
C H A P T E R

1

Introduction
‘‘We understand that the only competitive advantage the company

of the future will have is its managers’ ability to learn
faster than then their competitors.’’

Arie de Geus (1988)

Softwaredevelopment, inall its forms, is anexercise in learning. Learningoccurs
within the teams that develop the software – not just the amongst themanagers.
Then learning occurs with the people who use the software. If we exploit this
learning, we can enhance the competitive advantage for our companies.
In order to recognize the value of learning, it’s necessary to change things: to

change what we do and the way we do it. Without change we can’t truly learn,
and we certainly don’t exploit our learning. The process of learning and
changing is an exercise in knowledge creation. Knowledge itself is learning
with action: this action often manifests itself as change. This idea, summarized
in Figure 1.1, runs through this book.
Knowledge is the underpinning of our modern economy – hence the

�knowledge economy� – and IT is a key part of this economy. Modern IT
wouldn’t be what it is without software, and that software needs to be written.
Yet thepeoplewhodevelop software, and thosewhomanage them, seldom talk
about knowledge and the role that IT can play in enhancing learning. All too
often, we prefer to view software development as some sort of factory produc-
tion line process.
This view runs far beyond the development process. Organizations buy

software and other IT products in order to create change. Introducing the

1

Changing Software Development: Learning to Become Agile Allan Kelly
� 2008 John Wiley & Sons, Ltd.

CO
PYRIG

HTED
 M

ATERIA
L



software creates change for the users, and subsequent changes to the software
create more change.
Today’s software developers and their managers face three major forms of

change. Firstly, there’s the need to adopt Agile methods. Agile and Lean
development techniques are now established and are moving into the main-
stream arena. In order to adopt these techniques, development teams must
change the way in which they work.
Secondly, having adopted Agile development, these best-performing teams

need to move far beyond the current methods and best practices. Before long,
simply adopting the prescribed practices of a methodology such as eXtreme
Programmingwon’t be enough. Each teammust learn for itselfwhatworks best.
Finally, IT is all about creating change in others. IT deployments that inflict

change on helpless users don’t recognize the true benefits of IT; indeed, many
such projects are outright failures. Those developing and deploying software
must appreciate the need for change and learning by the end users.
Learningandchangearecomplicatedfields.All toooften,peopleseechangeas

the simple application of raw authority: tell someone to do it differently, tell someone
to use a new system, punish them if they get it wrong. Unfortunately, this technique
doesn’t work very well. In particular, it isn’t effective with knowledge workers
who may actually know more about the problem than anyone in a position of
authority. So we need a new view of change to help us with these problems.
Fortunately, the best people in IT – and, in particular, the actual software

development side – like learning.Much, if notmost, ITwork is problemsolving,
which is itself a form of learning. Therefore, we need to help people learn, help
them learn the right things and ensure that this learning is maximized through
meaningful change.

1.1 Why Read this Book?

Even if you don’t wish to embrace Agile software development, there are good
reasons to embrace learning and create a learning culture. Building a learning
environment and culture can help improve the way in which you create
software and benefit your company in many ways.
This book is primarily written for software developers and managers who

want to improve the way in which they, and their teams, develop software.
Software developers who are making, or have recently made, the transition to
team leadership and development management should find the ideas particu-
larly interesting.
There’s an additional group of people who I hope will find this book

interesting: those dependent on the work of a software development team.

Knowledge = Learning + Action
Figure 1.1 Knowledge is.

2 Chapter 1



Such people often view IT, and specifically development activities, as a foreign
land. Viewing IT as a learning activity, rather than an engineering or scientific
activity, can help explain much of what goes on in that land.

1.1.1 Learning for Agility

The book aims to help in three ways:

& For teams that want to be Agile: Increasingly, we know what Agile software
development is. The problem facing those who aren’t Agile is not �What is
Agile?� or �What do Agile teams do differently?� The problem is rather
�How do we change so that we’re Agile?� This book presents learning as a
mechanism for creating change.

& For teams that are Agile and want to improve further: For teams that have
achieved Agility, the challenge is slightly different. Such teams will
already be seeing the benefits of the Agile approach. However, there’s
still a need to improve and become even better. The learning-based
approach can help here too.

& By explaining the role of learning in software development: During the past
40 years, there have beenmany attempts tomake software development fit
within the engineering and process metaphors. Despite this, software
projects have continued to fail. In this book, I suggest that software
development is an exercise in learning and knowledge management.
Changing our perspective offers new insights and approaches. In particu-
lar, this perspective allows us to harness the tools and experience of the
organizational learning movement instead of the tools of engineering.

This book doesn’t attempt to be the last word on any of these subjects. I’ve tried
to point you to many sources for further investigation. Instead, this book aims,
firstly, to introduce each of these topics and, secondly, to weave them into a
coherent narrative to explain software development as a learning activity.

1.1.2 Learning Creates Competitive Advantage

Modern business is constantly searching for competitive advantage: the ability
to out-compete rivals, to sell more products, to sell more expensive products
and to increase production. Once upon a time, competitive advantage could be
gained by having better physical access than your competitors to some re-
source, land, labour or capital.
Today, firms seek competitive advantage throughbetter access to knowledge

and by their ability to act on this knowledge. Knowledge is the result of
learning; therefore, as suggested in the opening quote, a firm’s ability to learn
may be its only competitive advantage.

Introduction 3



By learning, we’re able to create better products: we learn more about our
customers,we learnmore about the technology our products are built fromand
we learn how to produce the products more efficiently. Using this learning,
we’re able to improve our products. Learning about our customers, products
and manufacturing process may allow us to create better products.
Learning also allows us to increase our productivity. Through learning,

we’re able to build products faster, more efficiently and with less waste. This
allows us to maximize the returns from our investment – whether capital or
workers’ time – and generate more profit. In these cases, the firm’s ability to
learn is key to helping the firm improve and succeed. The firm that learns
fastest wins.
But learning isn’t just essential in order to win: it’s also essential in order to

survive. Modern businesses exist in a changing environment, new competitors
entermarkets, customer expectations change, and technologies and regulations
change. Firms that don’t learn and adapt to a changing environment may not
survive.
So, learning isn’t an optional extra. Firms and individuals must learn if they

are to survive. For those that master learning and can learn faster than others,
there are rewards.

1.1.3 Good People Like Learning

Humans are natural learners. Our ability to learn faster than many other
animals is one of the reasons why we humans have advanced as far as we
have.Within software development, thosewho enjoy and excel at learning tend
to perform better than those who dislike learning new things. There are always
new technologies and application domains to learn. Anyone who dislikes
learning would be well advised to avoid a career in software development.
The search for competitive advantage outlined above isn’t the only reason to

embrace learning. People who enjoy learning are more motivated when given
an environment in which they can learn more. Motivated people get more job
satisfaction and are more productive.
Naturally, when people are motivated and happy with their work they are

more likely to remain with the same employer. Therefore, creating a learning
environment should help improve staff retention. Recruitment may also
become easier, as word spreads of a positive work environment, filled with
motivated people who are learning new things.

1.2 Who are Software Developers?

The term software developer is most often used to describe the engineers who
write program code. In truth, there are many more roles necessary to develop
software: testers, business analysts, designers, product managers, architects,

4 Chapter 1



deployment specialists, project managers, development managers and others
all have a hand in developing the software.
The IT community doesn’t have a standard set of job titles and pre-defined

roles; what one company calls a �product manager� is an �architect� elsewhere,
one company’s �project manager� is another’s �development manager�, a �team
leader� in one is a �manager� in another, and so on. All these people are in some
way contributing to the development of a software system.
The level of knowledge and experience required to develop a successful

system causes the old �blue-collar�/’white-collar’ division to fade. Someone
who thinks of a programmer as analogous to a factory worker is making a
mistake: the level of knowledge required by a programmer is several orders of
magnitude greater than that required by an assembly line worker.
The profile of a modern development team looks more like a group of white-

collar managers than a set of blue-collar workers: highly skilled people with
specific knowledge who spend their days making informed decisions – not to
mention working in air-conditioned offices. Consequently, when looking
outside the IT arena, research, advice and inspiration are often to be found
in texts that discuss management challenges.

Thinking Point: Why Do You Want To Change?

This book is going to discuss changing the way in which you create
software. Specifically, I’m going to describe how you can help your team
adopt Agile software practices. Before getting stuck into the task in hand,
it is worth taking a step back and asking:Why? –Why do we want to change
the way in which we do things?
Before you read any further, put this book down andmake a list of five

reasons why you’d like to change the way in which your organization
develops software:

& Try to think beyond immediate reasons such as a recently failed
project.

& Try to think about why, not what.

& Try to think about big reasons rather than small ones.

& Try to think about your company as a whole rather than just your
team: What benefit will this bring?

& Be honest: if youwant to change the team to further your own career,
recognize it – you don’t have to tell anyone else.

You might also want to think about the opportunities that you can see if
you can change.
Now that you’ve made the list, put it to one side. (If youwant to hide it,

do so!)

Introduction 5



There are various reasons why you might want to change your devel-
opment practices. Here are a few reasons, all of them legitimate:

& To improve the competitiveness of your team or company.

& To improve the quality of your software.

& To increase the productivity of your team.

& To create new business opportunities, products and/or services.

& To address a problem that you’re having today.

& To save your own job, perhaps by preventing your work being
outsourced and/or sent off shore.

& To better serve the business.

& To enjoy your job more.

This isn’t an exhaustive list; nor are the items in the list distinct – they all
overlap. Depending on your situation, some will be cause and others
effect: improving the quality may allow you to support your business
better and prevent your department being outsourced, thereby saving
your job.
In fact, everything could be reduced to the first item: improve company

competitiveness. However, this is so general as to be of little use.Most of the
other reasons can be reduced to either quality or productivity, but to do so
means losing useful information about motivation.

1.3 Software Developers are Knowledge Workers

If we look at the definition of knowledge workers, it is clear that it includes
developers:

‘‘Knowledge workers have high degrees of expertise, education, or experi-
ence, and the primary purpose of their jobs involves the creation, distribu-
tion, or application of knowledge.’’

Thomas Davenport (2005)

Indeed, writers and experts on the knowledge economy and knowledge
workers frequently cite software developers, and IT people in general, as prime
examples of knowledge workers. These are individuals who work primarily
with their knowledge. Yet it is rare for those in IT, orwriters about IT, to discuss
software developers as knowledge workers. But then: Why would they? What
difference does it make?
This book will argue that by viewing software developers as knowledge

workers, and considering development activities as knowledge creation with

6 Chapter 1



active learning processes, we gain many useful insights into the process by
which software is developed and deployed. By recognizing IT staff as knowl-
edgeworkers, a rich field of literature and experience opens up fromwhichwe
may learn from to help improve our own practice.
From the same book quoted above, we can distil a list of knowledge work

characteristics:

& Knowledge workers like autonomy: they don’t like being told what to do.

& Specifying detailed steps to follow is less valuable than in other types of
work.

& Knowledge workers find it difficult to describe what they do in detail: if
you want to know, you’re better off watching.

& Not only do knowledge workers find it difficult to describe what they do,
but they’re aware of the value of knowledge and don’t share it without a
motivation.

& Even though theymay not be able to describe what they do, these workers
often have good reason for doing what they do and have often thought in
advance about the way in which they work.

& Commitment matters and makes a huge difference in productivity.

Looking at this list, two things stand out: firstly, this is a list of developer
characteristics too, so anydoubt that developers are knowledgeworkers should
be dispelled. Secondly, an individual with these characteristics is unlikely to
relish routine, factory-like, work. The traditional view of management isn’t
applicable to these workers.
Recognizing that IT workers are knowledge workers also recognizes that

they’re not unique. They share the same characteristics as other knowledge
workers. Nor are the problems that they encounter unique. The opportunities
and problems faced by IT staff and their managers are quite legitimate, and are
sharedbyothermodernknowledgeworkers. Consequently, it iswrong to think
of the �IT geek� as a class apart.
Once we recognize software developers as knowledge workers, it becomes

clear that development activities – specifying, designing, coding and testing
new software – are themselves knowledge activities. Such activities are
completely different from traditional factory production line processes, where
a worker’s individual knowledge makes little immediate difference to the end
product. Having recognized this critical difference, it becomes meaningless to
characterize software development as a factory process.
Many previous attempts to change the way in which IT staff work were

misplaced because they failed to recognize the roles of knowledge and the
characteristics of knowledgeworkers. Naive attempts at quality improvement,
productivity enhancement and cost cutting that draw on manufacturing
experience are simply wrong.

Introduction 7



1.4 Drucker’s Challenge

Defining software development as knowledge work doesn’t allow us to ignore
the issue of productivity. Productivity andquality are still very important to the
success of a business venture. Themanagement guruPeterDrucker forecast the
emergence of this issue as long ago as 1969:

‘‘Knowledge work is not easily defined in quantitative terms, . . . To make
knowledge work productive will be the great management task of this
century, just as tomakemanual work productive was the great management
task of the last century.’’

Peter Drucker (1969)

How youmeasure productivity in software development is a good question.
It is most certainly not lines of code, function points or hours worked. Still, no
matter how difficult it is to measure, we are producing something and we can
always improve productivity and quality. Perhapswe just have to livewith this
ambiguity.
Any attempts to quantify software development productivity must make

allowance for the multiple results of such work. In developing a piece of
software we create a deliverable executable, but there are by-products. The
developers themselves increase their stock of knowledge – about their tools,
about the subject of the software and about the creation process. Similarly,
managers, users and others involved with the specification, implementation
and delivery of the software will learn as a by-product.
Despite the problems of measuring productivity, we can still discuss the

issues, and we can still ask how we can address Peter Drucker’s challenge.
Much of this book is directed at addressing this challenge: How can we make
software developers more productive?
The Agile and Lean schools give us the methods to increase developer

productivity, but we still need to apply them. The challenge we face is less
�What can we do to be more productive?� and more �How can we move from
here to there – from where we are today to more productive practices?� and
�How can we continue to improve our productivity?�
In other words:How do we change? How do we continue to change? How do we go

beyond our current stock of knowledge?

1.5 The Prototype of Future Knowledge Workers

Highlighting IT workers as knowledge workers allows us to learn from the
existing body of knowledge on the subject. IT workers are not alone; they
are knowledge workers and there’s much to learn from other knowledge
workers, and from research and literature about knowledge work in

8 Chapter 1



general. There’s no need for IT managers (and writers) to re-invent the
wheel.
Yet, in anotherway, the existing literature, research andexperience can’t help

IT workers and their managers. This is because IT workers, and software
developers in particular, are at the cutting edge of knowledge work. In many
ways, they’re the prototype of the future knowledge worker; they’re pushing
the boundaries of twenty-first century knowledge work.
This occurs because, to paraphrase Karl Marx, software developers control

the means of production. Modern knowledge work is enabled by and depen-
dent on information technology: e-mail for communication, web sites for
distribution, databases for storage,wordprocessors forwriting reports, spread-
sheets for analysis – the list is endless! These technologies are created by
software developers and used by legions of knowledge workers worldwide.
The key difference between software knowledgeworkers and the others is that
other knowledgeworkers can only use the tools that exist. If a tool doesn’t exist,
they can’t use it. Conversely, software developers have themeans to create any
tool they can imagine.
Consequently, it was a programmer, Ward Cunningham, who invented the

Wiki. Programmers Dan Bricklin and Bob Frankston invented the electronic
spreadsheet. Even earlier, it was another programmer, Ray Tomlinson, who
invented inter-machine e-mail. This doesn’t mean that non-programmers can’t
invent electronic tools. Others can invent tools, but for programmers the
barriers between imagining a tool and creating the tool are far lower.
Lower barriers mean that programmers create many more tools than other

types of worker. Some tools fail, while others are very specific to a specific
problem, organization or task in hand, but when tools do work it is program-
merswho get to use themfirst. In addition, because IT people have had Internet
access for far longer than any other group, the propensity to use it to find tools
and share new tools is far greater. So tools such as Cunningham’sWiki were in
common use by software developers years before they were used by other
knowledge workers.
Early Internet accesshashadother effects too: ITworkerswere early adopters

of remoteworking, either as individual homeworkers or asmembers of remote
development teams; IT people are far more likely to turn to the Web for
assistance with problems and more likely to find it, because IT information
has been stored on the Web since the very beginning.
The net effect of these factors and othersmeans that software developers are

often the first to adopt new tools and techniques in their knowledge work.
They’re also the first to find problems with such tools and techniques.
Consequently, these workers are at the cutting edge of twenty-first century
knowledge work; they are the prototype for other knowledge workers. Other
knowledge workers, and their managers, can learn from the way in which IT
people work today, provided that we recognize these workers as knowledge
workers.

Introduction 9



1.6 Software: Embedded Knowledge

When we program, we teach a computer to do something. We use our
knowledge of computers and programming to create an automated system
that embodies knowledge. For example, accounts software contains knowledge
of accounting principles and practices, the software in a telephone exchange
contains knowledge of call handling and routing, and so on.
As we shall see later (Section 4.1), software brings together three knowledge

domains: knowledge of the technical tools to create the software, knowledge of
software creation process and knowledge of the problem that we’re trying to
solve. Sometimes onepersonwill be accomplished in all threedomains – say, an
experienced compiler writer. On other occasions, different individuals will
embodydifferent knowledge: aprogrammerknows the tools, amanagerknows
the process and a product expert knows the problem that we’re trying to solve.
At the end of the process we have a piece of software that we expect to

function without the presence of any of these individuals. The software itself
doesn’t know anything; even when running on a computer, it has no self-
awareness. However, the software does, to a greater or lesser degree, embody
knowledge from all those who were part of its creation.

1.7 Authority and Leadership

One question that inevitably pops up when discussing change is: Do I have the
authority to introduce change?
This book will argue that change and learning are merely different sides of

the same coin, inwhich casewe could rephrase the original question as follows:
Do I have the authority to enhance learning? This is a much less confrontational
question and one that it is perhaps easier to answer Yes.
A much more difficult question to answer is: Does having authority make it

easier to introduce change and enhance learning? Before you rush to answer,
consider two facts. Firstly, as already noted, knowledge workers don’t like
being told what to do. So even if you can order someone to do something, you
might not get the results that you wanted.
Secondly, people tend toworkbetterwhen they’re doing something that they

want to do. Individuals who choose to do something voluntarily are more
enthusiastic, and consequently more productive, more likely to do it well and
happier overall.
Consequently, even if you do have a position in the organizational hierarchy

that allows you to tell others to do something, youmight be better off finding an
alternative.Ratherthanexercisingauthority, it isbetter toexercise leadershipand
toworkwithpeople’sownmotivations.Thesubjectof leadershipis itselfvastand
isn’t one that I intend to deal with in depth here. Suffice to say, a position of
authority doesn’tmake you a leader: it does, however, confer on you legitimacy.

10 Chapter 1



Legitimacy is important because it allows you to step forward as a leader; it
allows you to create the right environment and remove blockages to learning
and change. Legitimacy may also allow you to reward those who follow your
leadership. We will return to leadership later.
Authority, leadership and legitimacy manifest themselves differently in

different environments. This varies from country to country, from company
to company and within companies. There’s no guarantee that what works on a
German factory production line will work in an American office.
Even in environments in which someone does exercise authority and people

do what they’re told, there’s no monopoly on good ideas. Ideas on how to
improve the product, the technology or the process can come from anywhere.
Managers who rely on authority to get things done risk missing these ideas
because individuals won’t speak up and put their ideas forward – and even if
they do speak up, the manager may not have time to listen.
This is part of the thinking behind the �flat hierarchy� (something of a

contradiction in terms) and �empowerment� in the workforce. However scepti-
cal wemay be about management commitment andmotivation for advocating
empowerment, it is of itself a valid idea.
In trying to lead learning and change, we need to consider ourselves

empowered – an individual who doesn’t will find it hard to lead anything.
We need to create change not through our own authority or through borrow-
ing someone else’s but, rather, through working with those around us who
are receptive to new ideas. Not everyone will be receptive to our ideas, but
some will. Sometimes it may seem like throwing mud at a wall: some will
stick, some will fall off – you can’t tell in advance what will stick and what
won’t.
On occasions, authority can be useful: sometimes it can be useful to stop

people doing something, to ensure that someone takes a specific action or to do
something quickly in a crisis. Authority isn’t a cure, though, and inmany cases
you’ll find that you don’t have the authority to take your desired action. The
tools of leadership and legitimacy are more useful and can be acquired and
exercised wherever you are in the company hierarchy. If you’re in a position to
exercise authority, use it judiciously. You can order someone to change, but you
can’t guarantee that they will, and you certainly can’t order anyone to learn.

1.8 Practical Theory

‘‘There is nothing so practical as a good theory’’

Kurt Lewin (1890–1947), psychologist, inventor of action research
and change theorist

During the course of this book, we will look at a variety of theories, mostly
about learning and change. For a book that tries to have a practical bent, this

Introduction 11



might seemunusual. In fact, there are two good reasons to look at theories even
when we’re trying to be practical.
Firstly, theories allow us to consider and examine the world in ways that are

otherwise verydifficult. Byabstracting awaymuchdetail and consideringa few
key factors, they allow us to look at the issue in hand in a new and potentially
revealing way. This provides a grounding for conducting learning and change
in practice.
Secondly, we all struggle to understand people and events around us. This

understanding then informs our own actions. In order to make sense of the
world, we all use our own set of theories. Some of these will be explicit and we
will know that we’re using a theory; other theories will be implicit and
unspoken. By looking at different theories we open our minds to different
models of the world: if these models make sense to us, they will inform our
actions in the future and change the way in which we act.
Studying theories of learning and change should better prepare us for

practising learning and change. Hopefully some of the theories given here
will change thewayyou see theworld andmightpromptyou todiscard someof
the theories that you’re already using. This is the start of the change process.

Terminology

This bookdraws on a large variety of sources from software development,
computing and information technology in general, and from the business
world. These sources use different terms forwhat are essentially the same
things. Although sometimes these terms refer to different things, the
underlying concept is, from our point of view, the same.
For simplicity, I’m going to consider the terms Information Technology

(IT), Information Systems (IS) and Information Technology and Communica-
tions (ITC) as synonymous. Some of the authors quoted discuss Manage-
ment Systems (MS) and Management Information Systems (IMS). Strictly
speaking, the terms refer to subsets of information systems, but the
difference isn’t important for our purposes.
This book is primarily concerned with the development of software;

that is, software development. This is a discipline necessary to all kinds of
IT(C) and it is a subset of IT. On the whole, I will use the term software
development when I am specifically discussing some aspect of the devel-
opment process and IT when I am discussing the wider dimensions.
In addition, I will use the terms firm, company and corporation as

synonyms. While these terms usually refer to profit-making entities, for
our purposes I include not-for-profit organizations within them.
The word organization is a more flexible term that may refer to a large

multinational corporation, a division of a large company, a branch office
or a single team, depending on the context or your own terms of reference.

12 Chapter 1



Finally, despite my personal dislike for the term user – which has too
many negative overtones – there’s no more suitable term in widespread
use todescribe thepeoplewhomakeuseof our software. The term customer
can sometimes substitute, but customers andusers aren’t always the same.

1.9 Begin with Yourself

The primary objective of this book is to give you, the reader, an understanding
of howyou canhelp software development teams improve their ability to learn,
allow them to change the way in which they work and adopt a more Agile
approach to development. During the course of the book, we will look at
various theories of learning and change, we will discuss examples of learning
and change and we will suggest some actions that you can take to help teams
learn and change.
Naturally, this leads to the following questions:Where do I begin?What do I do

first?
The answer is: Begin with yourself. First seek to improve your own learning

and understanding of the situation in which you find yourself.
We will return to this theme again and again, because if you can’t improve

yourself, then you can’t improve your team. Conversely, if you can improve
yourself, then you’re in a better position to help others and act as a role model
and mentor.
Rather than wait until you’ve finished reading this book, I suggest that you

start now. As you read the book, think about the ideas and suggestions
presented and how they apply to you and your team.
In order todo this, you’ll need to take some time to thinkabout this book, your

team, your organization and your current environment. You might like to
schedule some time during theweekwhen you can do this. Youmight also like
to undertake your thinkingwith a partner – inwhich case the thinking becomes
a discussion. It isn’t essential that your partner also reads this book, but he or
she should share your interest.
If you don’t have a partner to work with, you can still do this by yourself.

Keeping a personal journal, or diary, can be an effectivemechanism for ordering
and recording your thinking. You could use an online Blog for the same
purposes, but if you do be aware that others – including your team-mates –
might read your thoughts. Youmaynot have anything to hide, but knowing that
your thoughts are private allowsyou to express yourself indifferentways and to
speculate. Alternatively, you could try drawing mind-maps, talking to the dog
or just taking long thoughtful baths. Whatever you do, try to think!
Try to think about your organization and environment. Do you understand

what the organization is trying to achieve? Or what’s happening around you?
Or why recent decisions have been made?

Introduction 13



Hopefully, such thinking will lead you to inquire more deeply into what’s
happening. To improve your understanding, ask questions of people around
you. It might be that what you think is the case isn’t, so it’s best not to jump to
assumptions. Recognize that different people see situations in different ways:
there aremultipleways to see things, so there’s no single rightway to do things.
In trying to understand the world around you, it is probable that you’ll find

the need to give up some of your current beliefs and understanding of the way
inwhich the organization operates. This is normal – the process of learning also
entails the process of unlearning. If you aren’t challenging what you think you
know, then you aren’t learning anything.
Taken together, the process of thinking, inquiring, learning, unlearning and

understanding is called reflection. It simplymeans taking timeout to think about
what’s happening.
At some points in the book, I will suggest questions that you might like to

think about. These are intended to help you relate the material to your
organization.Hopefully, thiswill help improve your understanding and reveal
opportunities.
To help others learn and change, you have to begin with yourself. Nobody

can tell you what to do; nobody can give you a recipe to improve your team –
you have to decide what you want to do and you have to make it happen. This
requires thought and understanding.

1.10 The Organization of the Book

Bynow, I hope youhave a good idea ofwhat this book is going to talk about.We
will return to several key points:

& In themodern economy, knowledge is key to all business activities; knowl-
edge can give your business competitive advantage and greater profits.

& Software development is a knowledge-based industry and theworkers are
knowledge workers.

& Knowledge results from learning and acting on that learning, which
involves change.

& Without change we can’t capitalize onwhat we learn, and without change
we can’t continue our learning.

& Agile methods are rooted in organizational learning; in order to become
Agile, we must change the way in which we do things – in order to stay
Agile and improve further, we must learn.

Figure 1.2 shows graphically the philosophy behind this book, with learning at
the heart. Initially, we start by seeding and motivating learning: most good
software developers are eager learners. Frustration sets in when barriers are
encountered. Many of these barriers come from implicit assumptions and the

14 Chapter 1



teamenvironment: recognizing these assumptions speeds up and improves the
learningprocess. Active learning leads to and requires change: this change then
creates learning, so establishing a virtuous circle of improvement. The alterna-
tive is a vicious circle of decay, in which learning without change leads to
frustration and delay.
Oncewe’re learning and changing,we need to keepdoing it.We can’t simply

declare our work done and stop. We need to do it again and again, each time
getting better and faster. And out of this work knowledge is created.
In the chapters that follow, we will explore these points in more depth and

consider what you can do to learn, how you can improve your organizational

Seed
learning

Recognize
assumptions

Improve 
team 

working

Remove 
barriers to 
learning

Motivate 
learning

Learning 
creates 
change

Change
creates 

learning

Go faster!

Go round 
loop again

Knowledge

Learning with action 
creates knowledge

Figure 1.2 The philosophy of the book.

Introduction 15



learning, how learning can create change and how to manage change to create
learning.
We start by looking atAgile softwaredevelopment inChapter 2. Those of you

who are already familiar with Agile may prefer to browse this chapter rather
than read it in full. If you are new to the ideas of Agile, you should read the
chapter more thoroughly.
The next three chapters look at knowledge and learning inmore detail. Those

anxious to start doing something soon might want to skip ahead and read
Chapter 4,which discusses different types of learning and howwe can enhance
learning in our organizations. Chapter 5 expands on this to look at learning in
organizations, and specifically the ideas of Peter Senge.
Having grounded ourselves in knowledge and learning, in the second half of

the book we turn our attention to change specifically. Chapter 6 starts by
looking beyond development at the wider picture of business change, and
considers how software requirements change and how IT changes the people
who use it.
Chapter 7 considers howwecan classify change sowecan recognizedifferent

types of change, and Chapter 8 follows this up with some theories of change.
Taken together, these chapters help us to understand the nature of change and
why it is difficult.
Chapters 9 and10 try topull learningandchange together bydiscussingwhat

action we can take to create learning and change in our organizations.
If you’re happy in your understanding of learning and change, then you

mightwant focus onChapters 3, 8 and 9,wheremost of the hands-on advice for
day-to-day action can be found. Chapters 10 and 11 contain some more
involved techniques for promoting improvement.
Finally, Chapter 12 pulls everything together and considers where you can

start turning ideas into action.

16 Chapter 1


