
Synchronization and Arbitration in Digital Systems D. Kinniment
© 2007 John Wiley & Sons, Ltd

1
Synchronization, Arbitration
and Choice

1.1 INTRODUCTION

Digital systems have replaced their analog counterparts in computers, signal
processing and much of communications hardware at least partly because
they are much more reliable. They operate in a domain of absolutes where
all the data moving from one place to another is quantized into defi ned high
or low voltages, or binary coded combinations of highs and lows. The great
advantage of this is that the data represented by the voltages can be pre-
served in the presence of small amounts of noise, or variations in component
or power supplies, which can affect the voltages. A small variation in a high
is still easily distinguished from a low, and a simple circuit, such as a gate or
an inverter, can easily restore the correct output level.

In a synchronous system the signal states are also held by fl ip-fl ops
when the clock ticks. Clocking digitizes time into discrete intervals of
time, which are multiples of the clock cycle, with data computed dur-
ing the fi rst part of the cycle, and guaranteed correct on the next clock
rising edge. Small variations in the time taken to evaluate a partial result
have no effect on a correctly designed digital system, the data is always
correct when it is next clocked. This discipline of two discrete voltage
levels and time measured in multiples of the clock period allows most
digital components to operate in a controlled environment, provided
their outputs do not vary by more than a certain amount from the
specifi ed highs and lows, and their output times change only within

CO
PYRIG

HTED
 M

ATERIA
L

2 SYNCHRONIZATION, ARBITRATION AND CHOICE

a narrow band of times, a processor built on the components can be
shown to operate correctly.

While this idea has worked well in electronic design for over 50 years
the ideal world of a single system of discrete voltage levels and time
intervals is not the real world. Within a processor binary data can be
moved from one place to another under the control of a single clock, but
to be useful the processor must be able to interact with inputs from the
outside world, and to send its results back to the real world. Events in
the real world are uncertain and unpredictable, the voltage levels from
sensors are, at least initially, not the standard high or low voltage, they
can occur at any time and can be any voltage level. We can try to hide
this problem by using an analog-to-digital converter component which
attempts to provide only standard outputs from analog inputs, but this
can only ever be partly successful, since it involves a decision when an
input is approximately halfway between two possible discrete output
representations and one or the other output must be chosen. The map-
ping of input signal changes to discrete times also presents a problem.
When a new input occurs that needs attention from a digital processor,
the closed world of the processors discrete voltages and times must be
interrupted so that the input can be dealt with. Again, there is a choice,
which one out of an integral number of discrete clock cycles should be
used to start the processing of that input? Since the input change can
occur at any time, there will be occasions when the input is just before
the next clock tick, and occasions when it is just after. If it is just before,
it gets processed on the next tick, if it is after; it waits until the follow-
ing tick to be noticed. The problem comes when it happens very close to
the clock tick, because then there are two possibilities, this cycle, or the
next cycle, and both of them are more or less equally desirable.

1.2 THE PROBLEM OF CHOICE

It looks as if it is easy to make the choices, and it is not a new problem.
Whether you can make the choice in an acceptable time, and what it is
that determines the choice it something that worried philosophers in the
middle ages [1]. One of the fi rst clear statements of the arguments was
given by the Arab philosopher Abu Hamid Muhammad Ibn Muhammad
al-Tusi al-Shafi ’i al-Ghazali who wrote around 1100 AD:

Suppose two similar dates in front of a man who has a strong desire for them,
but who is unable to take them both. Surely he will take one of them through

a quality in him, the nature of which is to differentiate between two similar
things.

He felt that it was obvious that a man or woman would be able to make
the choice, and more specifi cally, to make the choice before starving to
death from lack of food. But in order to decide you have to have some
basis for choosing one course of action or another when they appear to
be equal in value. His ‘differentiating quality’ was free will, which was
thought to be inherent in mankind, but not in animals or machines.

The counter-argument is best given by Jehan Buridan, Rector of Paris
University around 1340, in his example of the problem of choice which
is usually known as the paradox of Buridan’s Ass. In this example a
dog is presented with two bowls, or an ass with two bales of hay. It
has to choose one of them to eat or else starve to death. Animals were
chosen deliberately here because they were not thought to be capable of
free will, but even so, he discounts free will as the determining factor
writing:

Should two courses be judged equal, then the will cannot break the deadlock, all
it can do is to suspend judgment until the circumstances change, and the right
course of action is clear.

His insight was that the time required for a diffi cult decision would
depend on the evidence available to make it, and if there is insuffi cient
evidence it takes a long time. The implication is that there would be cases
when even a man could starve to death because he could not decide.

1.3 CHOICE IN ELECTRONICS

As a philosophical discussion, the problem of choice without preference
does not have much impact on real life, but it began to acquire real
importance in the 1950s when the fi rst digital computers were designed.
For the fi rst time many inputs could be processed in a very short space
of time, and each input had fi rst to be synchronized to the processor
clock [2].

The solution seems obvious, if a digital signal represents the presence
of an input, then it may appear at any time, but it can be synchronized
to the clock with a simple fl ip-fl op. This circuit is shown in Figure 1.1.
When the system clock goes high, the output of the fl ip-fl op will go high
if the input was present, and not if it was absent so that the request can

CHOICE IN ELECTRONICS 3

4 SYNCHRONIZATION, ARBITRATION AND CHOICE

be processed in the next clock cycle. The diffi culty with this solution is
that the input request timing may violate the conditions for which the
fl ip-fl op specifi cation is valid. A fl ip-fl op data input must not change
after a specifi ed set-up time before the clock rising edge, or before a
specifi ed hold time after the clock edge. If it does, any guarantee that
the output time will be within the specifi ed times cannot hold.

In fact, as the input change gets closer to the clock edge, the fl ip-fl op
takes and longer to respond because the energy supplied by the overlap
between data and clock inputs gets less and less, so it takes longer and
longer to decide whether or not to interrupt the processor. Eventually,
it reaches a level that is just suffi cient to bring the Q output of the fl ip-
fl op to half way between a high, and a low value. At this point the
fl ip-fl op output is exactly balanced between high and low when the
clock edge has fi nished, with no determining factor to push it one way
or the other, so it can stay there for a relatively long time. This halfway
state is known as a metastable state because it is not stable in the long
term, it will eventually go on to be high or fall back to low, but in the
metastable state the circuit has no drive towards either the high or low
output values. The fi nal outcome may be decided by internal noise, and
though a metastable circuit will eventually settle in a well-defi ned state,
the time taken is indeterminate, and could be very long.

Input request

System clock

Data

Clock

Q

Process

this cycle

Input request

System clock

Set-up

time

Hold

time

Change not

allowed

Figure 1.1 Flip-fl op specifi cation.

If the input time cannot be constrained to change before the set-up
time and after the hold time, then the fl ip-fl op output time cannot be
constrained either, so all output times relative to the clock also have a
fi nite probability. This can have a knock on effect. If the output can
change at any time between one clock edge and the next, it has not been
truly synchronized to the clock, and might change part way through
a clock cycle. This breaks the rules for a reliable digital system, with
the result that systems may fail unpredictably because the processing
of the interrupt may not be correct. The probability of a failure in the
synchronization process can be very low for an individual interrupt,
but because digital processors have to deal with very many inputs per
second, the probability of catastrophic failure over a long period of time
is not low, and must be at least quantifi ed. It can only be eliminated by
removing the need to synchronize, or reduced by allowing more time
for the synchronizer to settle. Since there is always a small possibility
of a very long settling time we must accept the possibility of failure in
systems with a fi xed clock period.

This fundamental problem was known to a few people in the early
years of computing [2,3], but many, if not most engineers were not aware
of the problems presented by synchronizers. In 1973 a special work-
shop on synchronizer failures was held by Charles Molnar, Director of
the Computer Systems Laboratory of Washington University, St Louis
to publicize the problem and following this, more people began to
accept that computers had been, and were being designed that were
unreliable because the designers did not fully understand the problem
of metastability. In an article in Scientifi c American that year a Digital
Equipment Corporation engineer is quoted as saying ‘ninety-nine out of
a hundred engineers would probably deny the existence of the problem.
They believe that conservative design is all you need; you simply allow
enough time for a fl ip-fl op to reach a decision. But as computers are
designed to run faster and faster the safety factor gets squeezed out…
the problem looks irresolvable.’ Even as late as the 1980s a major glitch
in the early warning missile radar system was attributed to a poor
understanding by designers of the issue of synchronization.

1.4 ARBITRATION

A related problem occurs even if there is no clock. Without a clock, there
is no need for synchronization between the input and the clock, but
there is a need for arbitration between two competing inputs. Suppose

ARBITRATION 5

6 SYNCHRONIZATION, ARBITRATION AND CHOICE

two entirely seperate processors are competing for access to a memory,
and only one can be allowed access at a time. The fi rst to request access
might get it, and when the memory access is complete, the second is
allowed in. But if both make the request within a very short space of
time, something must arbitrate between the requests to decide which
gets the fi rst access and which the second. As far as the hardware is
concerned arbitration is much the same as synchronization, instead
of deciding whether the request or the clock tick came fi rst, we are
deciding between two (or more) requests. It is only different in the way
the arbiter output is treated. If there is no clock in the memory, it does
not matter when the arbiter decides which input to accept, provided the
data returned by the memory can be processed by the requester at any
time. An arbiter can be designed which does not ever fail as a synchro-
nizer might do, because it does not have to make the decision within a
clock cycle. As the two requests get closer and closer in time, the arbi-
tration takes longer and longer, and since the requests can occur within
an infi nitesmally small time, the response can take an infi nitely long
time. Instead of a failure rate there is a small probability of very long
times, which may matter just as much in a real-time application as small
probability of failure. Does it matter if a plane fl ies into a mountain
because the navigation system fails, or it fl ies into the mountain because
it cannot decide in time which way to go around?

1.5 CONTINUOUS AND DISCRETE QUANTITIES

Are we stuck with computer systems that may fail, or may not provide
answers in the time we need them, or is there some circuit solution that
will solve the problem? Unfortunately the basic problem has little to do
with circuits. It is that real world inputs are continuous in both voltage
and time. A continuous voltage input can have any value between the
maximum and the minimum voltage level, say between 0 and 1 V, and
there are an infi nite number of possible values, 0.1, 0.2, 0.5 V, etc.
between those two limits. On the other hand there are only two possible
voltages for a binary coded signal, which might be 0 or 1 V. To decide
which we must make a comparison between a fi xed value, maybe 0.5 V,
and the input. If the input is less than 0.5 V the output is 1, and if
it is greater than 0.5 V the output is zero. It is possible to choose a
voltage of 0.49 V as an input. This will be only 0.01 V different from the
comparison value, so the comparison circuit has only a small voltage to
work on. Any real physical circuit takes some time to produce an output

of 1 V, and the smaller the input, the longer it takes. With a 0.4999 V
input the circuit has an input of only 0.0001 V to work on, so it takes
much longer to make the comparison, and in general there is no limit to
the time that might be required for the comparison, because the input
to the comparator circuit can be infi nitesimally small.

Similarly, the processor interrupt can occur at an infi nite number of
instants between one clock edge and the next, and comparisons may
have to be made on an infi nitesimally small time interval. Again that
could mean an infi nite response time, and there will be a resulting
probability of failure. To compute the failure rate you only need to
decide the maximum time that the synchronizer has available to make
its comparison, and then estimate how often the comparator input is
small enough to cause the output to exceed that maximum.

1.6 TIMING

Synchronization of data passing between two systems is only necessary
if the timing of the systems is different. If both systems work to the
same clock, then they are synchronous and changes in the data from
one system are always made at the same time in its clock cycle. The
receiving system knows when the data is stable relative to its own clock
and can sample it at that time so no synchronization is necessary. There
are many possible clocking schemes for systems on a chip and Figure 1.2
shows three of them. In (a) a single clock is fed to all the processors, so
that the whole system is essentially synchronous.

If the two clocks are not the same but linked, maybe through a phase
locked loop, the relative timing might vary a little, but is essentially
stable. Provided this phase variation is limited, it is still possible to
transfer data at mutually compatible times without the need to use a
synchronizer. The relationship is known as mesochronous. In (b), the
individual processor clocks are all linked to the same source so that the
timing is still synchronous or mesochronous. Often it is not possible
to link the clocks of the sending and receiving system as they may be
some distance apart. This is the situation in (c). Both clock frequen-
cies may be nominally the same, but the phase difference can drift over
a period of time in an unbounded manner. This relationship is called
plesiochronous and there are times when both clocks are in phase and
times where they are not. These points are to some extent predictable
in advance, so synchronization can be achieved by predicting when
confl icts might occur, and avoiding data transfers when the two clocks

TIMING 7

8 SYNCHRONIZATION, ARBITRATION AND CHOICE

Processor 1

Processor 5

Processor 4

Processor 3

Proces

(a)

(b)

sor 2

Clock

Processor 1

Processor 5

Processor 4

Processor 3

Processor 2

High
frequency

Clock

f/3

f/5

φ/3

f/2

Proc

(c)

essor 1
Clock 1

Processor 5
Clock 5

Processor 4
Clock 4

Processor 3
Clock 3

Processor 2
Clock 2

Figure 1.2 Clocking schemes: (a) single clock, multiple domains; (b) rational clock
frequencies; (c) multiple clocks.

confl ict. If the time frame of one system is completely unknown to the
other, there is no way that a confl ict can be avoided and it is essential
that data transfers are synchronized every time. In this case the path
is heterochronous. Heterochronous, plesiochronous and mesochronous
are all examples of asynchronous timing.

1.7 BOOK STRUCTURE

The rest of this book has three main Parts. Part I is concerned with
basic models of metastability in circuits, Part II with synchronization in
systems, and Part III with arbitration.

In Part I, Chapters 2-5, mathematical models for metastability are
derived which can be applied to simple synchronizer circuits with a view
to explaining how the failure rates vary in different conditions. Having
established the mathematical tools for comparing different circuits we
present the key circuits used for synchronization and arbitration, the
mutual exclusion element (MUTEX), the synchronizer Jamb latch,
and the Q-fl op. Modifi cations of these basic circuits to achieve higher
performance and arbitration between more than two inputs are also
described. Chapter 4 shows how thermal and other noise effects affect
metastability, and the basic assumptions that must be satisfi ed in a system
to allow the simple MTBF formulas to be used. Chapter 5 describes
how metastability and synchronizer reliability can be measured. The
metastability Tw and resolution time constant τ are defi ned and then
methods for plotting typical histograms of failures against output time.
From this we derive mean time between synchronizer failure in a system
against synchronizer time, and input time against output time. Test
methods suitable for on and off chip synchronizer measurement, both
for custom ICs and fi eld programmable devices, are discussed together
with appropriate time measuring circuits. System reliability is depend-
ent on metastable events occurring very late in the clock cycle, where
the fi nal state is determined by noise, or ‘deep metastability’. Methods
for measuring effects in this region including the effect of the back edge
of the clock are explained.

In Part II, Chapters 6 and 7 discuss how synchronizers fi t into a
digital system. In Chapter 6, a system level view of synchronizers in
presented. Where synchronization occurs in a multiply clocked system,
how it can be avoided, and where it cannot be avoided, how to mitigate
the effects of latency due to synchronizer resolution time are discussed.

BOOK STRUCTURE 9

10 SYNCHRONIZATION, ARBITRATION AND CHOICE

High-throughput, low-latency, and speculative systems are described in
Chapter 7, with the trade-offs between these two aspects of design. An
alternative to multiple independent clocks is to use stoppable or pau-
sible clocks. How these fi t into a GALS system shown in Chapter 8.
Chapter 9 concludes this Part.

Chapters 10–14 (Part III) present ideas about designing complex
asynchronous arbiters using the building blocks studied in the previous
chapters, such as synchronizers and mutual exclusion elements. These
arbiters are built as speed-independent circuits, a class of circuits that
guarantees their robust operation regardless of gate delays and any delay
in handshake interconnects with the environment. A general defi nition
for an arbiter is given and then a range of arbiters is covered, from simple
two-way arbiters to tree-based and ring-based arbiters, fi nishing with
a detailed examination of various types of priority arbiters, including
static and dynamic priority schemes. The behaviour of arbiters is
described throughout by Petri nets and their special interpretation signal
transition graphs. The latter replace sets of traditional timing diagrams
and provide a compact and formal specifi cation of nontrivial dynamic
behaviour of arbiters, potentially amenable to formal verifi cation by
existing Petri net analysis tools. The presented models and circuits
enable solving complex arbitration problems encountered in a wide
range of applications such as system-on-chip buses, network-on-chip
and asynchronous distributed system in a more general sense.

