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ABSTRACT
A grand challenge problem (Wah, 1993) refers to a computing problem that cannot be solved
in a reasonable amount of time with conventional computers. While grand challenge problems
can be found in many domains, science applications are typically at the forefront of these large-
scale computing problems. Fundamental scientific problems currently being explored generate
increasingly complex data, require more realistic simulations of the processes under study and
demand greater and more intricate visualizations of the results. These problems often require
numerous complex calculations and collaboration among people with multiple disciplines and
geographic locations. Examples of scientific grand challenge problems include multi-scale en-
vironmental modelling and ecosystem simulations, biomedical imaging and biomechanics, nu-
clear power and weapons simulations, fluid dynamics and fundamental computational science
(use of computation to attain scientific knowledge) (Butler, 1999; Gomes and Selman, 2005).

Many grand challenge problems involve the analysis of very large volumes of data. Data
mining (also known as knowledge discovery in databases) (Frawley, Piatetsky-Shapiro and
Matheus, 1992) is a well stablished field of computer science concerned with the automated
search of large volumes of data for patterns that can be considered knowledge about the data.
Data mining is often described as deriving knowledge from the input data. Applying data mining
to grand challenge problems brings its own computational challenges. One way to address
these computational challenges is grid computing (Kesselman and Foster, 1998). ‘Grid’ refers
to persistent computing environments that enable software applications to integrate processors,
storage, networks, instruments, applications and other resources that are managed by diverse
organizations in widespread locations.

This chapter describes how both paradigms – data mining and grid computing – can benefit
from each other: data mining techniques can be efficiently deployed in a grid environment
and operational grids can be mined for patterns that may help to optimize the effectiveness
and efficiency of the grid computing infrastructure. The chapter will also briefly outline the
chapters of this volume.
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1.1 Introduction

Recent developments have seen an unprecedented growth of data and information in a wide
range of knowledge sectors (Wright, 2007). The term information explosion describes the
rapidly increasing amount of published information and its effects on society. It has been es-
timated that the amount of new information produced in the world increases by 30 per cent
each year. The Population Reference Bureau 1 estimates that 800 MB of recorded informa-
tion are produced per person each year (assuming a world population of 6.3 billion). Many
organizations, companies and scientific centres produce and store large amounts of complex
data and information. Examples include climate and astronomy data, economic and financial
transactions and data from many scientific disciplines. To justify their existence and maximize
their use, these data need to be stored and analysed. The larger and the more complex these
data, the more time consuming and costly is their storage and analysis.

Data mining has been developed to address the information needs in modern knowledge
sectors. Data mining refers to the non-trivial process of identifying valid, novel, potentially
useful and understandable patterns in large volumes of data (Fayyad, Piatetsky-Shapiro and
Smyth, 1996; Frawley, Piatetsky-Shapiro and Matheus, 1992). Because of the information
explosion phenomenon, data mining has become one of the most important areas of research
and development in computer science.

Data mining is a complex process. The main dimensions of complexity include the following
(Stankovski et al., 2004).

� Data mining tasks. There are many non-trivial tasks involved in the data mining process:
these include data pre-processing, rule or model induction, model validation and result
presentation.

� Data volume. Many modern data mining applications are faced with growing volumes (in
bytes) of data to be analysed. Some of the larger data sets comprise millions of entries and
require gigabytes or terabytes of storage.

� Data complexity. This dimension has two aspects. First, the phenomena analysed in com-
plex application scenarios are captured by increasingly complex data structures and types,
including natural language text, images, time series, multi-relational and object data types.
Second, data are increasingly located in geographically distributed data placements and can-
not be gathered centrally for technological (e.g. large data volumes), data privacy (Clifton
et al., 2002), security, legal or other reasons.

To address the issues outlined above, the data mining process is in need of reformulation.
This leads to the concept of distributed data mining, and in particular to grid-based data mining
or – in analogy to a data grid or a computational grid – to the concept of a data mining grid.
A data mining grid seeks a trade-off between data centralization and distributed processing
of data so as to maximize effectiveness and efficiency of the entire process (Kargupta, Ka-
math and Chan, 2000; Talia, 2006). A data mining grid should provide a means to exploit
available hardware resources (primary/secondary memory, processors) in order to handle the
data volumes and processing requirements of modern data mining applications. Furthermore,
it should support data placement, scheduling and resource management (Sánchez et al., 2004).

1http://www.prb.org
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Grid computing has emerged from distributed computing and parallel processing technolo-
gies. The so-called grid is a distributed computing infrastructure facilitating the coordinated
sharing of computing resources within organizations and across geographically dispersed sites.
The main advantages of sharing resources using a grid include (a) pooling of heterogeneous
computing resources across administrative domains and dispersed locations, (b) ability to run
large-scale applications that outstrip the capacity of local resources, (c) improved utilization
of resources and (d) collaborative applications (Kesselman and Foster, 1998).

Essentially, a grid-enabled data mining environment consists of a decentralized high-
performance computing platform where data mining tasks and algorithms can be applied on
distributed data. Grid-based data mining would allow (a) the distribution of compute-intensive
data analysis among a large number of geographically scattered resources, (b) the development
of algorithms and new techniques such that the data would be processed where they are stored,
thus avoiding transmission and data ownership/privacy issues, and (c) the investigation and
potential solution of data mining problems beyond the scope of current techniques (Stankovski
et al., 2008).

While grid technology has the potential to address some of the issues of modern data
mining applications, the complexity of the grid computing environments themselves gives
rise to various issues that need to be tackled. Amongst other things, the heterogeneous and
geographically distributed nature of grid resources and the involvement of multiple administra-
tive domains with their local policies make coordinated resource sharing difficult. Ironically,
(distributed) data mining technology could offer possible solutions to some of the problems
encountered in complex grid computing environments. The basic idea is that the operational
data that is generated in grid computing environments (e.g. log files) could be mined to help
improve the overall performance and reliability of the grid, e.g. by identifying misconfigured
machines.

Hence, there is the potential that both paradigms – grid computing and data mining – could
look forward to a future of fruitful, mutually beneficial cooperation.

1.2 Data mining

As already mentioned, data mining refers to the process of extracting useful, non-trivial knowl-
edge from data (Witten and Frank, 2000). The extracted knowledge is typically used in business
applications, for example fraud detection in financial businesses or analysis of purchasing be-
haviour in retail scenarios. In recent years data mining has found its way into many scientific
and engineering disciplines (Grossman et al., 2001). As a result the complexity of data mining
applications has grown extensively (see Subsection 1.2.1). To address the arising computa-
tional requirements distributed and grid computing has been investigated and the notion of a
data mining grid has emerged. While the marriage of grid computing and data mining has seen
many success stories, many challenges still remain – see Subsection 1.2.2. In the following
subsections we briefly hint at some of the current data mining issues and scenarios.

1.2.1 Complex data mining problems

The complexity of modern data mining problems is challenging researchers and developers.
The sheer scale of these problems requires new computing architectures, as conventional
systems can no longer cope. Typical large-scale data mining applications are found in areas
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such as molecular biology, molecular design, process optimization, weather forecast, climate
change prediction, astronomy, fluid dynamics, physics, earth science and so on. For instance,
in high-energy physics, CERN’s (European Organization for Nuclear Research) Large Hadron
Collider 2 is expected to produce data in the range of 15 petabytes/s generated from the smashing
of subatomic particles. These data need to be analysed in four experiments with the aim of
discovering new fundamental particles, specifically the Higgs boson or God particle3.

Another current complex data mining application is found in weather modelling. Here, the
task is to discover a model that accurately describes the weather behaviour according to several
parameters. The climateprediction.net4 project is the largest experiment to produce forecasts of
the climate in the 21st century. The project aims to understand how sensitive weather models
are to both small changes and to factors such as carbon dioxide and the sulphur cycle. To
discover the relevant information, the model needs to be executed thousands of times.

Sometimes the challenge is not the availability of sheer compute power or massive memory,
but the intrinsic geographic distribution of the data. The mining of medical databases is such an
application scenario. The challenge in these applications is to mine data located in distributed,
heterogeneous databases while adhering to varying security and privacy constraints imposed
on the local data sources (Stankovski et al., 2007).

Other examples of complex data mining challenges include large-scale data mining prob-
lems in the life sciences, including disease modelling, pathway and gene expression analysis,
literature mining, biodiversity analysis and so on (Hirschman et al., 2002; Dubitzky, Granzow
and Berrar, 2006; Edwards, Lane and Nielsen, 2000).

1.2.2 Data mining challenges

If data mining tasks, applications and algorithms are to be distributed, some data mining
challenges are derived from current distributed processing problems. Nevertheless, data mining
has certain special characteristics – such as input data format, pressing steps and tasks – which
should be taken into account.

In recent years, two lines of research and development have featured prominently the evo-
lution of data mining in distributed computing environments.

� Development of parallel or high-performance algorithms, theoretical models and data min-
ing techniques. Distributed data mining algorithms must support the complete data mining
process (pre-processing, data mining and post-processing) in a similar way as their central-
ized versions do. This means that all data mining tasks, including data cleaning, attribute
discretization, concept generalization and so on, should be performed in a parallel way. Sev-
eral distributed algorithms have been developed according to their centralized versions. For
instance, some parallel algorithms have been developed for association rules (Agrawal and
Shafer, 1996; Ashrafi, Taniar and Smith, 2004), classification rules (Zaki, Ho and Agrawal,
1999; Cho and Wüthrich, 2002) or clustering algorithms (Kargupta et al., 2001; Rajasekaran,
2005).

2http://lhc.web.cern.ch/lhc/
3The Higgs boson is the key particle to understanding why matter has mass.
4www.climateprediction.net/
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� Design of new data mining systems and architectures to deal with the efficient use of com-
puting resources. Although some effort has been made towards the development of efficient
distributed data mining algorithms, the environmental aspects, such as task scheduling and
resource management, are critical aspects to the success of distributed data mining. There-
fore, the deployment of data mining applications within high-performance and distributed
computing infrastructures becomes a challenge for future developments in the field of data
mining. This volume is intended to cover this dimension.

Furthermore, current data mining problems require more development in several areas
including data placement, data discovery and storage, resource management and so on, because
of the following.

� The high complexity (data size and structure, cooperation) of many data mining applications
requires the use of data from multiple databases and may involve multiple organizations and
geographically distributed locations. Typically, these data cannot be integrated into a single,
centralized database data warehouse due to technical, privacy, legal and other constraints.

� The different institutions have maintained their own (local) data sources using their preferred
data models and technical infrastructures.

� The possible geographically dispersed data distribution implies fault tolerance and other
issues. Also, data and data model (metadata) updates may introduce replication and data
integrity and consistency problems.

� The huge volume of analysed data and the existing difference between computing and I/O
access times require new alternatives to avoid the I/O system becoming a bottleneck in the
data mining processes.

Common data mining deployment infrastructures, such as clusters, do not normally meet
these requirements. Hence, there is a need to develop new infrastructures and architectures that
could address these requirements. Such systems should provide (see, for example, Stankovski
et al., 2008) the following.

� Access control, security policies and agreements between institutions to access data. This
ensures seamless data access and sharing among different organizations and thus will support
the interoperation needed to solve complex data mining problems effectively and efficiently.

� Data filtering, data replication and use of local data sets. These features enhance the effi-
ciency of the deployment of data mining applications. Data distribution and replication need
to be handled in a coherent fashion to ensure data consistency and integrity.

� Data publication, index and update mechanisms. These characteristics are extremely impor-
tant to ensure the effective and efficient location of relevant data in large-scale distributed
environments required to store the large number of data to be analysed.

� Data mining planning and scheduling based on the existing storage resources. This is needed
to ensure effective and efficient use of the computing resources within a distributed comput-
ing environment.
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In addition to the brief outline described above, we highlight some of the key contemporary
data mining challenges as identified by (Yang and Wu, 2006). We highlight those that we feel
are of particular relevance to ongoing research and development that seeks to combine grid
computing and data mining.

(a) Mining complex knowledge from complex data.

(b) Distributed data mining and mining multi-agent data.

(c) Scaling up for high-dimensional and high-speed data streams.

(d) Mining in a network setting.

(e) Security, privacy and data integrity.

(f) Data mining for biological and environmental problems.

(g) Dealing with non-static, unbalanced and cost-sensitive data.

(h) Developing a unifying theory of data mining.

(i) Mining sequence data and time series data.

(j) Problems related to the data mining process.

1.3 Grid computing

Scientific, engineering and other applications and especially grand challenge applications are
becoming ever more demanding in terms of their computing requirements. Increasingly, the
requirements can no longer be met by single organizations. A cost-effective modern technology
that could address the computing bottleneck is grid technology (Kesselman and Foster, 1998).

In the past 25 years the idea of sharing computing resources to obtain the maximum
benefit/cost ratio has changed the way we think about computing problems. Expensive and
difficult-to-scale supercomputers are being complemented and sometimes replaced by afford-
able distributed computing solutions.

Cluster computing was the first alternative to multiprocessors, aimed at obtaining a better
cost/performance ratio. A cluster can be defined as a set of dedicated and independent machines,
connected by means of an internal network, and managed by a system that takes advantage
of the existence of several computational elements. A cluster is expected to provide high
performance, high availability, load balancing and scalability.

Although cluster computing is an affordable way to solve complex problems, it does not
allow us to connect different administration domains. Furthermore, it is not based on open
standards, which makes applications less portable. Finally, current grand challenge applications
have reached a level of complexity that even cluster environments may not be able to address
adequately.

A second alternative to address grand challenge applications is called Internet computing.
Its objective is to take advantage of not only internal computational resources (such as the
nodes of a cluster) but also those general purpose systems interconnected by a wide area
network (WAN). A WAN is a computer network that covers a broad area, i.e. any network
whose communications links cross-metropolitan, regional or national boundaries. The largest
and best-known example of a WAN is the Internet. This allows calculations and data analysis to
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be performed in a highly distributed way by linking geographically widely dispersed resources.
In most cases this technology is developed using free computational resources from people or
institutions that voluntarily join the system to help scientific research.

A popular example of an Internet-enabled distributed computing solutions is the
SETI@home5 project (University of California, 2007). The goal of the project is the search
for extra-terrestrial intelligence through the analysis of radio signals from outer space. It
uses Internet-connected computers and a freely available software that that analyses narrow-
bandwidth signals from radio telescope data. To participate in this large-scale computing
exercise, users download the software and install it on their local systems. Chunks of data
are sent to the local computer for processing and the results are sent to a distributor node. The
program uses part of the computer’s CPU power, disk space and network bandwidth and the
user can control how much of the computer resources are used by SETI@Home, and when
they can be used.

Similar ‘@home’ projects have been organized in other disciplines under the Berkeley
Open Infrastructure for Network Computing (BOINC) 6 initiative. In biology and medicine,
Rosetta@home7 uses Internet computing to find causes of major human diseases such as the
acquired immunodeficiency syndrome (AIDS), malaria, cancer or Alzheimer’s. Malariacontrol.
net8 is another project that adopts an Internet computing approach. Its objective is to develop
simulation models of the transmission dynamics (epidemiology) and health effects of malaria.

In spite of its usefulness, Internet computing presents some disadvantages, mainly because
most resources are made available by a community of voluntary users. This limits the use of
the resources and the reliability of the infrastructure to solve problems in which security is a
key factor. Even so, by harnessing immense computing power these projects have made a first
step towards distributed computing architectures capable of addressing complex data mining
problems in diverse application areas.

One of the most recent incarnations of large-scale distributed computing technologies is
grid computing (Kesselman and Foster, 1998). The aim of grid computing is to provide an
affordable approach to large-scale computing problems. The term grid can be defined as a
set of computational resources interconnected through a WAN, aimed at performing highly
demanding computational tasks such as grand challenge applications. A grid makes it possible
to securely and reliably take advantage of widely dispersed computational resources across
several organizations and administrative domains. An administrative domain is a collection of
hosts and routers, and the interconnecting network(s), managed by a single administrative au-
thority, i.e. a company, institute or other organization. The geographically dispersed resources
that are aggregated within a grid could be viewed as a virtual supercomputer. Therefore, it has
no centralized control, as each system still belongs to and is controlled by its original resource
provider. The grid automates access to computational resources, assuring security restrictions
and reliability.

Ian Foster defines the main characteristics of a grid as follows (Foster, 2002).

� Decentralized control. Within a grid, the control of resources is decentralized, enabling
different administration policies and local management systems.

5http://setiathome.berkeley.edu/
6http://boinc.berkeley.edu/
7http://boinc.bakerlab.org/rosetta/
8http://www.malariacontrol.net/
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� Open technology. A grid should use of open protocols and standards.

� High quality of service. A grid provides high quality of service in terms of performance,
availability and security.

Grid solutions are specifically designed to be adaptable and scalable and may involve a large
number of machines. Unlike many cluster and Internet computing solutions, a grid should be
able to cope with unexpected failures or loss of resources. Commonly used systems (such as
clusters) can only grow up to a certain point without significant performance losses. Because
of the expandable set of systems that can be attached and adapted, grids can provide theoretical
unlimited computational power.

Other advantages of a grid infrastructure can be summarized as follows.

� Overcoming of bottlenecks faced by many large-scale applications.

� Decentralized administration that allows independent administrative domains (such as cor-
porative networks) to join and contribute to the system without losing administrative
control.

� Integration of heterogeneous resources and systems. This is achieved through the use of open
protocols and standard interconnections and collaboration between diverse computational
resources.

� A grid system is able to adapt to unexpected failures or loss of resources.

� A grid environment never becomes obsolete as it may easily assimilate new resources (per-
haps as a replacement for older resources) and be adapted to provide new features.

� Provide an attractive cost/performance ratio making high-performance computing
affordable.

Current grids are designed so as to serve a certain purpose or community. Typical grid
configurations (or types of grid) include the following.

� Computing (or computational) grid. This type of grid is designed to provide as much comput-
ing power as possible. This kind of environment usually provides services for submitting,
monitoring and managing jobs and related tools. Typically, in a computational grid most
machines are high-performance servers. Sometimes two types of computational grid are
distinguished: distributed computing grids and high-throughput grids (Krauter, Buyya and
Maheswaran, 2002).

� Data grid. A data grid stores and provides reliable access to data across multiple organiza-
tions. It manages the physical data storage, data access policies and security issues of the
stored data. The physical location of the data is normally transparent to the user.

� Service grid. A service grid (Krauter, Buyya and Maheswaran, 2002) provides services that
are not covered by a single machine. It connects users and applications into collaborative
workgroups and enables real-time interaction between users and applications via a virtual
workspace. Service grids include on-demand, collaborative and multimedia grid systems.
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While grid technology has been used in productive setting for a while, current research still
needs to address various issues. Some of these are discussed below.

1.3.1 Grid computing challenges

Although grid computing allows the creation of comprehensive computing environments
capable of addressing the requirements of grand challenge applications, such environments can
often be very complex. Complexity arises from the heterogeneity of the underlying software
and hardware resources, decentralized control, mechanisms to deal with faults and resource
losses, grid middleware such as resource broker, security and privacy mechanisms, local poli-
cies and usage patterns of the resources and so on. These complexities need to be addressed
in order to fully exploit the grid’s features for large-scale (data mining) applications.

One way of supporting the management of a grid is to monitor and analyse all information of
an operating grid. This may involve information on system performance and operation metrics
such as throughput, network bandwidth and response times, but also other aspects such as
service availability or the quality of job–resource assignment9. Because of their complexity,
distributed creation and real-time aspects, analyzing and interpreting the ‘signals’ generated
within an operating grid environment can become a very complex data analytical task. Data
mining technology is turning out to be the methodology of choice to address this task, i.e. to
mine grid data.

1.4 Data mining grid – mining grid data

From the overview on data mining and grid technology, we see two interesting developments,
the concept of a data mining grid and mining grid data. A data mining grid could be viewed
as a grid that is specifically designed to facilitate demanding data mining applications. In
addition, grid computing environments may motivate a new form of data mining, mining grid
data, which is geared towards supporting the efficient operation of a grid by facilitating the
analysis of data generated as a by-product of running a grid. These two aspects are now briefly
discussed.

1.4.1 Data mining grid: a grid facilitating large-scale data mining

A data mining application is defined as the use of data mining technology to perform data
analysis tasks within a particular application domain. Basic elements of a data mining appli-
cation are the data to be mined, the data mining algorithm(s) and methods used to mine the
data, and a user who specifies and controls the data mining process. A data mining process
may consist of several data mining algorithms, each addressing a particular data mining task,
such as feature selection, clustering or visualization. A given data mining algorithm may have
different software implementations. Likewise, the data to be mined may be available in differ-
ent implementations, for instance as a database in a database management system, a file in a
particular file format or a data stream.

A data mining grid is a system whose main function is to facilitate the sharing and use of
data, data mining programs (implemented algorithms), processing units and storage devices

9A grid job could be anything that needs a grid resource, e.g. a request for bandwidth or disk space, an application or
a set of application programs.
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in order to improve existing, and enable novel, data mining applications (see Subsection 1.2.2).
Such a system should take into account the unique constraints and requirements of data mining
applications with respect to the data management and data mining software tools, and the users
of these tools (Stankovski et al., 2008). These high-level goals lead to a natural breakdown of
some basic requirements for a data mining grid. We distinguish user, application and system
requirements. The user requirements are dictated by the need of end users to define and execute
data mining tasks, and by developers and administrators who need to evolve and maintain the
system. Application program and system requirements are driven by technical factors such as
resource type and location, software and hardware architectures, system interfaces, standards
and so on. Below we briefly summarize what these requirements may be.

Ultimately, a data mining grid system facilitating advanced data mining applications is
operated by a human user – an end user wanting to solve a particular data mining task or
a system developer or administrator tasked with maintaining or further developing the data
mining grid. Some of the main requirements such users may have include the following.

� Effectiveness and efficiency. A data mining grid should facilitate more effective (solution
quality) and/or more efficient (higher throughput, which relates to speed-up) solutions than
conventional environments.

� Novel use/application. A data mining grid should facilitate novel data mining applications
currently not possible with conventional environments.

� Scalability. A data mining grid should facilitate the seamless adding of grid resources to
accommodate increasing numbers of users and growing application demands without per-
formance loss.

� Scope. A data mining grid should support data mining applications from different application
domains and should allow the execution of all kinds of data mining task (pre-processing,
analysis, post-processing, visualization etc.)

� Ease of use. A data mining grid should hide grid details from users who do not want to
concern themselves with such details, but be flexible enough to facilitate deep, grid-level
control to those users wish to operate on this level. Furthermore, mechanisms should be
provided by a data mining grid that allow users to search for grid-wide located data mining
applications and data sources. Finally, a data mining grid should provide tools that help users
to define complex data mining processes.

� Monitoring and steering. A data mining grid should provide tools that allow users to monitor
and steer (e.g. abort, provide new input, change parameters) data mining applications running
on the grid.

� Extensibility, maintenance and integration. Developers should be able to port existing data
mining applications to the data mining with little or no modification to the original data
mining application program. System developers should be able to extend the features of the
core data mining grid system without major modifications to the main system components.
It should be easy to integrate new data mining applications and core system components
with other technology (networks, Web services, grid components, user interfaces etc).

To meet the user requirements presented above, a data mining grid should meet additional
technical requirements relating to data mining application software (data, programs) and the
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underlying data mining grid system components. Some basic requirements of this kind are as
follows.

� Resource sharing and interoperation. A data mining grid should facilitate the seamless
interoperation and sharing of important data mining resources and components, in particular,
data mining application programs (implemented algorithms), data (different standard data
file formats, database managements systems, other data-centric systems and tools), storage
devices and processing units.

� Data mining applications. A data mining grid should accommodate a wide range of data min-
ing application programs (algorithms) and should provide mechanisms that take into account
the requirements, constraints and user-defined settings associated with these applications.

� Resource management. A data mining grid system should facilitate resource management
to match available grid resources to job requests (resource broker), schedule the execution
of the jobs on matched resources (scheduler) and manage and monitor the execution of jobs
(job execution and monitoring). In particular, a data mining grid resource manager should
facilitate data-oriented scheduling and parameter sweep applications, and take into account
the type of data mining task, technique and method or algorithm (implementation) in its
management policies.

1.4.2 Mining grid data: analysing grid systems with data mining techniques

Grid technology provides high availability of resources and services, making it possible to deal
with new and more complex problems. But it is also known that a grid is a very heterogeneous
and decentralized environment. It presents different kinds of security policy, data and comput-
ing characteristic, system administration procedure and so on. Given these complexities, the
management of a grid, any grid not just a data mining grid, becomes a very important aspect
in running and maintaining grid systems. Grid management is the key to providing high relia-
bility and quality of service. The complexities of grid computing environments make it almost
impossible to have a complete understanding of the entire grid. Therefore, a new approach
is needed. Such an approach should pool, analyse and interpret all relevant information that
could be obtained from a grid. The insights provided should then be used to support resource
management and system administration. Data mining has proved to be a remarkably powerful
tool, facilitating the analysis and interpretation of large volumes of complex data. Hence, given
the complexities involved in operating and maintaining grid environments efficiently and the
ability of data mining to analyse and interpret large volumes of data, it is evident that ‘mining
grid data’ could be a solution to improving the performance, operation and maintenance of
grid computing environments.

Nowadays, most management techniques consider the grid as a set of independent, complex
systems, building together a huge pool of computational resources. Therefore, the administra-
tion procedures are subjected to a specific analysis of each computer system, organizational
units, etc. Finally, the decision making is based on a detailed knowledge of each of the ele-
ments that make up a grid. However, if we consider how more commonly used systems (such
as regular desktop computers or small clusters) are managed, it is easy to realize that re-
source administration is very often based on more general parameters such as CPU or memory
usage, not directly related to the specific architectural characteristics, although it is affected by
them. This can be considered as an abstraction method that allows administrators to generalize
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and apply their knowledge to different systems. This abstraction is possible thanks to a set of
underlying procedures, present in almost every modern computer.

Nevertheless, in complex systems such as a grid, this level of abstraction is not enough. The
heterogeneous and distributed nature of grids implies a new kind of architectural complexity.
Data mining techniques can contribute to observe and analyse the environment as a single
system, offering a new abstraction layer that reduces grid observation to a set of representative
generic parameters. This approach represents a new perspective for management, allowing
consideration of aspects regarding the whole system activity, instead of each subsystem’s
behaviour.

The complexity of this formulation makes it hard to face grid understanding directly as a
single problem. It is desirable to focus on a limited set of aspects, trying to analyse and improve
them first. This can provide insight on how to deal with the abstraction of grid complexity,
which can be extended to more complete scenarios. The great variety of elements that can be
found in the grid offers a wide range of information to process. Data from multiple sources
can be gathered and analysed using data mining techniques to learn new useful information
about different grid features. The nature of the information obtained determines what kind of
knowledge is going to be obtained.

Standard monitoring parameters such as CPU or memory usage of the different grid reso-
urces can provide insight on a grid’s computational behaviour. A better knowledge of the grid
variability makes it possible to improve the environment performance and reliability. A deep
internal analysis of the grid can reveal weak points and other architectural issues.

From a different point of view, user behaviour can be analysed, focusing on access patterns,
service request, the nature of these requests etc. This would make it possible to refine the
environment features and capabilities, trying to effectively fit user needs and requirements.

The grid’s dynamic evolution can also be analysed. Understanding the grid’s present and
past behaviour allows us to establish procedures to predict its evolution. This would help the
grid management system to anticipate future situations and optimize its operation.

1.5 Conclusions

With the advance of computer and information technology, increasingly complex and resource-
demanding applications have become possible. As a result, even larger-scale problems are
envisaged and in many areas so-called grand challenge problems (Wah, 1993) are being tackled.
These problems put an even greater demand on the underlying computing resources. A growing
class of applications that need large-scale resources is modern data mining applications in
science, engineering and other areas (Grossman et al., 2001). Grid technology (Kesselman
and Foster, 1998) is an answer to the increasing demand for affordable large-scale computing
resources.

The emergence of grid technology and the increasingly complex nature of data mining
applications have led to a new synergy of data mining and grid. On one hand, the concept
of a data mining grid is in the process of becoming a reality. A data mining grid facilitates
novel data mining applications and provides a comprehensive solution for affordable high-
performance resources satisfying the needs of large-scale data mining problems. On the other
hand, mining grid data is emerging as a new class of data mining application. Mining grid
data could be understood as a methodology that could help to address the complex issues in-
volved in running and maintaining large grid computing environments. The dichotomy of these
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Figure 1.1 Analogy symbolizing the new synergy between a data mining grid and the mining of grid
data. ‘M. C. Escher : The Graphic Work’ (with permission from Benedikt-Taschen Publishers)

concepts – a data mining grid and mining grid data – is the subject of this volume and is beau-
tifully illustrated in Figure 1.1. The two paradigms should go hand in hand and benefit from
each other – a data mining grid can efficiently deploy large-scale data mining applications and
data mining techniques can be used to understand and reduce the complexity of grid computing
environments.

However, both areas are relatively new and demand further research and development. This
volume is intended to be a contribution to this quest. What seems clear, though, is that the two
areas are looking forward to a great future. The time has come to face the music and dance!

1.6 Summary of chapters in this volume

Chapter 1 is entitled ‘Data mining meets grid computing: time to dance?’. The title indicates
that there is a great synergy afoot, a synergy between data mining and grid technology. The
chapter describes how the two paradigms – data mining and grid computing – can benefit
from each other: data mining techniques can be efficiently deployed in a grid environment and
operational grids can be mined for patterns that may help to optimize the effectiveness and
efficiency of the grid computing infrastructure.

Chapter 2 is entitled ‘Data analysis services in the knowledge grid’. It describes a grid-based
architecture supporting distributed knowledge discovery called Knowledge Grid. It discusses
how the Knowledge Grid framework has been developed as a collection of grid services and
how it can be used to develop distributed data analysis tasks and knowledge discovery processes
exploiting the service-oriented architecture model.
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Chapter 3 is entitled ‘GridMiner: an advanced support for e-science analytics’. It describes
the architecture of the GridMiner system, which is based on the Cross Industry Standard Process
for Data Mining. GridMiner provides a robust and reliable high-performance data mining and
OLAP environment, and the system highlights the importance of grid-enabled applications in
terms of e-science and detailed analysis of very large scientific data sets.

Chapter 4 is entitled ‘ADaM services: scientific data mining in the service-oriented archi-
tecture paradigm’. The ADaM system was originally developed in the early 1990s with the
goal of mining large scientific data sets for geophysical phenomena detection and feature ex-
traction. The chapter describes the ADaM system and illustrates its features and functions on
the basis of two applications of ADaM services within a SOA context.

Chapter 5 is entitled ‘Mining for misconfigured machines in grid systems’. This chapter
describes the Grid Monitoring System (GMS) – a system that adopts a distributed data mining
approach to detection of misconfigured grid machines.

Chapter 6 is entitled ‘FAEHIM: federated analysis environment for heterogeneous intelli-
gent mining’. It describes the FAEHIM toolkit, which makes use of Web services composition,
with the widely deployed Triana workflow environment. Most of the Web services are derived
from the Weka data mining library of algorithms.

Chapter 7 is entitled ‘Scalable and privacy-preserving distributed data analysis over a
service-oriented platform’. It reviews a recently proposed scalable and privacy-preserving
distributed data analysis approach. The approach computes abstractions of distributed data,
which are then used for mining global data patterns. The chapter also describes a service-
oriented realization of the approach for data clustering and explains in detail how the analysis
process is deployed in a BPEL platform for execution.

Chapter 8 is entitled ‘Building and using analytical workflows in Discovery Net’. It de-
scribes the experience of the authors in designing the Discovery Net platform and maps out the
evolution paths for a workflow language, and its architecture, that address the requirements of
different scientific domains.

Chapter 9 is entitled ‘Building workflows that traverse the bioinformatics data landscape’.
It describes how the myGrid supports the management of the scientific process in terms of
in silico experimentation in bioinformatics. The approach is illustrated through an example
from the study of trypanosomiasis resistance in the mouse model. Novel biological results
obtained from traversing the ‘bioinformatics landscape’ are presented.

Chapter 10 is entitled ‘Specification of Distributed data mining workflows with DataMin-
ingGrid’. This chapter gives an evaluation of the benefits of grid-based technology from a data
miner’s perspective. It is focused on the DataMiningGrid, a standard-based and extensible
environment for grid-enabling data mining applications.

Chapter 11 is entitled ‘Anteater: service-oriented data mining’. It describes SOA-based data
mining platform Anteater, which relies on Anthill, a runtime system for irregular, data intensive,
iterative distributed applications, to achieve high performance. Anteater is operational and
being used by the Brazilian Government to analyse government expenditure, public health and
public safety policies.

Chapter 12 is entitled ‘DMGA: a generic brokering-based data mining grid architecture’.
It describes DMGA (Data Mining Grid Architecture), a generic brokering-based architecture
for deploying data mining services in a grid. This approach presents two different composition
models: horizontal composition (offering workflow capabilities) and vertical composition (in-
creasing performance of inherently parallel data mining services). This scheme is especially
significant to those services accessing a large volume of data, which can be distributed through
diverse locations.
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Chapter 13 is entitled ‘Grid-based data mining with the environmental scenario search
engine (ESSE)’. The natural environment includes elements from multiple domains such as
space, terrestrial weather, oceans and terrain. The environmental modelling community has
begun to develop several archives of continuous environmental representations. These archives
contain a complete view of the Earth system parameters on a regular grid for a considerable
period of time. This chapter describes the ESSE for data grids, which provides uniform access
to heterogeneous distributed environmental data archives and allows the use of human linguistic
terms while querying the data. A set of related software tools leverages the ESSE capabilities
to integrate and explore environmental data in a new and seamless way.

Chapter 14 is entitled ‘Data pre-processing using OGSA-DAI’. It explores the Open Grid
Services Architecture – Data Access and Integration (OGSADAI) software, which is a uniform
framework for providing data services to support the data mining process. It is shown how
the OGSA-DAI activity framework already provides powerful functionality to support data
mining, and that this can be readily extended to provide new operations for specific data mining
applications. This functionality is demonstrated by two application scenarios and compares
OGSA-DAI with other available data handling solutions.
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