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Introduction

1.1 Scattering and Diffraction Theory
Defined broadly, scattering of electromagnetic waves is the process of re-radiation of an incident wave by a material
body. In the course of scattering, the incident wave may change its type (e.g., from plane to spherical or cylindrical),
the direction of propagation, amplitude, phase, and polarization state. The other name of scattering is diffraction. In this
book we use these terms as synonyms, although in the optical literature a distinction between the two names is sometimes
made. Understanding of the scattering of electromagnetic fields by material objects is essential to the design of optical,
microwave, and radio devices and systems.

Electromagnetic fields scattered by an obstacle include versatile information about geometric and material properties
of the scatterer, its position in space, orientation, speed, etc. This fact is the basis for remote sensing technologies that
use electromagnetic waves to survey, probe, and study remotely and non-destructively the space and material objects
surrounding an observer. To extract the information encoded in the scattered field, it is important to understand the
physics of scattering (how electromagnetic waves interact with the target and get scattered from the target) and be able
to efficiently simulate the scattered fields. Modern radar remote sensing systems predominantly operate at microwave
frequencies between 100 MHz and 100 GHz, which corresponds to the wavelength from 3 m to 3 mm. Such wavelengths
are comparable, smaller or larger, to the size of a typical scatterer in our everyday life. Even in the visible spectrum, with
frequencies between 430 and 770 THz and corresponding wavelengths between 390 and 700 nm, the wave effects cannot
be neglected since from the viewpoint of applications of nanoscience or even in atmospheric optics these wavelengths may
be smaller, comparable, or larger than the size of a nanoparticle or a water droplet. Under these circumstances the wave
nature of electromagnetic fields becomes noticeable via various diffraction effects such as penetration of electromagnetic
energy into regions shadowed by obstacles, blurred shadow boundaries and focal points, internal resonances, etc. These
wave phenomena cannot be adequately described and understood in the framework of simple ray optical constructions.
Similar observations can be made with respect to radio wave propagation, where the effects of the ground, buildings,
trees (or furniture in the microcell mobile communications scenario) cannot be understood without solid knowledge of
scattering phenomena.

Electromagnetic scattering theory is a branch of electromagnetics that describes, explains, and predicts electromagnetic
field behavior in the presence of material obstacles by fully accounting for the wave nature of the electromagnetic field.

Electromagnetic scattering theory lies on the intersection of physics (particularly, electromagnetics and optics) and
mathematics. During several centuries of its history, many outstanding researchers, including René Descartes (1596–
1650), Francesco Maria Grimaldi (1618–1663), Christiaan Huygens (1629–1695), Thomas Young (1773–1829), François
Arago (1786–1853), Joseph von Fraunhofer (1787–1826), Augustin-Jean Fresnel (1788–1827), Hermann von Helmholtz
(1821–1894), Gustav Kirchhoff (1824–1887), James Clerk Maxwell (1831–1879), Heinrich Hertz (1857–1894), Hector
Macdonald (1865–1935), and Arnold Sommerfeld (1868–1951), have contributed to the establishment of the wave
theory of electromagnetic diffraction. The originators of the diffraction theory were inspired by remarkable optical
phenomena, like blurring shadow boundaries, lit spots behind impenetrable obstacles (Poisson’s spot or the spot of
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Arago), atmospheric rainbows, etc. The inability of simple ray-based concepts to explain these phenomena has led to
the creation of electromagnetic scattering and diffraction theory. The need to solve the wave equations stimulated the
development of various areas of mathematics (boundary value problems, special functions, analytical, asymptotic, and
numerical methods of solution of integral and differential equations). The theory is still in the process of development
motivated by new application fields, from stealthy aircraft and ships to metamaterials in photonics and nanoscience.

The physics of electromagnetic scattering can be explained in terms of a few basic scattering mechanisms. They
can be studied by looking at solutions of Maxwell’s equation for a limited number of canonical shapes, which are a
planar interface (reflected and transmitted waves, surface waves), a circular cylinder and a sphere (reflection from a
curved surface, creeping waves, interior resonances), a half-plane and a wedge (edge-diffracted waves), and a circular
disc (multiply diffracted waves). The respective boundary value problems can be rigorously solved in a symbolic form,
typically in terms of elementary or special functions, integrals or infinite sums, and the basic wave types and the associated
scattering mechanisms are extracted from the solutions by asymptotic analysis.

Exact symbolic solutions of Maxwell’s equations are rare. A solution is only possible for a simply shaped scatterer
(planar infinite interfaces of homogeneous materials, wedges, circular cylinders, spheres, cones) with a simple material
constitution (perfect electric conductor, homogeneous or layered materials) illuminated by a canonical source (plane,
cylindrical, spherical waves). However, such solutions are extremely important for the modern system of knowledge
about radiation, propagation, diffraction, and scattering of electromagnetic waves, which is explained by the following
circumstances:

� In many cases, even solutions of these idealized problems adequately describe solutions of real-world problems, e.g.
canonical targets, like metal spheres, are used for calibration of measurement facilities.

� Exact symbolic solutions can be typically calculated with a high numerical precision, which allows their use for
validation of numerical solutions and procedures. Furthermore, solutions for idealized configurations may be used in
the follow-up numerical iteration or optimization procedures.

� Symbolic solutions can be often evaluated approximately or asymptotically to give simple analytic or even closed-form
expressions for the fields. Such expressions provide a physical insight and can spot simple qualitative and quantitative
relations between various parameters of the problem, which enables explaining and forecasting the behavior of fields
in more general and complex situations.

� Asymptotic solutions for idealized geometries serve as building blocks in engineering techniques (GTD/UTD, PO,
PTD) for simulation of high-frequency electromagnetic fields in realistic environment.

Solutions of electromagnetic scattering and diffraction problems even for simple geometries and even when an exact
solution is available can be very complex. Recent advances in computation technologies have enabled direct numerical
simulation of electromagnetic phenomena for objects of moderate size compared with the wavelength, and computer-
based visualization tools bring new ways of representing the behavior of scattered fields. However, it is important to
understand that pure numerical approaches are subject to severe fundamental limitations. First, a direct application
of discretization-based methods (BEM, FEM, FDTD) to objects larger than a dozen wavelengths leads to systems of
equations with millions of unknowns, which are hardly amenable to a numerical solution because of unrealistic execution
times and heavy memory requirements. Second, a numerical solution cannot provide a qualitative, physical insight into
the basic mechanisms of scattering and diffraction.

Hence, there is a continuing need for the development of approximate and physically justified approaches that sup-
plement the direct numerical methods by providing fast and acceptably accurate results for objects that are much larger
than the wavelength. Several approximations are available for describing the scattering and diffraction of high-frequency
electromagnetic fields.

� Geometrical optics (GO) is a classical ray-based technique for describing optical and microwave fields. The ray fields
can be calculated by using simple laws of their propagation in free space and their reflection and transmission at
material interfaces. However, the applicability of GO is limited to very short waves. The ray optics does not describe
the penetration of fields in the regions shadowed by the scattering body and the excitation of many types of waves
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at geometric and material singularities on the scattering surface. Furthermore, GO fails at caustics, which is a major
deficiency since the field intensity is typically at maximum there and many important phenomena (e.g., focusing of
electromagnetic energy by dielectric lenses and parabolic reflectors, atmospheric glories and rainbows) take place at
caustics.

� The geometrical theory of diffraction (GTD) extends GO through the addition of new types of rays which are generated
at edges (edge-diffracted waves), conical points (tip-diffracted waves), and shadow boundaries on the scattering surface
(creeping waves). However, GTD is a ray-based technique which fails at caustics. Extension of GTD to caustic regions
is the subject of the uniform geometrical theory of diffraction (UTD).

� Physical optics (PO) and its extension, the physical theory of diffraction (PTD), are current-based approaches. The
field scattered by a body is considered as radiated by secondary currents induced by the incident wave on the scatterer.
Every PO/PTD solution uses Huygens’ principle, which is a rigorous integral relation between the fields at every point
in a volume and their values on a given (physical or mathematical) surface enclosing the volume. Since the surface
fields are not known in advance, PO substitutes them with their GO approximation, thus reducing the problem to
evaluation of a surface integral. When the observation point is located far from the body, the kernel of the integral can
be simplified, leading to a fundamental formula known as the radiation integral. This formula is widely used in a great
many of applications, from antenna design and prediction of radio wave propagation to simulation of scattering cross
sections of radar targets. When an exact solution is impractical or not available, the PO method is unique in its ability to
provide accurate numerical estimations of scattered fields in the situation (electrically large scatterers, observer in the
far field) when neither discretization-based numerical techniques (BEM, FDTD, FEM) nor ray optical approximations
(GO, GTD, UTD) apply.

� The GO approximation for the surface currents may be insufficiently accurate when the surface has geometric and/or
material singularities (edges, tips, jumps in the values of material parameters). PTD corrects the GO surface currents
in the vicinity of those singularities by using solutions of canonical problems for locally conformal geometries. This
procedure may significantly improve the accuracy of the current-based approximations.

These approximate solution methods need justification. GO and PO were known well before Maxwell’s theory of
electromagnetism as empirical techniques, based on pre-Maxwell theories of light. GTD was also formulated as a set of
postulates. It is therefore important to relate these methods and concepts to Maxwell’s equations, validate their correctness,
associated assumptions and simplifications, and estimate their accuracy. The only way to do this is to examine exact
solutions to several characteristic scattering problems, that is, to look at solutions of canonical scattering problems.

1.2 Books on Related Subjects
The amount of literature on diffraction and scattering theory is overwhelming as the history of the theory, which can
be counted from Fresnel’s Mémoire sur la diffraction de la lumière, is almost two centuries old. It is therefore simply
impossible to give a complete bibliography of all the books and papers that have been published over the years around the
world, and we have not even attempted that. Every chapter in the main body of the book is accompanied with its own list
of references, and we did our best to reference the most relevant publications. If the reader feels that we have overlooked
an important contribution, please let us know!

Here, we briefly review books related to scattering and diffraction theory. They fall into the following categories:

� Historical texts (Descartes 1637; Drude 1902; Fresnel 1866; Green 1828; Grimaldi 1665; Heaviside 1893; Huygens
1690; Kirchhoff 1891; Macdonald 1902; Maxwell 1873; Sommerfeld 1927; Thomson 1893; Helmholtz 1897; Young
1845), see also English translations of classical texts (Crew 1900; Sommerfeld 2004). These and many other historical
texts are now freely available on the Internet, thanks to ongoing digitizing efforts. The works by Descartes, Grimaldi,
Huygens, Young, Fresnel, and Green appeared before the formulation of Maxwell’s theory and present physical
(Descartes, Grimaldi, Huygens, Young) and mathematical (Fresnel, Green) concepts that are used in the modern
scattering theory. Descartes (1637) described the laws of reflection and refraction, and used them to explain atmospheric
rainbows. Grimaldi (1665) observed the fringes in the shadow of an object placed in a beam of light and named the
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deviation of light from straight propagation path diffraction. Huygens (1690) was a proponent of the wave theory of
light and formulated the principle of propagation of wavefronts (Huygens’ principle). Young (1845) presented a number
of theoretical reasons supporting the wave theory of light, and performed and analyzed demonstrations to support this
viewpoint (interference in a double-slit experiment and upon reflection from thin films). Fresnel (1866) developed
a first quantitative wave theory of light by building on experimental work by Young, and showed by mathematical
methods that polarization could be explained only if light was entirely transverse. Green (1828) derived the integral
relation that relates the value of a wave function in a volume to its values on a surface enclosing the volume (Green’s
formula) and applied it to electro- and magnetostatic problems.

The electromagnetic theory by Maxwell (1873) established the connection between light and electromagnetism. In
its original formulation, the theory assumed the existence of aether and used quaternion algebra. Kirchhoff (1891)
described optics based on the aether theory of light. The modern form of Maxwell’s equations, in terms of the vectors of
electric and magnetic fields, is attributed to Heaviside (1893). Experimental verification of Maxwell’s theory and a first
theoretical solution of Maxwell’s equations (for the field excited by an oscillating electric dipole) are attributed to Hertz
(1894). First descriptions of electromagnetic scattering, diffraction, and propagation entirely based on Maxwell’s theory
can be found in Drude (1902), Helmholtz (1897), and Thomson (1893). The beginning of rigorous electromagnetic
scattering theory is associated with the works by Sommerfeld (1927) (formulation of scattering and diffraction problems
as boundary value problems and their solution with rigorous mathematical methods, exact solutions for a half-plane
and a wedge, for a dipole source over a homogeneous half-space) and Macdonald (1902) (electromagnetic formulation
of Huygens’ principle and conception of electromagnetic version of the PO method, solution for wedge diffraction).

� General courses in electromagnetics and electromagnetic waves (Balanis 1989; Borgnis and Papas 1955; Chew 1990;
Felsen and Marcuvitz 1973; Franz 1957; Harrington 1961; Hönl et al. 1961; Ishimaru 1991; Jackson 1998; Jones 1964,
1979, 1989; Katsenelenbaum 2006; King and Wu 1959; Kong 1986; Plonus 1978; Schelkunoff 1943; Stratton 1941;
Van Bladel 1964). These books give general theoretical knowledge about electromagnetic scattering and diffraction,
and contain material on the most fundamental scattering problems, like scattering from wedges, cylinders, spheres, and
apertures, mostly assuming PEC boundaries and often in scalar PO approximation.

� Handbooks, collections of formulas of diffraction and scattering theory (Bouman et al. 1987; Ruck et al. 1970),
overviews of the state of the art (e.g., Langer (1962), Pike and Sabatier (2002), Ufimtsev (1999), and Uslenghi (1978)).
These books offer a broad, eventually encyclopedic coverage but omit derivations of the presented results.

� Textbooks and monographs on computational methods of electromagnetics (e.g., Chew (1990), Chew et al. (2001),
Harrington (1993), Jin (1993), Kunz and Luebbers (1993), Peterson et al. (1998), Silvester and Ferrari (1990), Taflove
(1995), Tsang et al. (2001), and Volakis et al. (1998)). These books deal with various discretization-based methods for
numerical solution of Maxwell’s equations.

� Books on the wave theory of light (e.g., Akhmanov and Nikitin (1997), Born and Wolf (1959), Longhurst (1973),
Newton (1966), Nieto-Vesperinas (2006), Petykiewicz (1992), Solimeno et al. (1986), and Sommerfeld (1964)). These
books include chapters on diffraction of electromagnetic waves and address applications in optics.

� Books aimed at specific configurations or aspects of electromagnetic diffraction and scattering theory, e.g. dyadic
methods and analytical modeling (Lindell 1992; Tai 1971; Tretyakov 2003), field singularities (Van Bladel 1991),
stratified media (Brekhovskikh 1960; Wait 1962), wedges (Bobrovnikov and Fisanov 1988; Budaev 1995; Lyalinov
and Zhu 2013), spheres, cylinders, and small particles (Bohren and Huffman 1983; Grandy 2000; Kerker 1969; Van de
Hulst 1957; Wait 1959), cavities (Vinogradov et al. 2002), curved structures (Lewin et al. 1977), and rough surfaces
and random media (Ishimaru 1978; Rytov et al. 1989; Tsang and Kong 2001).

� Books on the mathematical theory of diffraction (Babič and Buldyrev 1991; Baker and Copson 1953; Borovikov 1966;
Colton and Kress 1983, 1998; Fock 1965; Kline and Kay 1965; Müller 1957; Northover 1971; Ramm 1986). Scattering
and diffraction theory is presented as a branch of mathematics, mostly using the formal mathematical language and
concentrating on methods rather than applications.

� Books on specific mathematical methods of diffraction and scattering theory (Babič and Kirpičnikova 1979; Babich
et al. 2007; Bouche et al. 1997; Daniele and Zich 2014; Mittra and Lee 1971; Molinet et al. 2005; Noble 1958;
Weinstein 1969).

� Books on engineering techniques such as GTD/UTD (Borovikov and Kinber 1994; James 1976; McNamara et al.
1990) and PO/PTD (Diaz and Milligan 1996; Rubinowicz 1957; Senior and Volakis 1995; Ufimtsev 1962, 2003,
2014).
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� Application of scattering and diffraction theory to problems of RCS engineering (Crispin and Siegel 1968; Jenn
2005; Knott et al. 1993; Mentzer 1955; Saez de Adana et al. 2011; Tretyakov and Osipov 2006), remote sensing
(Beckmann and Spizzichino 1963; Ulaby et al. 1982), radio wave propagation and wireless communication (Bertoni
2000; Bremmer 1949; Makarov et al. 1991; Wait 1981, 1962), and to closely related radiation problems, specif-
ically to reflector and aperture antennas (Balanis 1997; Collin and Zucker 1969; Fradin 1961; Silver 1984; Wait,
1959).

1.3 Concept and Outline of the Book
The book describes deterministic scattering of electromagnetic waves from material bodies with full consideration
of the polarization. Although many qualitative features of scattering can be described by using solutions of scalar
problems, for example in the framework of the Fresnel–Kirchhoff approach, in practice vector Maxwell’s equations
always have to be solved, and formulation of a truly scalar scattering problem is possible only in exceptional cases, for
example for PEC bodies with translational or spherical symmetry or for infinite planar material interfaces illuminated
by plane waves. The components of the electric and magnetic fields are typically coupled through boundary conditions
on non-metallic interfaces. Thus, throughout the book we study truly electromagnetic problems, which makes the
analysis more involved, but it is these solutions that are really needed in practice. For the same reason the book does
not address problems of acoustic scattering since acoustic fields are scalar fields, for which polarization coupling is
irrelevant.

This book is intended to serve as a bridge between textbooks and handbooks. Textbooks describe the basic facts and
ideas, simplifying the material as much as possible for better understanding, presenting the results that can rarely be used
in applications. Handbooks provide broad collections of ready-to-use results but often do not explain how and under
which assumptions these results have been obtained. In this book we formulate the rigorous boundary value problems,
explain solution methods, and let the reader follow the derivations, showing how to arrive at the handbook formulas. In
particular, through the high-frequency analysis of solutions for canonical bodies, the ray structure of fields is extracted,
thus validating the postulates of GO and GTD.

An important feature of the book is its focus on scattering from non-metallic (imperfectly conducting) and impedance
bodies. This is important because of the increasing use of advanced materials in electromagnetic engineering; also natural
surfaces (ground, see, buildings, etc.) are non-metallic. Scattering from non-metallic scatterers is addressed in the book
by using either exact solutions (for simply shaped scatterers, like wedges, cylinders, spheres) or approximate PO solutions
(for generally shaped bodies). Reflection and scattering from impedance-matched bodies (when the surface impedance
is equal to the intrinsic impedance of the surrounding medium) show a number of extremal features, so special attention
is devoted to the impedance-matched plane (section 4.6.3), wedge (section 5.4.3), and sphere (section 7.5.4). We also
discuss metamaterial scatterers, which includes the superlens (section 4.5.3) and the perfect cloak (section 7.6.2).

The book presents novel and less known results. We believe that the complete theory of low-frequency scattering from
spheres (sections 7.4.2, 7.5.2, and 7.5.3) and a theory of backscattering from electrically large low-absorption spheres in
terms of interior creeping waves (section 7.5.5) have not been described in the literature so far.

The less-known results include a simplified derivation of the electromagnetic Huygens principle in two and three
dimensions (section 2.6), formulation of the forward-scattering theorem for cylindrical objects under oblique illumination
(section 3.4.4), solutions for planar material layers excited by dipoles arbitrarily oriented with respect to the interface
of the media (sections 2.5.4 and 4.4.2), a proof of the minimum reflection property for the planar impedance-matched
boundary (section 4.6.3), a complete collection of the available exact solutions for impedance wedges (section 5.4), a
discussion of the analytical structure of Meixner’s series, including logarithmic terms (section 5.6.2), an exact solution
for an obliquely illuminated impedance cylinder (section 6.5), a systematic exposition of a fully electromagnetic version
of the PO method which is applicable to non-metallic bodies and describes fields not only in the far-field region but
also at finite distances from the scatterer, up to the scattering surface, including caustics (Chapter 8), PO solutions for a
broad variety of non-metallic simply shaped scatterers and a new derivation of Gordon’s formulas by integrating by parts
in the PO solution for plates (Chapter 9), and complete specification of Debye’s asymptotic approximations of Bessel
functions on the complex plane of the order and derivation of the Debye approximations by the method of phase integrals
(Appendix E).
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Solution and analysis of solutions of scattering problems require the use of various quite sophisticated mathematical
methods. We present the methods not in an abstract way but rather by showing how they work in solving and analyzing
the scattering problems. The book describes a variety of methods, including

� exact solution methods: separation of variables (Chapters 5, 6, and 7), the Wiener–Hopf (factorization) method
(section 5.3), and the Sommerfeld–Maliuzhinets method (section 5.4);

� methods of approximate solution of scattering problems: GO, GTD, UTD (Chapters 5, 6, and 7), and PO (Chapters 8
and 9);

� methods of asymptotic analysis of solutions: the steepest descent method (section C.3), the stationary point method in
one and two dimensions (Appendix D), and the WKB method (Appendix E).

Special functions play a key role in solutions of canonical scattering problems. Addressed are Legendre functions
(section 7.2.2), Bessel and Riccati–Bessel functions (sections 7.2.2 and E.1.1), Maliuzhinets and Bobrovnikov–Fisanov
functions (sections 5.4.2 and 5.4.3), Fresnel integrals and related functions (Appendix B), and Airy and Fock functions
(sections D.2.3 and E.3).

In order to keep the size of the book reasonable, we had to restrict our attention to the time-harmonic deterministic
linear direct electromagnetic scattering theory in open regions. Electromagnetics of waveguides, resonators, and periodic
arrays is not addressed (e.g., see Collin (1960)), nor is the theory of inverse scattering (e.g., see Colton and Kress
(1998)). A number of geometries, solutions, and solution methods are not included, for example the rigorous solutions
for PEC circular discs and cones (Bouman et al. 1987), mainly because of missing generalizations to imperfectly
reflecting boundaries (scattering from a conical point on an impedance boundary is addressed in the PO approximation
in section 9.2). Such methods as PTD, the parabolic equation method, the boundary-layer method, Maslov’s method, etc.
are also not discussed, and the reader is referred to the many good sources on the approximate methods of scattering,
diffraction, and propagation theory, for example Babič and Buldyrev (1991), Bouche et al. (1997), Fock (1965), Ufimtsev
(2014), Ziolkowski and Deschamps (1984), Babič and Kirpičnikova (1979), and Levy (2000). No anisotropic materials
are addressed in the book, except for the case of the spherical perfect cloak.

Organization of the book is seen from the table of contents, so here we only briefly outline the content of the chapters.
Chapter 2 presents the fundamentals of the scattering theory. This includes Maxwell’s equations and constitutive relations,
exact and approximate boundary conditions, vector potentials and Green’s functions, and basic solutions of Maxwell’s
equations (plane, cylindrical, and spherical waves). The fundamental properties of the electromagnetic fields are also
addressed, including energy conservation, reciprocity, and the electromagnetic version of Huygens’ principle for compact
and cylindrical scatterers.

Chapter 3 describes scattered fields in the far (Fraunhofer) zone where they approach a spherical wave (cylindrical or
conical for cylindrical scatterers), which is particularly important for radar and optical applications. We define the relevant
quantities, including the far-field coefficient, the scattering matrix, and various scattering cross sections and scattering
widths. The optical theorem is addressed both in two and three dimensions, and classification of far-field scattering
according to the scattering regimes (low-frequency, resonant, and high-frequency) is given. The chapter concludes with
a theory of Rayleigh scattering for simply shaped PEC or magneto-dielectric scatterers smaller than the wavelength.

Chapter 4 addresses reflection and transmission of electromagnetic waves at planar interfaces. We define reflection
and transmission coefficients for various polarization frames (parallel–perpendicular, TE-TM, E-H) and present a vector
solution for reflection and transmission of a plane wave at the interface between two homogeneous magneto-dielectric
half-spaces (section 4.2). A general solution for multilayered slabs is derived in section 4.3. Fields excited by localized
sources are superpositions of plane and inhomogeneous waves, which complicates the problem by requiring complex
integration of reflected/transmitted components (section 4.4). In section 4.5, the general solution for the multilayered slab
is specialized to the important particular case of a homogeneous layer between two homogeneous eventually different
half-spaces. Finally, the accuracy of impedance formulations for planar interfaces is studied, and the extremal properties
of the impedance-matched interface are addressed (section 4.6).

A wedge is a canonical body to model the presence of an edge in a material boundary. In Chapter 5 we derive and study
solutions for various wedge-shaped configurations with PEC and impedance boundary conditions. A variety of solution
methods is used, including separation of variables (section 5.2), and the Wiener–Hopf (section 5.3) and Maliuzhinets
(section 5.4) methods. The general solution for an arbitrarily angled obliquely illuminated impedance wedge is not
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available, so section 5.4 addresses all the special cases that have an exact solution. In section 5.5, the solutions are
analyzed far from the edge, and the GO, surface, and edge-diffracted waves are extracted, showing that the result has the
structure postulated by GO/GTD. The high-frequency approximations have to be corrected at the shadow boundaries, and
we show how to do that, presenting uniform approximations in terms of Fresnel integrals and UTD transition functions.
The presence of an edge leads to singularities of field components at the edge, and Meixner’s method permits determining
the order of singularity of the fields. In section 5.6 we show how this method works and discuss the problem of construction
of higher-order terms in the Meixner expansions.

Similarly to the wedge, an infinite circular cylinder is a configuration with translational symmetry. On the other
hand, its boundary is smooth and of finite diameter in the plane perpendicular to the cylinder axis, which leads to a
different scattering picture. In Chapter 6 we solve (by separation of variables) scattering problems and study solutions for
PEC (section 6.2), magneto-dielectric homogeneous (section 6.3), coated (section 6.5.1), and impedance (section 6.5.2)
circular cylinders. To construct high-frequency approximations for the fields, Watson’s transformation is introduced and
applied in section 6.4. In addition to the GO reflected wave, the scattered field includes creeping waves, gliding along
the surface on their way from the source to the observer, which justifies the GO/GTD postulates about the ray structure
in the presence of a smoothly curved boundary. In the transition zone across the shadow boundary (penumbra region)
on the surface of the cylinder, GTD is not applicable, and a special treatment in terms of Fock functions is necessary
(section 6.4.4). Finally, the high-frequency solution for the circular cylinder is extended to electrically large generally
shaped convex impedance bodies (section 6.6).

A sphere is one of the most important canonical bodies. In contrast to infinite cylinders, which are idealizations,
the sphere is compact and serves as a model of a basic scatterer. Chapter 7 is devoted to scattering from spheres of
various material compositions (PEC, magneto-dielectric, multilayered). An exact solution is derived by separation of
variables, and the high-frequency approximations for homogeneous spheres are obtained by Watson’s transformation.
The homogeneous sphere allows new types of waves, not only the interior resonances and GO rays multiply reflected in
the interior of the sphere but also waves propagating on the concave side of the spherical boundary. We present the full
GO solution for the homogeneous magneto-dielectric sphere and apply it to the theory of atmospheric rainbows. It is
shown that the backscattering from electrically large low-absorption spheres is dominated by the interior creeping waves,
which leads to a new explanation of the atmospheric glory. Electrically small spheres are also an extremely important
canonical case, which has gained importance because of the developments in nanoscience, photonics, and plasmonics. The
classical theory of Rayleigh scattering is insufficient when multipole and radiation corrections are required. Furthermore,
in spheres with large values of permittivity/permeability internal resonances are possible, which is not covered by the
Rayleigh theory. In the chapter we derive a complete theory of low-frequency scattering that closes this gap. The chapter
concludes with the solution for the spherical perfect cloak and with a discussion of new applications of small spheres in
the design of metamaterials.

Chapter 8 describes the PO method. We derive a fully electromagnetic version of the method by combining the
electromagnetic version of Huygens’ principle with the vector solution for reflection of a plane wave at material interfaces
(section 8.2). In section 8.3 the PO solution is applied to the case of an aperture in an impenetrable screen, and it is shown
that high-frequency analysis extracts a wave diffracted at the rim of the opening. The wave has the form of the edge-
diffracted wave studied in the chapter on wedges, generated at the points on the rim where the incidence and scattering
directions make the same angle with the edge, which is in agreement with the GTD concept of the edge-diffracted wave
and the Keller cone. Next, in section 8.4, reflection from curved surfaces is studied in the PO approximation, and we
arrive at the classical Fock reflection formula. Finally, the PO solution for an imperfectly reflecting surface with an
edge is studied, and the edge-diffracted wave component is extracted (section 8.4.4). The PO approximation leads to the
edge-diffracted wave with the correct phase but an inaccurate amplitude, the latter being determined by the PO diffraction
coefficient. Advantages and limitations of the PO method are discussed in section 8.5.

The PO method permits an immediate solution, in the form of a surface integral, for the field scattered by an arbitrarily
shaped metallic or non-metallic scatterer. In Chapter 9, PO solutions are constructed for polygonal plates, cones, and
bodies of revolution of various cross sections.

Appendices A to E importantly supplement the main body of the book by providing the background mathematical
information about the special functions and methods that are used. Appendix A is a short collection of necessary formulas
from vector analysis. Appendix B describes the Fresnel integral, error function for complex argument, and UTD transition
function. The principles of the complex analysis and complex integration, including the steepest descent method, are
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addressed in Appendix C, while Appendix D describes in a relatively detailed manner the stationary phase method in
one and two dimensions. Appendix E contains a collection of formulas for Bessel (and related) functions and a study on
Debye’s asymptotic approximations, performed with a new method (WKB method on the complex plane of the order of
the Bessel functions). Explicit Debye’s approximations in every part of the complex plane of the order are provided.

Bibliographic references are collected at the end of every chapter. A significant part of the bibliography comes from
German and Russian technical literature, less known to the English-speaking community. Problem sections at the end of
every chapter are rich collections of some 250 original problems for practice, most with detailed solutions. Some of the
problems are easy, but some are difficult. Many are of a technical nature, which is due to the fact that electromagnetic
theory in general and scattering theory in particular use a lot of mathematics as a language to formulate the results and
as a tool to derive solutions from Maxwell’s equations.
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