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The Importance of Astrophysical
Distance Measurements

When we try to pick out anything by itself, we find it hitched to everything else in the Universe.
— John Muir (1838-1914), American naturalist and explorer

Each problem that I solved became a rule, which served afterwards to solve other problems.
— René Descartes (1596-1650), French philosopher

Accurate distance measurements are of prime importance for our understanding of the
fundamental properties of both the Universe as a whole and the large variety of astrophysical
objects contained within it. But astronomical distance measurement is a challenging task:
the first distance to another star was measured as recently as 1838, and accurate distances to
other galaxies — even the nearest — date only to the 1950s, despite evidence of the existence
of ‘spiral nebulae’ as early as Lord Rosse’s observations in the mid-nineteenth century.
This is not surprising, since the only information we have about any object beyond our solar
system includes its position (perhaps as a function of time), its brightness (as a function of
wavelength and time) and possibly its radial velocity and chemical composition.

While we can determine highly accurate distances to objects in our solar system using
active radar measurements, once we leave the Sun’s immediate environment, most distance
measurements depend on inferred physical properties and are, therefore, fundamentally
uncertain. Yet at the same time, accurate distance measurements on scales of galaxies and
beyond are crucial to get a handle on even the most basic questions related to the age
and size of the Universe as a whole as well as its future evolution. The primary approach
to obtaining distance measurements at increasingly greater distances is by means of the
so-called distance ladder, where — in its most simplistic form — each rung is calibrated
using the rung immediately below it. It is, therefore, of paramount importance to reduce the
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statistical uncertainties inherent to measuring distances to even the nearest star clusters in our
Milky Way, because these objects are the key benchmarks for calibrating the cosmic distance
scale locally. In this book, we take the reader on a journey from the solar neighbourhood to
the edge of the Universe, en passant discussing the range of applicable distance measurement
methods at each stage. Modern astronomers have developed methods of measuring distances
which vary from the mundane (the astronomical equivalent of the surveyor’s theodolite)
to the exotic, such as the bending of light in general relativity' or using wiggles in the
spectrum of the cosmic microwave background (CMB).

Not only do we provide an up-to-date account of the progress made in a large number of
subfields in astrophysics, in turn leading to improved distance estimates, but we also focus
in particular on the physics underlying the sometimes surprising notion that all of these
methods work remarkably well and give reasonably consistent results. In addition, we point
out the pitfalls one encounters in all of these areas, and particularly emphasize the state of
the art in each field: we discuss the impact of the remaining uncertainties on a complete
understanding of the properties of the Universe at large.

Before embarking on providing detailed accounts of the variety of distance measurement
methods in use, here we will first provide overviews of some of the wide-ranging issues
that require accurate determinations of distances, with appropriate forward referencing to
the relevant chapters in this book. We start by discussing the distance to the Galactic Centre
(Section 1.1). We then proceed to discuss the long-standing, although largely historical
controversy surrounding the distance to the Large Magellanic Cloud (LMC) (Section 1.2).
Finally, in Section 1.3 we go beyond the nearest extragalactic yardsticks and offer our views
on the state of the art in determining the 3D structure of large galaxy clusters and large-scale
structure, at increasing redshifts.

1.1 The Distance to the Galactic Centre

The Galactic Centre hosts a dense, luminous star cluster with the compact, nonthermal
radio source Sagittarius (Sgr) A* at its core. The position of the latter object coincides
with the Galaxy’s kinematic centre. It is most likely a massive black hole with a mass
of Mgy ~ 4.4 x 10° Mg (see the review of Genzel et al. 2010), which is — within the
uncertainties — at rest with respect to the stellar motions in this region. The exact distance
from the Sun to the Galactic Centre, R, serves as a benchmark for a variety of methods
used for distance determination, both inside and beyond the Milky Way. Many parameters of
Galactic objects, such as their distances, masses and luminosities, and even the Milky Way’s
mass and luminosity as a whole, are directly related to Ry. Most luminosity and many mass
estimates scale as the square of the distance to a given object, while masses based on total
densities or orbit modelling scale as distance cubed. This dependence sometimes involves
adoption of a rotation model of the Milky Way, for which we also need to know the Sun’s
circular velocity with high accuracy. As the best estimate of Rg is refined, so are the estimated
distances, masses and luminosities of numerous Galactic and extragalactic objects, as well
as our best estimates of the rate of Galactic rotation and size of the Milky Way. Conversely,
if we could achieve a highly accurate direct distance determination to the Galactic Centre,
this would allow reliable recalibration of the zero points of a range of secondary distance

! Terms and concepts which appear in the Glossary are rendered in boldface font at first occurrence in the text.
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calibrators, including Cepheid, RR Lyrae and Mira variable stars (Sections 3.5.2, 3.5.5
and 3.5.3, respectively), thus reinforcing the validity of the extragalactic distance scale (cf.
Olling 2007). In turn, this would enable better estimates of globular cluster (GC) ages,
the Hubble constant — which relates a galaxy’s recessional velocity to its distance, in the
absence of ‘peculiar motions’ (see Section 5.1) — and the age of the Universe, and place
tighter constraints on a range of cosmological scenarios (cf. Reid et al. 2009b).

1.1.1 Early Determinations of R

The American astronomer, Harlow Shapley (1918a,b), armed with observations of GCs
taken with the Mount Wilson 60-inch telescope (California, USA) since 1914, used the
light curves of Cepheid variables and, hence, their period—luminosity relation to draw a
map of the distribution of 69 GCs with respect to the Sun’s position and the plane of the
Milky Way (see Figure 1.1). He eventually extended this to include all 93 Galactic GCs
known at the time. He concluded that the Sun was not located in or near the Galactic Centre —
as previously deduced from star counts that were, in fact, heavily affected by interstellar
extinction in the Galactic plane (e.g. Herschel 1785; Kapteyn 1922) — but at Galactic
longitude ¢ >~ 325° (in the direction of the constellation Sagittarius), at a distance of
~13 - 25 kpc, i.e. significantly greater than the current best estimate of 8.28 = 0.15 £ 0.29
kpc, where the two errors represent the statistical and systematic uncertainties (Genzel et al.
2010; see also Reid 1993; Eisenhauer et al. 2003; Horrobin et al. 2004; Ghez et al. 2008;
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Figure 1.1 (Left) Projection of the positions of globular clusters perpendicularly to the Calactic
midplane (Shapley 1918a,b). Cross: position of the Sun. The unit of distance is 100 parsec (pc).
The position of the GC NGC 4147 is indicated by the arrow (outside the figure boundaries).
(Reprinted from H. Shapley and M. ). Reid, Astrophysical Journal, 48, Studies based on the colors
and magnitudes in stellar clusters. VII. The distances, distribution in space, and dimensions of
69 globular clusters, p. 154-181, Copyright 1918, with permission of the AAS.) (Right) Up-
to-date distribution of Galactic GCs (data collected by Harris 1996; 2010 edition). The Sun
is located at the origin (indicated in yellow) and distances are based on RR Lyrae period—
luminosity calibration (Section 3.5.5). The Galactic Centre is indicated by a red star. The blue
dashed box in the bottom panel represents the area shown in the top panel.
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Figure 1.2  Projection of Galactic open clusters on the same plane as in Figure 1.1 (Trumpler
1930). Dotted line: plane of symmetry of the open clusters. The Sun is located slightly to the left
of the vertical axis, in the midst of a subset of open clusters shown as open circles (clusters within
1 kpc of the Sun). (Reprinted from R. J. Trumpler, Lick Observatory Bulletin, XIV, Preliminary
results on the distances, dimensions, and space distribution of open star clusters, p. 154-188,
Copyright 1930, with permission of UC Regents/Lick Observatory.)

Gillessen et al. 2009a; Majaess et al. 2009). He also found that the distribution of GCs
above and below the Galactic plane was approximately symmetrical, with no clusters seen
closer than 1300 pc from the plane.

Although Shapley’s lower limit of Ry ~ 13 kpc is within a factor of 2 of the currently
accepted value, his method of distance determination was affected by a number of partially
compensating systematic errors. His Cepheid period—luminosity calibration was too faint
by ~1 mag, while he used ‘Population I’ Cepheids (W Virginis stars; see Section 3.5.4)
instead of the type I Cepheids he thought he had observed. The former are generally some
2 mag fainter than the latter, leading to a distance scale that was ~1 mag too bright and a
distance overestimate by a factor of ~1.6 (cf. Reid 1993).

By taking advantage of radial velocity and proper motion measurements tracing the
differential rotation of stars in the solar neighbourhood — in the sense that stars closer to
the Galactic Centre travelled faster than their counterparts at greater distances — the Dutch
astronomer Jan Hendrik Oort (1927) established the centre of rotation about the Milky
Way to within 2° of Shapley’s estimate, at £ = 323°. Note that this was at a much smaller
distance, approximately 5.9 kpc, than Shapley’s estimate. He adopted Lindblad’s (1927)
Galactic rotation model and assumed a circular velocity at the solar circle of v. = 272 km
s~ !, which is now known to be considerably greater than International Astronomical Union
recommendation of v, = 220 km s~!.2

The discrepancy between Shapley’s and Oort’s distance estimates to the Galactic Centre
was predominantly caused by interstellar extinction, which was largely unknown at the time
until Robert J. Trumpler’s discovery of the effects of interstellar dust grains in the 1930s.
In 1929, Trumpler, a Swiss—American astronomer based at Lick Observatory (California,
USA), tried to use open star clusters to repeat what Shapley had done with the Milky Way’s
GC population. He knew that open clusters tended to lie in the disc of the Galaxy and
reasoned that this was a reasonable way to clarify the disc’s shape (see Figures 1.2 and 1.3).

2 This would also have contributed to a smaller estimated distance to the Galactic Centre than that resulting from adoption of
Ry = 8.0-8.5 kpc, which is currently generally adopted and is in line with the International Astronomical Union recommendation
of Rp = 8.0 kpc. Note that Reid et al. (2009a) recently obtained a revised best-fitting Galactic rotation velocity of v, = 254 £
16 km s~! based on a Galaxy-wide survey of masing sources in high-mass star-forming regions.

3 Although Trumpler is often credited with this discovery, its effects were first reported by Friedrich Georg Wilhelm von Struve
in 1847.
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Figure 1.3 Trumpler’s (1930) view of the distribution of open and globular clusters in the Milky
Way. Solid dots: GCs. Shaded area: open clusters (see Figure 1.2). Shaded circles: Magellanic
Clouds. (Reprinted from R. J. Trumpler, Lick Observatory Bulletin, XIV, Preliminary results on
the distances, dimensions, and space distribution of open star clusters, p. 154-188, Copyright
1930, with permission of UC Regents/Lick Observatory.)

Determining the distances to his sample of open clusters was key. Trumpler devised two
ways to achieve this. First, he used a version of the main-sequence fitting technique (see
Section 3.2.1) to estimate distances, in essence relying on the unproven principle of ‘faint-
ness equals farness’, which was unproven in the sense that the idea had not been shown to
work reliably. In an alternative technique, he deduced that if all open clusters had approxi-
mately the same physical, linear size, then the more distant ones would have smaller angular
sizes, a ‘smallness equals farness’ argument. When he compared the results of both methods,
he found that the main-sequence fitting technique gave systematically larger distances.

Unknowingly, Trumpler had stumbled on the evidence that the space between the stars is
not entirely empty. Before Trumpler, it was known that there were obvious dark clouds in the
sky which blocked the light from behind, such as the Coalsack Nebula. However, Trumpler
showed that such effects were not confined to distinct clouds, but to a general ‘fogginess’
of space (see also Section 6.1.1). Its effect on the main-sequence fitting technique is to add
aterm, A, to the distance modulus equation to make the shift of the apparent magnitudes
of Trumpler’s clusters larger than they would have been in the absence of absorption:

my — My = 5log(d/pc) — 5+ Ay, (1.1)

where my and My are the apparent and absolute magnitudes in the optical V filter, and
d is the distance sought. Meanwhile, Trumpler’s distance to the Galactic Centre, properly
corrected for the effects of extinction, was actually very close to the present-day value.
Note that because interstellar dust is most concentrated in the Galactic plane, Shapley’s
experiment with GCs was not affected, at least not significantly, by the interference of
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absorption and scattering by dust. However, there is a clear lack of objects in his work in the
direction of the Galactic midplane, where dust blocked his view and created the so-called
‘zone of avoidance’ for good GC targets.

Interestingly, Shapley commented that ‘... within 2000 parsecs of that plane there are
only five [GCs], four of which are among the clusters nearest the sun.” Discussing the
frequency distribution of his observed GCs as a function of distance from the Galactic
plane, he notes that ‘[t]he completion of that curve, in a form naturally to be expected for
the frequency of objects concentrated toward the Galaxy, would require at least 50 globular
clusters within 1500 parsecs of the plane; there is, however, only one, Messier 22, ..." and
‘[h]ence we conclude that this great mid-galactic region, which is particularly rich in all types
of stars, planetary nebulae, and open clusters, is unquestioningly a region unoccupied by
globular clusters.’

1.1.2 Modern Results

Since the presence of interstellar dust severely hampers our view of the Galactic Centre,
longer-wavelength (IR and radio) observations (see e.g. Figure 1.4) have been employed
extensively to arrive at more accurate Galactic Centre distance estimates. Reid (1993) and
Genzel et al. (2010) provide extensive reviews of the range of methods used, as well as
their accuracy at the time of these publications. In this section, we focus on the primary,
direct methods of distance determination to the Galactic Centre (the reader is referred to
Reid 1993, Genzel et al. 2010, as well as the relevant chapters elsewhere in this book for
alternative methods) and summarize the current state of the art in this field.

Following Reid (1993), we distinguish the variety of methods used to determine Rg
into primary, secondary and indirect measurements. Primary measurements determine Ry

Sgr B2 Sgr B1

Figure 1.4 Combined radio image, covering a range of radio wavelengths, of the Galactic
Centre region based on observations obtained with the Very Large Array and the Green Bank
Telescope. The horizontal and vertical coordinates represent Galactic longitude and latitude,
respectively. The linear filaments near the top are nonthermal radio filaments (NRFs). SNR:
supernova remnant. Sgr: Sagittarius. (Reprinted from Yusef-Zadeh et al., NRAO Press Release
(Online), Origin of enigmatic Galactic Center filaments revealed, Copyright 2004, with per-
mission of NRAO/AUI/NSF.)
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directly, without having to rely on standard candle calibration (secondary methods) or a
Galactic rotation model (one type of indirect method). The former include using proper
motions and trigonometric parallax measurements of masing interstellar molecules (see
also Section 3.7.4),* OH/IR stars — late-type stars that exhibit 1612 MHz OH maser emis-
sion following far-IR ‘pumping’ of the population levels — near the Galactic Centre, direct
Keplerian orbit measurements and statistical estimates based on assuming equality of radial
and tangential (i.e. isotropic) velocity dispersions of the Galactic Centre star cluster. Sec-
ondary measurements include Shapley’s method of using the centroid of the GC distribution
— which is, in essence, based on adoption of a suitable period—luminosity relation for vari-
able stars and assumes that the GC population is symmetrically distributed with respect to
the Galactic Centre (see Reid 1993 and Figure 1.1 for a more recent update) — and of other,
presumably symmetrically distributed, bright objects, and calibration based on RR Lyrae
and Mira period—luminosity relations (cf. Section 3.5). In addition to these methods, indi-
rect methods rely on either Galactic rotation models, the Eddington luminosity of X-ray
sources (e.g. Reid 1993 and references therein) or the planetary nebula luminosity function
(e.g. Dopita et al. 1992; see Section 4.4), among other endeavours (see also Vanhollebeke
et al. 2009, their Table 1).

1.1.2.1 Maser-Based Geometric Distances

The molecular material associated with massive stars at the time of starbirth is closely
traced by water vapour. Population inversion of the H>O energy levels — which refers to a
configuration with higher occupancy of excited than the lower energy states — by ioniza-
tion caused by collisional pumping of the rotational energy levels and other shock-related
physical processes (e.g. Elitzur 1992; Lo 2005) by the intense radiation from these massive
stars and subsequent coherent de-excitation causes 22 GHz masing ‘spots’ to appear in the
dust-rich envelopes of asymptotic giant branch stars, with sizes of ~ 10!" m and brightness
temperatures® as high as 10'~10'3 K (cf. Reid 1993). These small sizes and high bright-
ness temperatures render these objects ideal tracers for proper-motion measurements using
Very Long Baseline Interferometry (VLBI) techniques (see also Section 3.7.4) because
of the associated micro-arcsecond (pas) astrometric accuracy over fields of view of a few
arcseconds in diameter.

Early geometric distance estimates to the Galactic Centre were based on the
‘expanding cluster parallax’ method (equivalent to the moving groups method; see Sec-
tion 2.1.3) applied to two H>O masers in the dominant, high-mass star-forming region
near the Galactic Centre, Sgr B2, resulting in distances of 7.1 and between 6 and 7 kpc
(Reid 1993) for Sgr B2 North® and Middle, respectively, with a combined statistical and
systematic uncertainty of +1.5 kpc (1o). The accuracy attainable for distance determina-
tions to HyO maser sources is limited by (i) the motions of the individual spots (which
exhibit random motions in all spatial coordinates of 15 km s~!, compared to typical mea-
surement uncertainties of a few km s~ 1); (ii) their distribution around the exciting star: a
nonuniform distribution, as observed for the Galactic Centre maser source Sgr B2 (North)

4 ‘Masers’ (microwave amplification by stimulated emission of radiation) are the microwave analogues of optical and IR lasers.

3 The brightness temperature is the temperature of a blackbody in thermal equilibrium with its surroundings which resembles the
observed intensity distribution of a ‘grey-body’ object at a given frequency.

6 Sgr B2 (North) is almost certainly located within 0.3 kpc of the Galactic Centre (Reid ef al. 1988; Reid 1993; Snyder et al.
1994; Belloche et al. 2008). Reid et al. (2009b) derive a Galactocentric distance of 0.13 + 0.06 kpc by adopting Ry ~ 8.0 kpc and
VLSR,Sgr B2 ¥ 62 km s~! for the velocity of Sgr B2 with respect to the local standard of rest and a low-eccentricity orbit.
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Figure 1.5 H,O maser parallax and proper-motion data and fits for Sgr B2N (Reid et al.
2009b). (Left) Positions on the sky (red circles). The expected positions from the parallax and
proper motion fit are indicated (black circles and solid line, respectively). (Middle) East (filled
blue circles and solid line) and North (open magenta circles and dashed line) position offsets
and best-fitting parallax and proper motions as a function of time. (Right) Same as the middle
panel, except the best-fitting proper motion has been removed, allowing the effects of only the
parallax to be seen. (Reprinted from M. J. Reid et al., Astrophysical Journal, 705, A trigonometric
parallax of Sgr B2, p. 1548-1553, Copyright 2009, with permission of the AAS.)

(Reid et al. 1988), combined with the requirement to determine the line-of-sight distance
from the central star for each spot, results in correlations between the maser source’s expan-
sion speed and its distance (cf. Reid 1993); and (iii) tropospheric signal propagation delays
after calibration (cf. Reid et al. 2009b).

Reid ez al. (2009b) recently provided the first trigonometric parallax measurement for the
Galactic Centre (see Figure 1.5), using H,O maser astrometry with the Very Long Baseline
Array (VLBA), the US VLBI network. Their measured parallax for Sgr B2 (North) and
Sgr B2 (Middle) is 0.128 = 0.015 and 0.130 = 0.012 milli-arcseconds (mas), respectively,
leading to a combined parallax for the Sgr B2 region of 0.129 £ 0.012 mas and, thus,
Ry = 7.81'8:? kpc. Correcting for the small offset between Sgr B2 and Sgr A* (Sgr B2 is

thought to be closer to the Sun than Sgr A*), they find Rg = 7.9f8:§ kpc. Their associated
measurement uncertainty, of order 10% for the first year’s data, will further reduce with an
increasing time baseline, as or, o< 1/ VN for N similar yearly observations.

OH/IR stars, of which many are found close to the Galactic Centre, can also potentially
be used for determination of Ry. To do so would require direct measurements of both the
angular diameter of the OH maser shell using radio interferometry and the light travel time

7Si0 masers typically occur at radii of ~8 a.u. (astronomical units) for Mira variables, which corresponds to ~1 mas at
Ry ~ 8 kpc.
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across the shell, based on the time lag between red- and blueshifted emission from the shell’s
far and near sides, respectively (cf. Schultz et al. 1978; Jewell et al. 1980). However, VLBI
observations have shown that the angular sizes of OH/IR shells near the Galactic Centre
are strongly affected by scattering off electrons in the interstellar medium (van Langevelde
and Diamond 1991; Frail et al. 1994; Lazio et al. 1999), hence preventing measurements
of intrinsic shell sizes and, thus, a direct determination of Rg. The scattering scales with
wavelength as A% (Lo ef al. 1981), so that only the highest-frequency (> 20 GHz) masers
are potentially suitable for precision astrometry.

OH/IR stars often also host 22 GHz H,O and/or 43 GHz (J = 1 — 0) silicon oxide (SiO)
masers in their circumstellar shells (e.g. Habing 1996 and references therein). Although
H,0O masers are highly variable, SiO masers are more stable. The latter can, therefore,
potentially be used for astrometry in the Galactic Centre region (e.g. Menten et al. 1997,
Sjouwerman et al. 1998, 2002; Reid et al. 2003). However, relatively few SiO masers are
known to be associated with OH/IR stars near the Galactic Centre (Lindqvist et al. 1991;
Sjouwerman et al. 2002), which has triggered searches for 43 GHz masers in other types
of mid-IR sources with colours typical of circumstellar envelopes and in blind surveys of
the Galactic Centre (see Sjouwerman et al. 2004 for a review). SiO masers at 43 GHz or
even at 86 GHz (J = 2 — 1) should be readily observable in the much more numerous
Mira, long-period and semi-regular variables, as well as red supergiant stars (e.g. Habing
1996; Messineo et al. 2002, 2004; Sjouwerman et al. 2004; and references therein). This
potentially offers an independent confirmation of distances determined based on period—
luminosity analysis. The latter are also affected by numerous systematic uncertainties, such
as an ambiguous extinction law, a bias for smaller values of Ry because of preferential
sampling of variable stars towards the near side of the bulge owing to extinction, and an
uncertainty in characterizing how a mean distance to the group of variable stars relates to
Rg (cf. Gould et al. 2001; Udalski 2003; Ruffle ef al. 2004; Kunder and Chaboyer 2008;
Majaess 2010; see also Chapter 6).

Current best estimates of Ry using secondary distance indicators include 8.24 4+ 0.08
(statistical) £ 0.42 (systematic) kpc based on Mira variables (Matsunaga et al. 2009; but
see Groenewegen and Blommaert 2005: Rg = 8.8 £ 0.4 kpc), 7.7 £ 0.4 kpc for RR Lyrae
based on statistical-parallax solutions (Dambis 2010) versus 8.1 = 0.6 kpc using RR Lyrae
observed as part of the Optical Gravitational Lensing Experiment (Majaess 2010), 7.9 £+
0.3 kpc based on § Scuti stars (McNamara et al. 2000; see Section 3.5.6) and 7.8 4= 0.6 kpc
using Cepheids (Majaess et al. 2009). Vanhollebeke et al. (2009) considered both the full
3D stellar population mixture in the Galactic bulge, including its metallicity distribution,
and the red clump stars alone, and concluded that Ry = 8.7f8:iz kpc. Their large distance
disagrees, however, with the recent Babusiaux and Gilmore (2005) and Nishiyama et al.
(2006) distance determinations based on near-IR data for the red clump (cf. Section 3.2.2).

1.1.2.2  Orbital Modelling

Careful analysis of the stellar motions in the inner regions of the Milky Way can potentially
result in a distance estimate to the Galactic Centre with significantly reduced uncertainties.
Genzel et al. (2000) derived a primary distance (statistical parallax; see Section 2.1.3) of
8.0 = 0.9 kpc (1o) based on a statistical comparison of proper motions and line-of-sight
velocities of stars in the central 0.5 pc, updated to Rg = 7.2 £ 0.9 kpc by Eisenhauer
et al. (2003) and subsequently to Ry = 8.07 £ 0.32 £ 0.12 kpc (statistical and systematic
uncertainties, respectively) by Trippe et al. (2008). Diffraction-limited near-IR observations



10 An Introduction to Distance Measurement in Astronomy

0.175

0.15

0.125

0.1

Dec. ("}

0.075

0.08

0.025

LN B NN B S S S SN S S S SN S S Sun S SN SN BN S Bun S Bum S S S BN BN S S S S B S S S
A b4 L & & & & Lk & & & & 2 & & o & 1 & 4 a s 3 & 4 & a 1 & & & & L & & & s L a

a i x o X a4 o 3 L g s oz o2 1 2 3z 2 2 1 2 2 a2 3

0.05 0.025 0 -0.025 0.0 -0.075
RA. (")

Figure 1.6 Orbital fit for the Galactic Centre star S2 (Gillessen et al. 2009b). Blue: New Tech-
nology Telescope/Very Large Telescope (European Southern Observatory) measurements. Red:
Keck telescope measurements. Black line: Keplerian fit. R.A., Dec.: right ascension, declination.
(Reprinted from S. Gillessen, et al., Astrophysical Journal, 707, The orbit of the star S2 around
Sgr A* from Very Large Telescope and Keck data, L114-L117, Copyright 2009, with permission
of the AAS and S. Gillessen.)

of the Galactic Centre reveal 22100 S stars® within 1” of Sgr A*. The positions of the brightest
sources can be measured to astrometric accuracies of 200-300 pas (limited by crowding
effects) using K-band adaptive-optics observations (Ghez et al. 2008; Fritz et al. 2010),
while radial velocities with a precision of ~15 km s~! for the brightest early-type stars
are typical (based on adaptive optics-assisted integral-field spectroscopy), decreasing to
~50-100 km s~! for fainter objects. The combined data set has enabled determination of

8 Eckart and Genzel (1996) identified the remarkably fast-moving stars in the ‘Sgr A* cluster’ which were known at that time by
‘S’ followed by a number. The number of S stars has since grown to more than 200 (Ghez et al. 2008; Gillessen et al. 2009b; but
note that both groups use different nomenclature).
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the orbits of some 30 stars (Eisenhauer et al. 2003, 2005; Ghez et al. 2005, 2008; Gillessen
et al. 2009b).

S2, the brightest of the S stars in the Galactic Centre, has completed a full revolution
around Sgr A* since high-resolution astrometric observations first became possible in 1992.
It has an orbital period of 15.9 years and traces a highly elliptical Keplerian orbit with an
orbital semi-major axis of 125 mas (see Figure 1.6; Schodel ef al. 2002; Ghez et al. 2008;
Gillessen et al. 2009a,b). Using a ‘dynamical parallax’ approach (see Section 2.2) allows
estimation of Ry (cf. Salim and Gould 1999), of which the accuracy is currently limited by
systematic uncertainties: Ry = 8.28 & 0.15 (statistical) & 0.30 (systematic) kpc (Gillessen
etal.2009a). This, in turn, constrains the black hole mass contained within its orbit to Mgy =
[4.30 & 0.06 (statistical) 4= 0.35 (due to uncertainties in Rg)] x 100 Mg. A similar black
hole mass of Mgy = (4.5 +0.4) x 10° M, was derived independently by Ghez et al.
(2008), for Rg = 8.4 = 0.4 kpc (see also the review of Genzel et al. 2010).

In principle, to fully solve the equations governing two masses orbiting each other requires
determination of six phase-space coordinates for each mass, as well as the two masses (e.g.
Salim and Gould 1999). However, given the observational and systematic uncertainties, the
mass of the star (ms2/msgr A+ ~ 5 X 10_6) and the three velocity components of Sgr A*
can be neglected without accuracy penalties (Eisenhauer et al. 2003), provided that it is at
rest with respect to the stellar cluster at the Galactic Centre. In addition, after subtraction of
the motions of the Earth and the Sun around the Galactic Centre, the proper motion of Sgr
A*is —7.24+ 8.5 and —0.4 + 0.9 km s~! in the plane of the Milky Way in the direction
of the rotation and towards the Galactic pole, respectively (Reid and Brunthaler 2004, with
updates by Reid er al. 2009a; see also Backer and Sramek 1999; Reid et al. 1999, 2003),
so that the velocity of Sgr A* is <1% of that of S2. Thus, the current best estimate of the
distance to the Galactic Centre has an associated combined uncertainty of +0.34 kpc.

1.2 The Distance to the Large Magellanic Cloud

The Magellanic Clouds, and in particular the Large Magellanic Cloud, represent the first
rung on the extragalactic distance ladder. The galaxy hosts statistically large samples of
potential ‘standard candles’ (objects with the same absolute magnitude), including many
types of variable stars. They are all conveniently located at roughly the same distance —
although for detailed distance calibration the LMC'’s line-of-sight depth and 3D morphology
must also be taken into account — and relatively unaffected by foreground extinction. The
LMC’s unique location allows us to compare and, thus, cross-correlate and calibrate a
variety of largely independent distance indicators, which can, in turn, be applied to more
distant targets. The distance to the LMC has played an important role in constraining
the value of the Hubble constant, Hy, the single most important parameter for determining
the age and size of the Universe and (with CMB fluctuations) the amount of dark matter and
the equation of state of dark energy, i.e. the ratio of the dark energy’s pressure and density.
The Hubble Space Telescope (HST) Key Project estimated Hy = 72 + 3 (statistical) £ 7
(systematic) km s~! Mpc~! (Freedman ez al. 2001). Most notably, the ~10% systematic
uncertainty is predominantly driven by the uncertainty in the assumed distance to the LMC
(Reid et al. 2009b). Closer to home, proper-motion measurements of objects in the LMC are
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Figure 1.7 Two-dimensional projections of the proper motions (North, West) for both the
LMC and the SMC (Razicka et al. 2009). KO6a,b: Kallivayalil et al. (2006a,b). PI0O8: Piatek
et al. (2008). J94: Jones et al. (1994). PPM: Kroupa et al. (1994). HIP: Kroupa and Bastian
(1997). PO2: Pedreros et al. (2002). AKF: combination of Freire et al. (2003) and Anderson and
King (2004a,b). The ellipses show the 68.3% confidence regions. (Reprinted from A. Rizicka
et al., Astrophysical Journal, 691, Spatial motion of the Magellanic Clouds: tidal models ruled
out?, p. 1807-1815, Copyright 2009, with permission of the AAS and A. RGzicka.)

now coming within reach (cf. Gardiner and Noguchi 1996; Kallivayalil et al. 2006a,b; Piatek
et al. 2008; Costa et al. 2009), with major progress in this area expected from precision
astrometric measurements in the Gaia era (see Section 2.1.2). A reliable distance estimate
to the LMC is of crucial importance to assess future evolution scenarios of the Milky Way—
LMC-Small Magellanic Cloud (SMC) system in the context of the Local Group of galaxies
(e.g. Kallivayalil et al. 2006a,b, 2009; Besla et al. 2007; Bekki 2008; Razicka et al. 2009;
and references therein; see also Figure 1.7).

It has become common practice to quote the distance to the LMC as a reddening-
corrected distance modulus, (m — M)g. Most modern determinations cluster around
(m — M)p = 18.5 mag (e.g. Schaefer 2008; Szewczyk et al. 2008; and references therein).
This was the value eventually settled on by the HST Key Project (Freedman et al. 2001;
see also Section 4.1), (m — M)g = 18.50 £ 0.10 mag (SO.IJj{é kpc; cf. Freedman and
Madore 1991), and is currently considered the consensus distance modulus. Freedman
et al. (2001) used a revised calibration of the Cepheid period—luminosity relation based on
the maser-based distance to NGC 4258 (see Section 3.7.4) as well as several secondary
distance measurement techniques — including Cepheids, RR Lyrae, Mira and eclipsing vari-
ables, the tip of the red giant branch (TRGB) as a standard candle, calibration of the red
clump and supernova (SN) 1987A light echoes (see, respectively, Sections 3.5.2, 3.5.5,
3.5.3,3.7.3,3.3.1, 3.2.2 and 3.7.2) over the range from approximately 60 to 400 Mpc — to
estimate the distance to the LMC. Many articles have focussed on obtaining a reliable dis-
tance to the LMC (see, for recent compilations, Westerlund 1997; Cole 1998; Gibson 2000;
Freedman et al. 2001; Benedict ef al. 2002; Clementini et al. 2003; Tammann et al. 2003;
Walker 2003; Alves 2004; Schaefer 2008) using a range of methods, each of which has, in
turn, been calibrated based on numerous independent techniques. For instance, calibration
of the most often used Cepheid period—luminosity relation is commonly achieved using
the surface brightness/Baade—Wesselink method, main-sequence fitting based on Galactic
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Figure 1.8 Cumulative distributions of |D| from observations and for Gaussian errors
(Schaefer 2008), where D = (u— 18.50)/0,  is the distance modulus and o the observational
uncertainty. The Kolmogorov=Smirnov test is a comparison between the cumulative distribu-
tions of |D| from observations (stepped curve) and the model (smooth curve). If the published
values of the LMC distance modulus are unbiased and have correctly reported error bars, the
two curves should lie relatively close together. If all but a few of the 31 post-2002 values
included are too tightly clustered about the HST Key Project value of i = 18.50 mag, the ob-
served curve should step high above the model curve. The maximum deviation between the
two curves is 0.33 at |D| = 0.59, which is very unlikely if the published data report unbiased
values with correct error bars. (Reprinted from B. E. Schaefer, Astronomical Journal, 135, A
problem with the clustering of recent measures of the distance to the Large Magellanic Cloud,
p. 112-119, Copyright 2008, with permission of the AAS and B. E. Schaefer.)

open cluster and/or GC colour-magnitude diagrams, nonlinear pulsation modelling, and
Hipparcos and HST parallaxes (see, respectively, Sections 3.5.1, 3.2.1, 3.5.5 and 2.1.2).

Although the published LMC distance moduli before Freedman et al.’s 2001 article
covered the range from ~18.1 to 18.8 mag, corresponding to distances from 42 to 58 kpc,’
with much smaller individual error bars than the overall spread of the values, the wide
scatter suddenly disappeared after the results of the HST Key Project were published, with
a ‘true’ distance modulus of 18.50 £ 0.02 mag implied by the 14 measurements published
between 2001 and 2004 (Alves 2004; see also Schaefer 2008). Schaefer (2008) notes that this
situation, in which most methods were originally dominated by large, mostly unrecognized
systematic errors, which then essentially disappeared overnight, is disturbing. (The same
is not seen for the smaller number of distance determinations to the SMC, which might
imply that the LMC effect is caused by ‘sociological’ or ‘bandwagon’ behaviour, also
known as ‘publication bias’. The SMC was not included in the HST Key Project.) He argues
that all 14 (m — M)( values published between 2001 and 2004 are too consistent with the
HST Key Project’s result: (m — M) = 18.50 mag falls within the 1o uncertainty for all
14 determinations, corresponding to an improbably low x2 statistical probability of 0.0022
(Schaefer 2008; see Figure 1.8).

9 Historically, there has been vigorous debate supporting a ‘long’ versus ‘short’ distance modulus: see Fouqué ez al. (2007)
and Sandage et al. (2009) for recent results in favour of the ‘short’ distance scale, often resulting from application of statistical
parallaxes and the Baade—Wesselink method (see also de Vaucouleurs 1993a,b; Gratton et al. 1997; Clementini et al. 2003).
However, this has largely disappeared after publication of Freedman et al. (2001).
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In fact, Schaefer (2008) further extended his analysis of LMC distance moduli published
after 2002 — including a total of 31 independent measurements, without substantial overlap
of targets or correlations between publications — and concluded that there is a clear statisti-
cal overabundance of determinations that agree with the HST Key Project to much greater
accuracy than the quoted error bars: a Kolmogorov—Smirnov test (a nonparametric test that
allows statistical comparison of two one-dimensional distributions; Press et al. 1992) proves
that the distribution of the published distance moduli deviates from the expected Gaussian
profile at the >3 level. This calls into serious doubt the reliability of LMC distance moduli
determined since 2002, because there are only two ways in which such a statistical condi-
tion can be met, either by artificially adjusting or selecting the published values to be near
(m — M)p = 18.50 mag or by systematically overestimating the error bars (which is un-
likely; Schaefer 2008). Clearly, this is a very unfortunate situation, given that the distance
to the LMC is a crucial step towards the calibration of extragalactic distances! To remedy
this situation, a comprehensive and independent recalibration, including realistic error bars,
of the current best data set of reliable distance indicators seems unavoidable. Alternatively,
new maser- or eclipsing binary-based direct methods of distance determination may pro-
vide an independent means of calibrating the first rung of the extragalactic distance ladder
(cf. Herrnstein et al. 1999; Macri et al. 2006; Di Benedetto 2008; Pietrzynski et al. 2009;
see also Sections 3.7.4, and 1.3 and 3.7.3, respectively).

An interesting alternative is offered by the coming online of large-scale near-IR survey
capabilities with access to the Magellanic Clouds, which will essentially eliminate the
effects of reddening and provide an independent and highly reliable calibration approach
(e.g.Nemec et al. 1994; Bono 2003; Szewczyk et al. 2008; and references therein). Although
efforts are continuing to further refine the LMC distance based on near-IR observations (see
Table 1.1 for an update since Schaefer 2008), large-scale surveys such as the VISTA near-IR

Table 1.1 Published LMC distance determinations since Schaefer (2008)

Date Article (m — M)y (mag) (Opt./NIR) Method
Aug. 2007 van Leeuwen et al. 18.39 +0.05 (Opt.) Cepheids
Jan. 2008 Clement et al. 18.49 £0.11 (Opt.) RR Lyrae
Mar. 2008 Sollima et al. 18.56 +£0.13 (NIR) RR Lyrae?
Apr. 2008 Catelan and Cortés 18.44 £0.11 (Opt.) RR Lyrae
Jun. 2008 Ngeow and Kanbur 18.48 £0.03 (NIR) Cepheids®
18.49 £0.04 (NIR) Cephelds
Jul. 2008 Szewczyk et al. 18.58 +0.03 (stat.) (NIR) RR Lyrae
£ 0.11 (syst.)
Nov. 2008 Di Benedetto 18.559 + 0.003 (stat.) (Opt.) Cepheids
=+ 0.026 (syst.)
May 2009 Pietrzynski et al. 18.50 + 0.55 Eclipsing binary
Jun. 2009 Dambis 18.27 £0.08 (NIR) RR Lyrae
Jul. 2009 Koerwer 18.54 £ 0.06 (NIR) Red clump
Aug. 2009 Borissova et al. 18.53 +£0.13 (NIR) RR Lyrae
18.46 £+ 0.07 (NIR) Red clump
Aug. 2009 Matsunaga et al. 18.46 +0.10 (NIR) Cepheids
Jun. 2010 Reid and Parker 18.46 £0.2 Planetary nebulae

2To Reticulum.
b Using a linear and a broken period-luminosity relation, respectively.



The Importance of Astrophysical Distance Measurements 15

YJK survey of the Magellanic system (Cioni et al. 2008, 2011) hold the promise of finally
reducing the systematic uncertainties and settling the distance to the LMC conclusively,
with remaining uncertainties in the distance modulus of < 0.1 mag.

1.3 Benchmarks Beyond the Magellanic Clouds: the 3D Universe
on Large(r) Scales

Beyond the Magellanic Clouds, the next logical object for distance benchmarking is the
Andromeda galaxy (M31), the other large spiral galaxy — in addition to the Milky Way — in
the Local Group!? (see also Brunthaler ez al. 2005 for a case in favour of M33 as distance
anchor, although see footnote 11). Once its distance is known to sufficient accuracy, all of its
various stellar populations are available as potential standard candles. M31 is a potentially
crucial rung on the extragalactic distance ladder (Clementini et al. 2001; Vilardell et al. 2006,
2010). First, its distance is sufficiently large, 744 4 33 kpc or (m — M)y = 24.36 = 0.08
mag (Vilardell et al. 2010: direct estimate based on two eclipsing binary systems), that poorly
constrained geometry effects do not cause additional significant systematic uncertainties, as
for the Magellanic Clouds. Second, individual stars suitable for calibration of extragalactic
distances (Cepheid or RR Lyrae variables, eclipsing binaries, novae and SNe, as well
as GCs, for instance) can be observed fairly easily and are affected by only moderate
extinction and reddening, with a colour excess E(B — V) = Ap — Ay = 0.16 £ 0.01 mag
(Massey et al. 1995). Finally, as a mid-type spiral galaxy, it has a chemical composition
and morphology similar to that of the Milky Way and other galaxies commonly used for
distance determination (e.g. Freedman er al. 2001) and it can be used for absolute local
calibration of the Tully-Fisher relation, one of the commonly used distance indicators to
more distant spiral galaxies (see Section 4.5).

The compilation of published distance estimates of Vilardell ef al. (2006) shows that
most methods return best estimates between (m — M)y = 24.0 and 24.5 mag, with the
majority of recent measurements tending towards the greater-distance end of this range.
For instance, Holland (1998), Stanek and Garnavich (1998), Durrell et al. (2001), Joshi
et al. (2003, 2010), Brown et al. (2004), McConnachie e al. (2005), Clementini et al.
(2009) and Sarajedini et al. (2009) all reported (m — M)q € [24.46, 24.52] mag — based
on analysis of tracers as diverse as the red giant branch (Section 3.3, particularly Section
3.3.2), red clump (Section 3.2.2), Cepheids (Section 3.5.2), RR Lyrae (Section 3.5.5) and the
TRGB (Section 3.3.1) — with uncertainties of generally A(m — M)g < 0.10 mag, although
the type I and II Cepheid-based distances reported by Vilardell et al. (2007) and Majaess
et al. (2010) are somewhat shorter. This situation is reminiscent of that of the LMC, in the
sense that the distribution is narrower than the expected Gaussian profile. Hence, exercise
of caution is needed. The direct, eclipsing binary-based distance determinations to M31
(Ribas et al. 2005; Vilardell et al. 2010; see also Bonanos et al. 2003) agree very well with
independent Cepheid distances (e.g. Vilardell et al. 2007; see also Vilardell et al. 2006,
their Table 1). In turn, these are based on either an eclipsing binary calibration of the LMC

10 The Local Group is a loose galaxy association with a core radius of order 1 Mpc centred on the Milky Way-M31 barycentre. Its
member galaxies are characterized by velocities which are close to the velocity—position relations satisfied by most known Local
Group members.
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distance (e.g. Fitzpatrick et al. 2003) or a maser-based distance determination to NGC 4258
(Macri et al. 2006).!! The latter object has been suggested as an alternative yet highly robust
benchmark for anchoring of the local distance calibration (Riess et al. 2009a). Prospects of
1% level direct, geometric distance determinations to M31 and M33 look promising, e.g.
by employing time-delayed, dust-scattered X-ray haloes (Section 7.3; see for application to
M31, Draine and Bond 2004) or — with significantly improved astrometric precision (see
Section 2.1.2) — using novel ‘rotational parallax’ measurements (Peterson and Shao 1997,
Olling and Peterson 2000; Brunthaler e al. 2005; Olling 2007) combined with galactic
velocity fields (see also Gould 2000) and, thus, improved distance precision (cf. Shaya and
Olling 2009). The latter are the extragalactic equivalent to the ‘orbital parallax’ method
for resolved binary systems, where radial velocities and proper motions of visual binaries
are combined to derive the orbital parameters as well as the distance (e.g. Armstrong et al.
1992; Davis et al. 2005).

The importance of accurate distance determinations cannot be overstated. Despite sig-
nificant efforts and worldwide coordination, even for the nearest objects the field is not
free from controversy. For instance, the long-standing distance determination to the Orion
Nebula — in particular to the high-mass star-forming Becklin—Neugebauer/Kleinmann—Low
(KL) region — of 480 + 80 pc (Genzel et al. 1981), which was based on VLBI observa-
tions of 22 GHz H,O maser features, was recently significantly revised to d = 3893‘1¥ pc
(see Figure 1.9; Sandstrom et al. 2007; and review of previous determinations therein).
Sandstrom et al. (2007) employed 15 GHz VLBA radio-continuum observations, which
yielded the parallax (see also Bertout et al. 1999 for Hipparcos-based results) and proper
motion of the flaring, nonthermal radio star GMR A in the Orion Nebula Cluster (see also
Hirota et al. 2007; Jeffries 2007; Kraus et al. 2007). Similarly, Menten et al. (2007) used
VLBA radio-continuum observations at 8.4 GHz to determine a trigonometric parallax of
several member stars of the Orion Nebula Cluster which exhibited nonthermal radio emis-
sion. They concluded that d = 414 £ 7 pc, in agreement with the results of both Kraus et al.
(2007) and Kim et al. (2008). The latter were based on orbital solution modelling of the
6! Orionis C close binary system and parallactic SiO maser observations of the Orion-KL
region using VLBI, respectively. These more modern parallactic determinations are fully
model independent, as opposed to Genzel et al.’s measurement, which required assumptions
about the distribution of the masers and application of an expanding, thick-shell model. A
10% shorter distance than previously adopted results in 10% lower masses, 20% fainter
luminosities and 20-30% younger ages for the stars in the Orion Nebula region.

Accurate distances are clearly also important to determine the physical properties of
the stars, star clusters, peculiar objects (such as ultraluminous X-ray sources) and gas
clouds in galaxies beyond the Local Group, and to assess their structure and internal
as well as external dynamics (for the latter, see e.g. de Grijs and Robertson 2006).
The recent controversy surrounding the Antennae interacting galaxies (NGC 4038/4039)
provides an illustrative example. New HST observations of the TRGB in this system
seemed to imply a significantly shorter distance (from d ~20 to 13.3 &= 1.0 Mpc; Saviane
et al. 2008) than previously adopted based on a careful assessment of the system’s

11 For the third largest Local Group galaxy M33, the Triangulum galaxy, a systematic discrepancy remains between the eclipsing
binary distance of Bonanos et al. (2006), the Cepheid determination of Freedman et al. (2001) and the maser-based distance of
Brunthaler et al. (2005), in the sense that the eclipsing binary determination places the galaxy 0.3 mag more distant than the other
methods.
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Figure 1.9 Measured positions (diamonds) of the flaring, nonthermal radio star GMR A in the
Orion Nebula Cluster with the best-fitting parallax and proper motion (Sandstrom et al. 2007 ).
The dot-dashed line is the proper motion of the source, with the parallactic motion subtracted.
The trigonometric parallax (1) corresponds to a distance of 38939 pc. (Reprinted from K. M.
Sandstrom et al., Astrophysical Journal, 667, A parallactic distance of 389 parsecs to the Orion
Nebula Cluster from Very Long Baseline Array observations, p. 1161-1169, Copyright 2007,
with permission of the AAS and K. M. Sandstrom.)

recession velocity, adoption of a reasonable value for Hy and including proper correc-
tions for the local Hubble flow (see Section 5.1). However, Schweizer et al. (2008)
pointed out that not only would the Antennae system’s size, mass and luminosity — as
well as the equivalent properties of the galaxies’ constituents — reduce, but its helio-
centric velocity would also deviate by close to 3o from the best large-scale flow model
were this shorter distance adopted (see Figure 1.10). Using observations of the Type Ia
SN 2007sr, an excellent standard candle'? (see Section 5.2.1), they derive an independent
distance estimate to the interacting system of d = 22.3 &+ 2.8 kpc. They suggest that Saviane
et al.’s (2008) shorter distance determination may have had its origin in a misidentification
of the TRGB. Schweizer et al. report a preliminary drrgs = 20.0 &= 1.6 Mpc, based on a
reanalysis of the same HST data.

Beyond the nearest, well-resolved galaxies, the tool of choice for distance determina-
tions has traditionally been the use of galaxies’ recessional velocities and, hence, redshifts.

12 If Saviane ef al.’s (2008) distance were correct, SN 2007sr’s peak luminosity would differ by ~7¢ (or 1.1 mag) from the mean
peak luminosity of SNe Ia.
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Figure 1.10 Comparison of distances (D) measured for NGC 4038/39 (points) with a relevant
large-scale flow model (solid line). czye: heliocentric recession velocity. Plotted at the new
distance based on Type la SN 2007sr (filled dot), the recession velocity of NGC 4038/39 falls
well within 1oy, (dotted lines) of the large-scale flow, where oy, is the cosmic random radial
velocity. In contrast, when plotted at the short distance based on the TRGB (square, Saviane
et al. 2008), the recession velocity of NGC 4038/39 lies 522 km s~! or 2.80 above the flow
(Schweizer et al. 2008). (Reprinted from F. Schweizer et al., Astronomical Journal, 136, A new
distance to the Antennae galaxies (NGC 4038/39) based on the Type la supernova 2007sr,
p. 1482-1489, Copyright 2008, with permission of the AAS and F. Schweizer.)

Although this technique works reasonably well in the smooth Hubble flow (see Section
5.1.2), the mutual attractive forces of galaxies within the gravitational potential wells of
large galaxy clusters cause significant ‘peculiar motions’ and, hence, distort the distance—
redshift relationship. Observationally, this results in an elongation of the positions, in red-
shift space, of galaxy cluster members along the line of sight, which is commonly referred
to as the ‘Finger-of-God’ effect (see also Section 5.1.2).

In recent years, distance measurements to significant numbers of nearby cluster galaxies
have become available, thus allowing studies of the true 3D distributions of the Virgo and
Fornax clusters. This has led to the realization that the Virgo cluster is, in fact, highly
substructured (e.g. West and Blakeslee 2000; Solanes et al. 2002; Jerjen 2003; Mei et al.
2005, 2007). Using the technique of surface brightness fluctuations (SBFs; see Section
4.2), West and Blakeslee (2000) and Jerjen et al. (2004) revealed strong 3D substructure
and bimodality along the line of sight in the cluster’s northern regions. The latter authors
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concluded that the northern subcluster consists of two dynamically distinct systems, with a
small group around M86 falling into the M87 subcluster from behind.

Based on their detailed analysis of the SBFs in the statistically homogeneous and signif-
icant samples of Virgo and Fornax cluster galaxies, Mei et al. (2005, 2007) and Blakeslee
etal. (2009, 2010) recently provided new and much improved insights into the 3D distribu-
tion of these clusters’ member galaxies. Blakeslee et al. (2009) find a very tight correlation
between the mean zgso magnitudes and (g475 — zg50) colours (where the subscripts in the
filter names denote their central wavelengths in nanometres) of early-type galaxies in the
Fornax cluster (d = 20.0 £ 0.2 & 1.4 Mpc, where the errors are statistical and systematic,
respectively), which allows these authors to obtain a first estimate of the ‘cosmic’ scatter in
the relation, i.e. the scatter caused by the cluster’s depth, o¢os & 0.06 &= 0.01 mag, assuming
a 20% depth uncertainty. This estimated scatter is approximately 40% smaller than that for
the Virgo cluster (Mei et al. 2005, 2007; after correction of the latter depth estimates by a
factor 1/+/2, which was omitted by these authors; see also Tonry et al. 2000), which implies
that the former is more compact along the line of sight and exhibits less substructure (see
e.g. Dunn and Jerjen 2006 and references therein). Blakeslee et al. (2009) derive a true linear
root-mean-square depth for the bright (Br < 15.5 mag), early-type galaxies in the Fornax
cluster of oy = O.49J_r8:}é Mpc, implying a back-to-front £20, distance depth of 2.0J_r8:‘6‘
Mpc (see Figure 1.11). This is comparable to the earlier, independent depth estimate of
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Figure 1.11 Galaxy distance in the Fornax cluster, with respect to the mean distance of
20 Mpc, versus physical offset in Mpc east-west (left panel) and north-south (right panel)
with respect to the central, giant elliptical galaxy NGC 1399 (Blakeslee et al. 2009). The me-
dian error in Ad is shown in both panels. There is a bias towards the cluster appearing elongated
along the line of sight caused by distance errors and because galaxies more than about 1.5
Mpc from the cluster mean would not be included in the underlying catalogue if the offset were
in the plane of the sky rather than along the line of sight. (Reprinted from J. Blakeslee et al.,
Astrophysical Journal, 694, The ACS Fornax Cluster Survey. V. Measurement and recalibration
of surface brightness fluctuations and a precise value of the Fornax-Virgo relative distance,
p. 556-572, Copyright 2009, with permission of the AAS and J. Blakeslee.)
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the Fornax cluster core by Dunn and Jerjen (2000), ojy = 0.741'8:%21 Mpc, which in turn is
similar to the projected cluster size on the sky.

The prospects are promising for application of SBF approaches, based on high-resolution
observations with the HST or large ground-based observatories, to galaxies in the Coma
cluster, at d ~100 Mpc (cf. Liu and Graham 2001). However, the choice of suitable distance
tracers on these scales is limited. Here, well into the smooth Hubble flow, we must pre-
dominantly rely on bright standard candles for reliable distances, including Type Ia SNe
(see Section 5.2.1). Although we do not yet fully understand the physics governing SNe
Ia explosions, the relationship between their absolute magnitude at peak brightness, their
colour and their rate of decline is among the tightest empirical tools available for distance
determinations at moderate redshifts. It allowed Riess et al. (1998) and Perlmutter ef al.
(1999) to conclude independently that SNe Ia at z ~0.5 appear to be approximately 10%
fainter than their local counterparts. On the assumption that they were dealing with the same
type of objects, they postulated that this implied that the expansion rate of the Universe is
accelerating (see Figure 5.3; see, for reviews, Filippenko 2005; Frieman et al. 2008). From
a physical perspective, this implies that the Universe must be subject to a large negative
pressure, which has since been associated with Einstein’s cosmological constant A and a
vacuum energy denoted by €2, which has been coined ‘dark energy’.

Beyond the redshifts currently accessible with best-established, fairly ‘local’ distance
tracers, cosmologists are particularly interested in reducing the uncertainties in and precisely
establishing the main cosmological parameters that determine the evolution of the Universe
on the largest scales. The latter include, of course, the Hubble constant, but also the matter—
energy density (M), the curvature of the Universe — represented by the constant k, where
k <0, k = 0and k > 0 corresponds to an open, flat and closed Universe — the dark energy’s
equation-of-state parameter (w) and og, which measures the amplitude of the linear power
spectrum on the scale of 82! Mpc, where & denotes the value of the Hubble constant in
units of 100 km s~! Mpc~!. In the context of this chapter and with the aim of achieving
improved distance determinations, of these the current value of the Hubble constant is of
greatest relevance (for a discussion of the prevailing cosmological model, see Section 5.1.3).

Significant strides have been made towards the goal of establishing the value of Hy
with an accuracy of better than 10%. Locally, two independent teams have endeavoured to
achieve this aim using a variety of well-established distance anchors (Freedman et al. 2001;
Sandage et al. 2006), although the resulting values of Hy differ systematically: the HST Key
Project (Freedman et al. 2001) derived a statistically weighted value of Hy = 72 & 8 km s ™!
Mpc’l, while Sandage ef al. (2006) found Hy = 62.3 £ 1.3 (statistical) =+ 5.0 (systematic)
kms! Mpc_1 , an unsatisfactory outcome that remains an issue of contention (but see Riess
et al. 2009a,b; see also Chapter 6).

Much progress has been achieved in the last few years. In particular, the 7-year results
of the Wilkinson Microwave Anisotropy Probe (WMAP) (e.g. Komatsu et al. 2009, 2011
and references therein) have reduced the uncertainties in the large-scale Hubble constant
to unprecedentedly low levels, Hy = 70.4 £ 2.5 km s~! Mpc~!. However, WMAP results
rely on many different ‘priors’ (pre-imposed constraints) and do not allow an independent
determination of the Hubble constant. This is because the value of Hy is degenerate with
the total curvature of the Universe. For instance, decreasing Hy by 20 km s~' Mpc™!
reduces the total matter—energy density in the Universe by 0.1 in terms of Q. In particular,
the WMAP-supported value of Hy relies on the assumption of a flat geometry. When that
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Figure 1.12 Confidence regions in the plane of Hy and the dark energy’s equation of state,
w (Riess et al. 2009a). The localization of the third acoustic peak in the WMAP 5-year data
(Komatsu et al. 2009) produces a confidence region which is narrow but highly degenerate in
this space. The best constraints on the Hubble constant are Hy = 74.2 + 3.6 km s=! Mpc~',
while w = 1.12 & 0.12 for a constant equation of state. This result is comparable in precision
to determinations of w from baryon acoustic oscillations and high-redshift SNe la, but is inde-
pendent of both. The inner and outer regions represent 68 and 95 % confidence, respectively.
SHES: supernovae and H, for the equation of state. (Reprinted from A. Riess et al., Astrophys-
ical Journal, 699, A redetermination of the Hubble constant with the Hubble Space Telescope
from a differential distance ladder, p. 539-563, Copyright 2009, with permission of the AAS
and A. Riess.)

constraint is relaxed, the fitted value moves to Hy = 53‘_"%% kms™! Mpc_1 : the central value

has changed considerably, and the precision is much reduced.

Because of the dominant degeneracies precluding the direct and unambiguous determina-
tion of the value of the Hubble constant, cosmologists must rely on combining constraints
resulting from many different approaches and tracers (see Section 5.3.4). For instance,
the 5-year WMAP observations in combination with both SNe Ia and constraints from
baryon acoustic oscillations (see Section 5.3.3) result in Hy = 70.5 4+ 1.3 km s~/ Mpc_1
(Komatsu et al. 2009), while combining observational redshift distributions of galaxies with
constraints on the baryon and CDM densities from WMAP-5 and SNe Ia, assuming essen-
tially a flat geometry, yields Hy = 68 + 2 km s~! Mpc~! (Freedman and Madore 2010).
Figure 1.12 shows an example of such an approach, in which the value of Hy is constrained
based on a combination of WMAP-5 data and observations of SNe Ia. Although the Hubble
constant is currently known to better than 5%, provided that all priors and assumptions on a
flat Universe hold, further improvements are urgently required to better constrain the nature
of the elusive dark energy (cf. Riess et al. 2009a; see also Section 5.3.4).
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