; with the help of these elements, it is possible in every repetition
of the binary search procedure, not to execute all |P| comparisons that correspond
to the middle of the active segment. In particular, suppose that the binary search
procedure is in an interval [L , R] of the suffix array, and we seek to compute the
value m = LCP(P, TS AT [M]···n) for the middle of the search interval. We suppose that
the values l = LCP(P, TS AT [L]···n) and r = LCP(P, TS AT [R]···n) have been computed
in a previous repetition of the binary search. The first remark that can be made is
that we do not have to perform all |P| comparisons from the beginning because
of the basic property of the suffix array m ≥ min{l, r}; hence, the comparisons can
continue from position m + 1, and hence, it is possible to save min{l, r} compar-
isons. However, despite this improvement, there are scenarios in which the order
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of the total complexity does not change. Suppose now that we have as extra infor-
mation the longest common prefix of the suffixes of the left edge L of the search
interval, with the suffix at the middle and the longest common prefix of the right
edge R of the search interval with the suffix of the middle. Let us symbolize them
as x = LCP(TS AT [L]···n, TS AT [M]···n) and x ′ = LCP(TS AT [M]···n, S AT [R]···n), respectively.
Let us suppose that l ≥ r , and hence, we have the following, depending on whether x
is the longest common prefix of the left edge with the medium, or is largest, smaller,
or equal to l:

� If x > l, then because L has the first l characters equal to P and the first x equal
to the suffix at position M and it holds x > l, the l + 1-st character of the suffix
at position M does not match with the l + 1-st character of P . Hence, according
to the basic property of the suffix array, no common prefix exists with P to the
left side of M . Hence, we choose [M, R] as the new interval.

� If x < l, then because P matches with the l characters of L and with the x
characters of the middle suffix, we will have a nonmatching of the middle suffix
at position x + 1. Hence, a larger prefix of P must exist in the left interval, and
hence, we will choose [L , M] as the new search interval.

� If x equals l, then we cannot deduce that the longest common prefix with P is in
the left or the right interval. Hence, by a character to character comparison, we
extend the common prefix (if it can be extended) beyond the position l. If we
perform �h successful comparisons, then the common prefix of the suffix of M
with P will have length l + �h. The failure in matching at position l + �h + 1
guides us left or right depending on whether the character of the corresponding
position at P is lexicographically smaller or larger than the respective position
at the middle suffix.

Hence, every one of the O(log n) steps of the binary search either performs a
constant number of operations (cases x > l or x < l) or performs �h comparisons
(case x = l). The sum of comparisons in the last case does not exceed |P| because the
middle chosen element will be one of the extreme elements in the next repetition (its
value is continuously increasing). Hence, the problem of pattern matching is being
solved in (|P| + log n) time.

Concerning the needed space consumption, the improved time complexity is
achieved by using the LCP(TS AT [L]···n, TS AT [M]···n) and LCP(TS AT [M]···n, TS AT [R]···n)
values as precomputed information for every possible interval that can exist dur-
ing binary searching. The number of different intervals is n − 2 because the
role of middle elements can be played by all elements, except the first and
the last. Hence, one array stores the values of the left extreme for every pos-
sible middle element, whereas the other array stores the values of the right ex-
treme. The existing suffix array algorithms precompute in the arrays LCP[i] =
LCP(TS AT [i]···n, TS AT [i+1]···n) for i = 1 · · · n in linear time. By using the relationship
LCP(L , R) = min{LCP(L , M), LCP(M, R)} from this array, we can create the LCP
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values for all possible intervals of binary searching. Concluding the enhanced suffix
array construction occupies approximately 5n space (see also chapter 29 of [3]),
which is less than the space complexity of the suffix tree. The time to solve a pat-
tern matching problem is O(|P| + log n), which can be compared with the time re-
quired for the query replying of a suffix tree O(|�|P) (in the implementation that
is space effective) or O(|P|) (in the implementation that is time effective). The con-
struction algorithm that has been presented initially in [67] was not linear but needed
O(n log n) time. A linear time procedure can be envisaged by simply constructing (in
linear time) a suffix tree and then transforming it to the respective suffix array. This
transformation is possible by traversing lexicographically the suffix tree in linear
time and then computing the arrays LCP in linear time by nearest common ances-
tor queries. This procedure takes linear time but cancels the main advantage of the
suffix tree, which is the small space consumption. In 2003, three papers were pub-
lished [58, 75, 26] that describe a worst-case linear time construction of a suffix array
without the need of an initial construction of the respective suffix tree. Other algo-
rithms for constructing suffix arrays can be found in [17, 36, 47, 55, 68]. Moreover,
a recent line of research concerns compressed suffix arrays [46, 38, 39, 35].

Concerning applications, the main weakness of the suffix array in comparison
with the suffix tree data structure is that the range of application in which it can be
used is limited. To resolve this handicap, in [59], a method was presented that com-
bined the information of a suffix array with the LCP information, which simulates
the postorder traversal in the equivalent suffix tree of the string, thus providing the
so-called virtual suffix tree. This simulation (which was extended in [35] with a space
efficient variant) gives the ability for some of the suffix tree applications whose algo-
rithmic procedure is based in the bottom-up traversal of the suffix tree to be executed
with some extra changes in the suffix array.

The suffix array table is being traversed from left to right, and an auxil-
iary stack is being used. Initially, the stack contains the root and LCP[1] =
LCP(TS AT [1]···n, TS AT [2]···n) ≥ 0. If this value is equal to zero, then the two leftmost
leaf-suffixes have a minimum common ancestor in the root, and hence, during the
implicit postorder traversal, we process the first and then the second element. If
the value is greater than zero, then an internal node exists that is being inserted in
the stack. More generally, during step i , if LCP[i] = (TS AT [i]···n, TS AT [i+1]···n) is larger
than the depth of the node u at the top of the stack (that is, the length of the path label
L(u)), then between the i-th leaf/suffix and the next, a deeper node exists that will be
inserted in the stack; otherwise, the value LCP[i] is smaller than the depth of node u,
and the minimum common ancestor is higher in the path from u to the root. In this
case, the stack is emptied until a node is located with smaller depth, and the first case
is applied. Based on this described procedure, a node is inserted in the stack when
it is seen during the top-down traversal, whereas it is removed from the stack when
it is faced moving bottom up for the last time. Because in every step of the method,
we either add a node in the stack or we have several deletions from the stack, every
node is inserted and deleted from the stack once, and the whole procedure needs
O(n) time. In [1], other combinations of the suffix array with additional information
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were provided (the so-called enhanced suffix array), and additional applications were
described.

1.3 INDEX STRUCTURES FOR WEIGHTED STRINGS

The notion of the weighted sequence extends the notion of a regular string by permit-
ting in each position the appearance of more than one character, each with a certain
probability. In the biological scientific literature weighted sequences also are called
position weight matrices (PWM). More formally, a weighted word w = w1w2 · · ·wn

is a sequence of positions with each position wi consisting of a set of couples, of the
form (s, πi (s)), with πi (s) being the probability of having the character s at position
i . For every position wi , 1 ≤ i ≤ n,

∑
πi (s) = 1.

For example, if we consider the DNA alphabet � = {A, C, G, T}, then the word
w = [(A,0.25), (C,0.5), (G,0.25), (T,0)][(A,1), (C,0), (G,0), (T,0)] [(A,1), (C,0), (G,0), (T,0)]
represents a word having three letters; the first one is either A,C,G with probabil-
ities of appearance of 0.25, 0.5, and 0.25, respectively; the second one is always
A, whereas the third letter is necessarily an A because its probability of presence
is equal to 1. The probability of presence of a subword either can be defined to be
the cumulative probability, which is calculated by multiplying the relative probabil-
ities of appearance of each character in every position, or it can be defined to be the
average probability.

There have been published works in the scientific literature [19, 5, 6, 54] con-
cerning the processing of string sequences; we will refer to these works giving more
emphasis to the structure presented in [54]. In [19], a set of efficient algorithms
were presented for string problems developing in the computational biology area.
In particular, assume that we deal with a weighted sequence X of length n and
with a pattern p of length m, then (i) the occurrences of p in X can be located
in O((n + m) log m) time and linear space; the solution works for both the multi-
plicative and the average model of probability estimation, although it can be ex-
tended also to handle the appearance of gaps; (ii) the set of repetitions and the set
of covers (of length m) in the weighted sequence can be computed in O(n log m)
time. In [6] and for the multiplicative model of probability estimation the prob-
lem of approximately matching a pattern in a weighted sequence was addressed.
In particular, two alternative definitions were given for the Hamming distance and
two alternative definitions for the edit distance in weighted sequences with the aim
of capturing the aspects of various applications. The authors presented algorithms
that compute the two versions of the Hamming distance in time O(n

√
m log m),

where the length of the weighted text is n, and m is the pattern length; the algo-
rithms are based in the application of nontrivial bounded divide-and-conquer al-
gorithms coupled with some insights on weighted sequences. The two versions of
the edit distance problem were solved by applying dynamic programming algorithm
with the first version being solved in O(nm) time and the other version in O(nm2)
time. Finally, the authors extended the notion of weighted matching in infinite al-
phabets and showed that exact weighted matching can be computed in O(s log2 s)
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time, where s is the number of text symbols with nonzero probability, and they also
proved that the weighted Hamming distance over infinite alphabets can be computed
in min(O(kn

√
s + s3/2 log2 s), O(s4/3m1/3 log s)), where m is the length of the pat-

tern. In [5], a different approach was followed, and a transformation was proved
between weighted matching and property matching in strings; the pattern matching
with properties (property matching for short) was introduced in the specific paper in
which pattern matching with properties involves a string matching between the pat-
tern and the text and the requirement that the text part satisfies some property. The
aforementioned reduction allows off-the-self solutions to numerous weighted match-
ing problems (some were not handled in the previously published literature) such as
scaled matching, swapped matching, pattern matching with swaps, parameterized
matching, dictionary matching, and the indexing problem. All presented results are
enabled by a reduction of weighted matching to property matching that creates an
ordinary text of length O(n( 1

ε
)2 log 1

ε
) for the weighted matching problem of length

n and the desired probability of appearance ε. Based on this reduction, all pattern
matching problems that can be solved in ordinary text can have their weighted ver-
sions solved with the time degradation of the reduction.

Finally in [54], a data structure was presented for storing weighted sequences that
can be considered the appropriate generalization of the suffix tree structure to han-
dle weighted sequences. A resemblance exists between this structure and the work
related to regulatory motifs [71, 66, 83, 60] and probabilistic suffix trees [78, 82, 69].
Regulatory motifs characterize short sequences of DNA and determine the timing
location and level of gene expression, and the approaches extracting regulatory mo-
tifs can be divided into two categories: those that exploit word-counting heuristics
[57, 69] and those based on the use of probabilistic models [40, 48, 64, 79, 85, 87];
in the second category of approaches, the motifs are represented by position prob-
abilistic matrices, whereas the remainder of the sequences are represented by back-
ground models. The probabilistic or prediction suffix tree is basically a stochastic
model that employs a suffix tree as its index structure to represent compactly the
conditional probabilities distribution for a cluster of sequences. Each node of a prob-
abilistic suffix tree is associated with a probability vector that stores the probability
distribution for the next symbol given the label of the node as the preceding segment,
and algorithms that use probabilistic suffix trees to process regulatory motifs can be
found in [82, 69]. However, the probabilistic suffix tree is inefficient for efficiently
handling weighted sequences, which is why the weighted suffix tree was introduced;
however, it could be possible for a suitable combination of the two structures to be
effective to handle both problem categories.

The main idea behind the weighted suffix tree data structure is to construct the
suffix tree for the sequence incorporating the notion of probability of appearance for
each suffix; that is, for every suffix x[i · · · n], we store in a set of leaves labeled Si the
first l characters so that π (xi · · · xi+l−1) ≥ 1/k. In more detail, for every suffix start-
ing at position i , we define a list of possible weighted factors (not suffixes because
we may not eventually store the entire suffix) so that the probability of appearance
for each one of them is greater than 1/k; here, k is a user-defined parameter that is
used to denote substrings that are considered valid.
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The formal definition as provided in [54] is that the weighted suffix tree (WST)
of a weighted sequence S (denoted as WST(S)) is the compacted trie of all weighted
factors starting within each suffix Si of S having a probability of appearance greater
than 1/k. The leaf u of WST(S) is labeled with index i if L(u) = Si, j [i · · · n] and
π (Si, j [i · · · n]) ≥ 1/k, where j > 0 denotes the j-th weighted factor starting at posi-
tion i . L(u) denotes the path label of node u in WST(S) and results by concatenating
the edge labels along the path from the root to u. D(u) = |L(u)| is the string-depth
of u, whereas LL(u) is defined as the leaf list of the subtree below u. LL(u) = ∅ if u
is a leaf.

It can be proven that the time and space complexity of constructing a WST is
linear to the length of the weighted sequence.

The WST is endowed with most of the sequence manipulation capabilities of the
generalized suffix tree, that is:

� Exact pattern matching: Let P and T be the pattern and the weighted sequence,
respectively. Initially, the weighted suffix tree is built for T , and if the pattern
P is weighted, too, then it is broken into solid subwords; for each of these
subwords, the respective path is spelled by moving from the root of the tree
until an internal node is reached then all leaves descending from this node are
reported. The time complexity of the procedure is O(m + n + a), where m and
n are the sizes of the pattern and the text, respectively, and a is the answer size.

� Finding repetitions in weighted sequences: It is possible to compute all repe-
titions in a given weighted sequence, with each repetition having a probability
of appearance greater than 1/k; initially, the respective weighted suffix tree
is constructed, and then the weighed suffix tree is traversed with a depth-first
traversal, during which a leaf list is kept for each internal node. The elements
of a leaf list are reported if the size of the list exceeds two; in total, the problem
is solved in O(n + a) time, where n is the sequence length and a is the answer
size.

� Longest common substring of weighted sequences: The generalized weighted
suffix tree is built for two weighted sequences, w1 and w2, and then the internal
node with the greatest depth is located; the path label of this node corresponds
to the longest weighted subsequence of the two weighted strings. The time
complexity of the procedure is equal to O(n1 + n2), with n1 and n2 being the
sizes of w1 and w2, respectively.

1.4 INDEX STRUCTURES FOR INDETERMINATE STRINGS

Indeterminate or (equivalently in the scientific literature) degenerate strings are
strings that in each position contain a set of characters instead of a simple character.
The simplest form of indeterminate string is one in which indeterminate positions
can contain only a do-not-care letter that is a letter “∗,” which matches any letter
in the alphabet on which x is defined. In 1974, an algorithm was described [33] for
computing all occurrences of a pattern in a text where both the pattern and the text
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can contain do-not-care characters, but although efficient in theory, the algorithm was
not useful in practice; the same remark also holds for the algorithms presented in [2].
In [11, 93], the shift-or technique (a bit-mapping technique for pattern matching) was
applied to find matches in indeterminate strings. In [51], an easily implemented av-
erage case O(n) time algorithm was proposed for computing all periods of every
prefix of a string with do-not-care characters. In [44], this work was extended by
distinguishing two forms of indeterminate match (“quantum” and “deterministic”)
and by refining the definition of indeterminate letters so that they can be restricted
to matching only with specified subsets of � rather than with every letter of �.
More formally, a “quantum” match allows an indeterminate letter to match with two
or more distinct letters during a single matching process, whereas a “deterministic”
match restricts each indeterminate letter to a single match.

These works were continued by researchers in [9, 8, 50, 52, 53, 76, 45], in which
a set of algorithms were presented for computing repetitive structures, computing
covers, computing longest common subsequences, and performing approximating
and exact pattern matching; some of them improved the aforementioned previous
constructions. From these structures, special emphasis should be given to the works
in [76] and [45] because they fell in the focus of interest of this chapter. In particular,
in [45], efficient practical algorithms were provided for pattern matching on inde-
terminate strings where indeterminacy may be determined either as “quantum” or
“deterministic”; the algorithms are based on the Sunday variant of the Boyer–Moore
pattern matching algorithm and are applied more generally to all variants of Boyer–
Moore (such as Horspool’s) that depend only on the calculation of the “rightmost
shift” array. It is assumed that � is indexed being essentially an integer alphabet.
Moreover, three pattern-matching models are considered in increasing order of so-
phistication: (i) the only indeterminate letter permitted is the do-not-care character,
whose occurrences may be either in the pattern or in the text, (ii) arbitrary indetermi-
nate letters can occur but only in the pattern, (iii) indeterminate letters can occur in
both the pattern and the text. In [76], and asymptotically faster algorithms were pre-
sented for finding patterns in which either the pattern or the text can be degenerate
but not both. The algorithms for DNA and RNA sequences work in O(n log m) time,
where n and m are the lengths of the text and the pattern, respectively. Efficient im-
plementations also are provided that work in O(n + m + n 	m/w
 + 	n/w
) time,
where w is the word size; as can be seen, for small sizes of the text and the pattern,
the algorithms work in linear time. Finally it also is shown how their approach can
be used to solve the distributed pattern matching problem.

Concerning indexing structures, there are some results that can be divided into
two categories, one based on the use of compressed tries and the other based on the
used of finite automata.

Concerning results in the first category in [63], the dictionary matching problem
was considered in which the dictionary D consists of n indeterminate strings and the
query p is a string over the given alphabet �. A string p matches a stored indeter-
minate string si if |p| = |si | and p[ j] ∈ si [ j] for every 1 ≤ j ≤ |p|. The goal is to
preprocess D for queries that search for the occurrence of pattern p in D and count
the number of appearances of p in D.
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Let m denote the length of the longest string in D and let D′ be the set of all
patterns that appear in D. For example, if D contains a single indeterminate string
cd{a, b}c{a, b}, then D′ = {cdaca, cdacb, cdbca, cdbcb}. The data structure is ba-
sically a compressed trie of D′ that can be constructed naively in O(|�|knm) time
and O(|�||D′|) space, assuming every s ∈ D has at most k locations in which
|s[i]| > 1. With this structure, a query time of O(|p|) can be supported for a pat-
tern p plus a time complexity equal to the size of the output. Using techniques pre-
sented in [22], the structure can be modified to solve the problem in O(nm log(nm) +
n(c1 log n)k+1/k!) preprocessing time, and O(m + (c2 log n)k log log n) query time
(c1 and c2 are constants); this approach is worse than the trie approach for small
values of �.

In [63], two faster constructions of the trie have been presented. The first
construction is based on the divide-and-conquer paradigm and requires O(nm +
|�|kn log n) preprocessing time, whereas the second construction uses ideas in-
troduced in [4] for text fingerprinting and requires O(nm + |�|kn log m) pre-
processing time. The space complexity is O(|�||D′|), and it can be reduced to
O(|D′|) by using the suffix tray [23] ideas. The query time becomes O(|p| +
log log |�|), and it is also possible by cutting the dictionary strings and con-
structing two tries to obtain O(nm + |�|kn + |�|k/2n log(min{n, m})) prepro-
cessing time at the cost of O(|p| log log |�| + min{|p|, log |D′|} log log |D′|) =
O(|p| log log |�| + min{|p|, log(|�|kn)} log log(|�|kn)) query time. The first two
constructions can calculate the number of appearances in D of each pattern in D′, a
knowledge that can be useful in a possible application of the structures to the Haplo-
type inference problem [63].

On the other hand, there are works based in the use of finite automata, which
are based in indexing small factors (that is, substrings of small size). Indexing of
short factors is a widely used and useful technique in stringology and bioinformat-
ics, which has been used in the past to solve diverse text algorithmic problems. More
analytically, in [90], the generalized factor automaton (GFA) was presented, which
has the disadvantage that it cannot be used to index large texts because, experimen-
tally, it tends to grow super-quadratically with respect to the length of the string.
Later in [91], the truncated generalized factor automaton (TGFA) was presented that
is basically a modification of GFA that indexes only factors with length not exceed-
ing a given constant k having at most a linear number of states. The problem with the
specific algorithm is that it is based on the subset construction technique and inherits
its space and time complexity that is a bottleneck of the algorithm when indexing
very long text because the corresponding large Nondeterministic Finite Automaton
needs to be determinized. Finally, in [34], an efficient on-line algorithm for the con-
struction of the TGSA was presented, which enables the construction of TGSAs for
degenerate strings of large sizes (order of Megabytes (MBs)). The proposed con-
struction works in O(n2) time, where n is the length of the input sequence. TGSA
has, at most, a linear number of states with respect to the length of the text and en-
ables the location of the list occ(u) of all occurrences of the given pattern u in the
degenerate text in time |u| + |occ(u)|.
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1.5 STRING DATA STRUCTURES IN MEMORY HIERARCHIES

We consider string data structures in external memory [89]. The design of such
data structures is a necessity in the computational molecular biology area, as the
datasets in various biological applications and the accumulated data in DNA se-
quence databases are grown exponentially, and it is not possible to have them in
main memory; a characteristic number is provided in [74] where it is mentioned that
in the GenBank, the DNA sequence database has crossed the 100 Gbp (bp stands
for base pairs), with sequences from more than 165,000 organisms. The basic ex-
ternal memory model used to analyze the performance of the designed algorithms
is the two-level memory model; in this model, the system memory is partitioned
into a small but fast in access partition (the main memory with size M) and into a
(theoretically unbounded) secondary part (the disk). Computations are performed by
central processing unit (CPU) on data that reside in main memory while data transfer
between memory and disk take place in contiguous pieces of size B (the block size).

In string algorithmics, there are two lines of related research, one that focuses
on transferring the main-memory-tailored design of the suffix tree and/or suffix ar-
ray data structures to secondary memory and another that tries to envisage novel,
external-memory-tailored data structures with the same functionality as the suf-
fix tree.

In the first line of work, a plethora of published material exists dealing with the
externalization of the suffix tree: [49, 74, 86, 16, 49, 12, 13, 18, 21, 56, 84, 86] and
the suffix array [24, 25]. Most of these works suffer from various problems such as
nonscalability, nonavailability of suffix links (that are necessary for the implementa-
tion of various operations) and nontolerance to data skew, and a few are the works
that manage to face effectively these problems; from these works, we will present
briefly the approach in [74]. More specifically, the authors in [74] present TRELLIS,
an algorithm for constructing genome-scale suffix trees on disk with the following
characteristics: (i) it is an O(n2) time and O(n) space algorithm that consists of four
main phases—the prefix creation phase, the partitioning phase, the merging phase,
and the suffix link recovery phase; the novel idea of the algorithm lies in the use
of variable length prefixes for effective disk partitioning and in a fast postconstruc-
tion phase for recovering the suffix links; (ii) it can scale effectively for very large
DNA sequences with suffix links; (iii) it is shown experimentally that it outperforms
most other constructions because it is depicted as faster than the other algorithms
that construct the human genome suffix tree by a factor of 2–4 times; moreover, its
query performance is between 2–15 times faster than existing methods with each
query taken on the average between 0.01–0.06 seconds.

In the second line of research, string B-trees [30], cache oblivious string dictio-
naries [14], and the cache oblivious string B-tree [15] come into play.

The string B-tree [30] is an extension of the B-tree suitable for indexing strings
with a functionality equivalent to the functionality of the suffix tree. More ana-
lytically, assume that we have to process a set S of n strings with a total num-
ber of N characters and suppose that each of the strings is stored in a contiguous
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sequence of disk pages and is represented by its logical pointer to the external
memory address of its first character. In the leaves of the string B-tree, we store
the logical pointers of the strings lexicographically ordered, and the leaves also are
linked together to form a bidirectional list. In every internal node v, we store as
search keys the leftmost and the rightmost string stored in each of the node’s chil-
dren. Hence, if v has k children ci , (1 ≤ i ≤ k) then the keys stored in v will be
Kv = {L(c1), R(c1), L(c2), R(c2), · · · , L(ck), R(ck)}, where L(ci ) and R(ci ) are the
leftmost and the rightmost keys stored in the child ci . The string B-tree in this form
can answer prefix queries for a query string P . The total number of disk accesses
will be O( |P|

B logB |S| log2 B) I/Os because (i) O(log2 B) accesses are needed in ev-
ery internal node for locating the proper subtree via binary search, (ii) in every binary
search step all characters of P will need to be loaded from the disk, and thus, a total of
O( |P|

B ) disk I/O accesses are needed. The whole procedure is executed in every inter-
nal node moving from the root to the leaf, and hence, it is repeated O(logB |S|) times.

The time complexity of the aforementioned procedure can be reduced by organiz-
ing the elements stored in each node of the string B-tree as a Patricia trie. A Patricia
trie is a compact digital search tree (trie) that can store a set of k strings in O(k) space
as follows: (i) a compacted trie of O(k) nodes and edges is built on the k strings; (ii)
in each compacted trie node we store the length of the substring into it, and the sub-
string that normally would label each edge is replaced by its first character. This
construction gives the possibility to fit O(B) strings into one node independently of
the length of the strings and allows lexicographic searches by branching out from a
node without further disk accesses.

By using Patricia tries for storing the strings in internal nodes, we see that we do
not need binary search in each node, but it is possible to select the proper subtree
in O( |P|

B ) I/Os, and hence, the total time complexity of disk accesses when moving
from the root to the leaf becomes O( |P|

B logB |S|) I/Os. The query time complexity
can be reduced further by a more careful search procedure that will take into ac-
count the observation that the longest common prefix that a query can have with
the keys of a node is at least equal to the longest common prefix between the query
and the keys stored in the parent of the node; in this case, the query time becomes
O( |P|

B + logB |S|) I/Os for completing the traversal from the root to the leaves. Con-
cerning dynamic operations to insert/delete a string T ′ a query initially is executed
for locating the appropriate leaf position among the leaves of the string B-tree. If
space exists for inserting the appropriate leaf, it is inserted; otherwise, the leaf gets
split, and the father node is updated with appropriate pointers. The rest of the in-
sertion and deletion procedure is similar to the balancing operations performed in
the traditional B-tree with the difference that in the worst case the balancing opera-
tions can be propagated until the root of the tree, and hence, the total number of disk
accesses will be bounded from above by O( |T ′|

B + logB |S|) I/Os.
The above lead to the following theorems:

Theorem 1.1 The string B-tree can store a set S of n strings with a total number
of N characters in O(n/B) space (the index) plus O(N/B) space (the characters
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of the string) so that the strings in S that have a query prefix P can be computed
in O( |P|

B + logB n + a
B ) I/Os, where a is the size of the answer. To insert or delete a

string T ′ in S, O( |T ′|
B + logB n) I/Os are needed.

To use the string B-tree for efficient pattern matching, we should insert all suffixes
of the involved strings, because in this case, prefix matching with a given pattern
becomes equivalent to pattern matching with the given pattern. It can be proved that
the produced structure will have the following properties:

Theorem 1.2 The string B-tree can store a set S of n strings with a total number
of N characters in O(N/B) space (the index) plus O(N/B) space (the characters
of the string) so that the strings in S that contain a given query pattern P can be
computed in O( |P|+a

B + logB n) I/Os, where a designates the size of the answer. To
insert or delete a string of length m in S O(m logB(N + m)) I/Os are needed.

The specific structure has been improved with two other structures [14, 15] that
are valid for the cache oblivious model of computation. The cache-oblivious model
is a generalization of the two-level I/O model to a multilevel memory model, by
employing a simple trick: the algorithm is not allowed to know the value of B and
M , and thus, its functionality and working remains valid for any value of B and
M . In particular, in [15], a cache-oblivious string dictionary structure was presented
supporting string prefix queries in O(logB n + |P|/B) I/Os, where P is the query
string and n is the number of stored strings. The dictionary can be constructed in
O(Sort(N )) time where N is the total number of characters in the input, and Sort(N )
is the number of I/Os needed for comparison-based sorting. The input as in the string
B-tree can be either a set of strings to store or a single string for which all suffixes are
to be stored; moreover, if it is given as a list of edges of the appropriate tree, then it
also can accept a trie, a compressed trie, or a suffix tree. It is assumed that M ≥ B2+δ .
The aforementioned structure has the following two novel characteristics: (i) it uses
the notion of the giraffe tree that provides an elegant linear space solution to the path
traversal problem for trees in external memory; the giraffe trees permit the exploita-
tion of redundancy because parts the path in the trie may be stored multiple times but
with only a constant factor blowup in total space as the trie gets covered by them; (ii)
it exploits a novel way for decomposing a trie into components and subcomponents
based on judiciously balancing the progress in scanning the query pattern with the
progress in reducing the number of strings left as matching candidates.

The aforementioned contribution was improved in [14] where a cache-oblivious
string B-tree (COSB-tree) was presented that can search asymptotically optimal and
insert/delete nearly optimal and can perform range queries with no extra disk seeks.
An interesting characteristic of the structure is that it employs front compression
to reduce the size of the stored set. In particular for a set D, assume that we
denote by ||D|| the sum of key lengths in D and by front(D) the size of the
front-compressed D. The proposed structure has space complexity O(front(D))
and possesses the following performance characteristics: (i) insertion of a key k
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requires O(1 + ||k||(log2 front(D))/B + logB N ) memory transfers with high proba-
bility (w.h.p.), (ii) searches and successor/predecessor queries for a key k ′ require an
optimal O(1 + ||k ′||/B + logB N ) block transfers w.h.p. The result set Q is returned
in compressed representation and can be decompressed in additional O(||Q||/B)
memory transfers, which is optimal for front compression. Because COSB-trees,
store all keys in order on disk range, queries involve no extra disk seeks.

An important component of the COSB-tree of independent interest is the front-
compressed packed memory array (FC-PMA) data structure. The FC-PMA main-
tains a collection of strings D stored in order with a modified front compression. As
is shown in [14], the FC-PMA has the following properties: (i) for any ε, the space
usage of the FC-PMA can be set to (1 + ε) front(D) while enabling a string k to be
reconstructed with O(1 + ||k||/(εB)) memory transfers, (ii) inserting and deleting a
string k into a FCPMA requires O(||k||(log2 front(B))/(εB)).

The interested reader can find a nice exposition of some of these plus other struc-
tures in [77, 28].

1.6 CONCLUSIONS

String indexing algorithms and data structures play a crucial role in the field of com-
putational molecular biology, as most information is stored by means of symbol se-
quences. Storing, retrieving, and searching in this vast volume of information is a
major task to have several specific queries and problems being solved efficiently. In
this chapter, we have presented the main indexing structures in the area.

We conclude by noting that despite the great progress in the string indexing re-
search field in the last decade, the frontiers need to move a little bit further by means
of: (i) minimizing the volume of data with compression and searching in compressed
files, (ii) minimizing the extent of the indexing structures by compressing them,
too [29], (iii) building and placing the indexing structures cache obliviously to min-
imize the cache misses [31], and (iv) building the indexing structures efficiently in
parallel, using the model multiprocessor machines and operating systems.
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