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Preliminaries

Queueing theory is an intricate and yet highly practical fi eld of mathematical 
study that has vast applications in performance evaluation. It is a subject 
usually taught at the advanced stage of an undergraduate programme or the 
entry level of a postgraduate course in Computer Science or Engineering. To 
fully understand and grasp the essence of the subject, students need to have 
certain background knowledge of other related disciplines, such as probability 
theory and transform theory, as a prerequisite.

It is not the intention of this chapter to give a fi ne exposition of each of the 
related subjects but rather meant to serve as a refresher and highlight some 
basic concepts and important results in those related topics. These basic con-
cepts and results are instrumental to the understanding of queueing theory that 
is outlined in the following chapters of the book. For more detailed treatment 
of each subject, students are directed to some excellent texts listed in the 
references.

1.1 PROBABILITY THEORY

In the study of a queueing system, we are presented with a very dynamic 
picture of events happening within the system in an apparently random fashion. 
Neither do we have any knowledge about when these events will occur nor 
are we able to predict their future developments with certainty. Mathematical 
models have to be built and probability distributions used to quantify certain 
parameters in order to render the analysis mathematically tractable. The 
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2 PRELIMINARIES

importance of probability theory in queueing analysis cannot be over-
emphasized. It plays a central role as that of the limiting concept to calculus. 
The development of probability theory is closely related to describing ran-
domly occurring events and has its roots in predicting the random outcome 
of playing games. We shall begin by defi ning the notion of an event and the 
sample space of a mathematical experiment which is supposed to mirror a 
real-life phenomenon.

1.1.1 Sample Spaces and Axioms of Probability

A sample space (Ω) of a random experiment is a collection of all the mutually 
exclusive and exhaustive simple outcomes of that experiment. A particular 
simple outcome (w) of an experiment is often referred to as a sample point. An 
event (E) is simply a subset of Ω and it contains a set of sample points that 
satisfy certain common criteria. For example, an event could be the even 
numbers in the toss of a dice and it contains those sample points {[2], [4], [6]}. 
We indicate that the outcome w is a sample point of an event E by writing 
{w ∈ E}. If an event E contains no sample points, then it is a null event and 
we write E = ∅. Two events E and F are said to be mutually exclusive if they 
have no sample points in common, or in other words the intersection of events 
E and F is a null event, i.e. E ∩ F = ∅.

There are several notions of probability. One of the classic defi nitions is 
based on the relative frequency approach in which the probability of an event 
E is the limiting value of the proportion of times that E was observed. 
That is

 P E
N

NN

E( ) =
→∞

lim  (1.1)

where NE is the number of times event E was observed and N is the total 
number of observations. Another one is the so-called axiomatic approach 
where the probability of an event E is taken to be a real-value function 
defi ned on the family of events of a sample space and satisfi es the following 
conditions:

Axioms of probability

(i) 0 ≤ P(E) ≤ 1 for any event in that experiment
(ii) P(Ω) = 1
(iii)  If E and F are mutually exclusive events, i.e. E ∈ F = ∅, then P(E ∪ F) 

= P(E) + P(F)



There are some fundamental results that can be deduced from this axiomatic 
defi nition of probability and we summarize them without proofs in the follow-
ing propositions.

Proposition 1.1

(i) P(∅) = 0
(ii) P(E

–
) + P(E) = 1 for any event E in Ω, where E

–
 is the compliment of E.

(iii) P(E ∪ F) = P(E) + P(F) − P(E ∩ F), for any events E and F.
(iv) P(E) ≤ P(F), if E ⊆ F.

(v) P E P E E E i j
i

i i i j∪

 = ∩ = ∅ ≠∑

i

( ), for , when .

Example 1.1

By considering the situation where we have a closed loop of M identical 
queues, as shown in Figure 1.1, then calculate the probability that Queue 1 is 
non-empty (it has at least one customer) if there are N customers circulating 
among these queues.

Solution

To calculate the required probability, we need to fi nd the total number of ways 
of distributing those N customers among M queues. Let Xi(>0) be the number 
of customers in Queue i, then we have

X1 + X2 +  .  .  .  + XM = N

The problem can now be formulated by having these N customers lined up 
together with M imaginary zeros, and then dividing them into M groups. These 
M zeros are introduced so that we may have empty queues. They also ensure 
that one of the queues will contain all the customers, even in the case where 

Queue M

Queue kQueue 1

Figure 1.1 A closed loop of M queues
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all zeros are consecutive because there are only (M − 1) spaces among them, 
as shown in Figure 1.2.

We can select M − 1 of the (N + M − 1) spaces between customers as our 
separating points and hence the number of combinations is given by

N M

M

N M

N

+ −
−





 = + −





1

1

1 .

When Queue 1 is empty, the total number of ways of distributing N 
customers among (M − 1) queues is given by

N M

N

+ −





2 .

Therefore, the probability that Queue 1 is non-empty:

= − + −





+ −





= −
−

+ −
=

+ −

1 2 1

1
1

1 1

N M

N

N M

N
M

N M

N

N M

Example 1.2

Let us suppose a tourist guide likes to gamble with his passengers as he guides 
them around the city on a bus. On every trip, there are about 50 random pas-
sengers. Each time he challenges his passengers by betting that if there is at 
least two people on the bus that have the same birthday, then all of them would 
have to pay him $1 each. However, if there were none for that group on that 
day, he would repay each of them $1. What is the likelihood (or probability) 
of the event that he wins his bet?

Solution

Let us assume that each passenger is equally likely to have their birthday on 
any day of the year (we will neglect leap years). In order to solve this problem 

0 0 00 0

Queue dividing points

Figure 1.2 N customers and M zeros, (N + M − 1) spaces



we need to fi nd the probability that nobody on that bus has the same birthday. 
Imagine that we line up these 50 passengers, and the fi rst passenger has 365 
days to choose as his/her birthday. The next passenger has the remainder of 
364 days to choose from in order for him/her not to have the same birthday as 
the fi rst person (i.e. he has a probability of 364/365). This number of choices 
reduces until the last passenger. Therefore:

P( )None of the  passengers has the same birthday50

364

365

=



















−





363

365

362

365

365 49

365
49

. . .

terms
� ������� ��������

Therefore, the probability that the tourist guide wins his bet can be obtained 
by Proposition 1.1 (ii):

P( )At least 2 passengers out of  has the same birthday50

1

=

−−
−











==∏ j
j

1

49

49

365

365
0 9704

( )
. .

The odds are very much to the favour of tourist guide, although we should 
remember this probability has a limiting value of (1.1) only.

1.1.2 Conditional Probability and Independence

In many practical situations, we often do not have information about the 
outcome of an event but rather information about related events. Is it possible 
to infer the probability of an event using the knowledge that we have about 
these other events? This leads us to the idea of conditional probability that 
allows us to do just that!

Conditional probability that an event E occurs, given that another event F 
has already occurred, denoted by P(EF), is defi ned as

 P E F
P E F

P F
P F( | )

( )

( )
( )=

∩
≠where 0 (1.2)

Conditional probability satisfi es the axioms of probability and is a probabil-
ity measure in the sense of those axioms. Therefore, we can apply any results 
obtained for a normal probability to a conditional probability. A very useful 
expression, frequently used in conjunction with the conditional probability, is 
the so-called Law of Total Probability. It says that if {Ai ∈ Ω, i = 1, 2,  .  .  .  , n} 
are events such that
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(i) Ai ∩ Aj = ∅ if i ≠ j
(ii) P(Ai) > 0

(iii) 
i

n

iA
=

=
1
∪ Ω

then for any event E in the same sample space:

 P E P E A P E A P A
i

n

i
i

n

i i( ) ( ) ( | ) ( )= ∩ =
= =
∑ ∑

1 1

 (1.3)

This particular law is very useful for determining the probability of a complex 
event E by fi rst conditioning it on a set of simpler events {Ai} and then by 
summing up all the conditional probabilities. By substituting the expression 
(1.3) in the previous expression of conditional probability (1.2), we have the 
well-known Bayes’ formula:

 P E F
P E F

P F A P A

P F E P E

P F A P A
i

i i
i

i i

( | )
( )

( | ) ( )

( | ) ( )

( | ) ( )
=

∩
=

∑ ∑  (1.4)

Two events are said to be statistically independent if and only if

P(E ∩ F) = P(E)P(F).

From the defi nition of conditional probability, this also implies that

 P E F
P E F

P F

P E P F

P F
P E( | )

( )

( )

( ) ( )

( )
( )= ∩ = =  (1.5)

Students should note that the statistical independence of two events E and 
F does not imply that they are mutually exclusive. If two events are mutually 
exclusive then their intersection is a null event and we have

 P E F
P E F

P F
P F( | )

( )

( )
( )= ∩ = ≠0 0where  (1.6)

Example 1.3

Consider a switching node with three outgoing links A, B and C. Messages 
arriving at the node can be transmitted over one of them with equal probability. 
The three outgoing links are operating at different speeds and hence message 
transmission times are 1, 2 and 3 ms, respectively for A, B and C. Owing to 



the difference in trucking routes, the probability of transmission errors are 0.2, 
0.3 and 0.1, respectively for A, B and C. Calculate the probability of a message 
being transmitted correctly in 2 ms.

Solution

Denote the event that a message is transmitted correctly by F, then we are 
given

P(FA Link) = 1 − 0.2 = 0.8

P(FB Link) = 1 − 0.3 = 0.7

P(FC Link) = 1 − 0.1 = 0.9

The probability that a message being transmitted correctly in 2 ms is simply 
the event (F ∩ B), hence we have

P F B P F B P B( ) ( | ) ( )

.

∩ = ×

= × =0 7
1

3

7

30

1.1.3 Random Variables and Distributions

In many situations, we are interested in some numerical value that is associated 
with the outcomes of an experiment rather than the actual outcomes them-
selves. For example, in an experiment of throwing two die, we may be inter-
ested in the sum of the numbers (X) shown on the dice, say X = 5. Thus we 
are interested in a function which maps the outcomes onto some points or an 
interval on the real line. In this example, the outcomes are {2,3}, {3,2}, {1,4} 
and {4,1}, and the point on the real line is 5.

This mapping (or function) that assigns a real value to each outcome in the 
sample space is called a random variable. If X is a random variable and x is 
a real number, we usually write {X ≤ x} to denote the event {w ∈ Ω and 
X(w) ≤ x}. There are basically two types of random variables; namely the dis-
crete random variables and continuous random variables. If the mapping 
function assigns a real number, which is a point in a countable set of points on 
the real line, to an outcome then we have a discrete random variable. On the 
other hand, a continuous random variable takes on a real number which falls 
in an interval on the real line. In other words, a discrete random variable can 
assume at most a fi nite or a countable infi nite number of possible values and 
a continuous random variable can assume any value in an interval or intervals 
of real numbers.
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A concept closely related to a random variable is its cumulative probabil-
ity distribution function, or just distribution function (PDF). It is defi ned 
as

 F x P X x
P X x

X( ) [ ]
[ : ( ) ]

≡ ≤
= ≤ω ω

 
(1.7)

For simplicity, we usually drop the subscript X when the random variable 
of the function referred to is clear in the context. Students should note that 
a distribution function completely describes a random variable, as all param-
eters of interest can be derived from it. It can be shown from the basic 
axioms of probability that a distribution function possesses the following 
properties:

Proposition 1.2

(i) F is a non-negative and non-decreasing function, i.e. if x1 ≤ x2 then 
F(x1) ≤ F(x2)

(ii) F(+∞) = 1 & F(−∞) = 0
(iii) F(b) − F(a) = P[a < X ≤ b]

For a discrete random variable, its probability distribution function is a dis-
joint step function, as shown in Figure 1.3. The probability that the random 
variable takes on a particular value, say x and x = 0, 1, 2, 3  .  .  .  , is given by

 
p x P X x P X x P X x

P X x P X x
P X x

( ) [ ] [ ] [ ]
{ [ ]} { [ ]}

[ ]

≡ = = < + − <
= − ≥ + − − ≥
= ≥

1
1 1 1

−− ≥ +P X x[ ]1

 

(1.8)

The above function p(x) is known as the probability mass function (pmf) of a 
discrete random variable X and it follows the axiom of probability that

F(x) 

1 2

P[X=2]

3 4 x

Figure 1.3 Distribution function of a discrete random variable X



 
x

p x∑ =( ) 1  (1.9)

This probability mass function is a more convenient form to manipulate than 
the PDF for a discrete random variable.

In the case of a continuous random variable, the probability distribution 
function is a continuous function, as shown in Figure 1.4, and pmf loses its 
meaning as P[X = x] = 0 for all real x.

A new useful function derived from the PDF that completely characterizes 
a continuous random variable X is the so-called probability density function 
(pdf) defi ned as

 f x
d

dx
F xX X( ) ( )≡  (1.10)

It follows from the axioms of probability and the defi nition of pdf that

 F x f dX

x

X( ) ( )=
−∞
∫ τ τ  (1.11)

 P a X b f x dx
a

b

X[ ] ( )≤ ≤ = ∫  (1.12)

and

 
−∞

∞

∫ = −∞ < < ∞ =f x P XX( ) [ ] 1  (1.13)

The expressions (1.9) and (1.13) are known as the normalization conditions 
for discrete random variables and continuous random variables, respectively.
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We list in this section some important discrete and continuous random vari-
ables which we will encounter frequently in our subsequent studies of queueing 
models.

(i) Bernoulli random variable
A Bernoulli trial is a random experiment with only two outcomes, ‘success’ 
and ‘failure’, with respective probabilities, p and q. A Bernoulli random vari-
able X describes a Bernoulli trial and assumes only two values: 1 (for success) 
with probability p and 0 (for failure) with probability q:

 P X p P X q p[ ] & [ ]= = = = = −1 0 1  (1.14)

(ii) Binomial random variable
If a Bernoulli trial is repeated k times then the random variable X that counts 
the number of successes in the k trials is called a binomial random variable 
with parameters k and p. The probability mass function of a binomial random 
variable is given by

 B k n p
n

k
p q k n q pk n k( ; ) &, , , , . . . ,= 



 = = −− 0 1 2 1  (1.15)

(iii) Geometric random variable
In a sequence of independent Bernoulli trials, the random variable X that counts 
the number of trials up to and including the fi rst success is called a geometric 
random variable with the following pmf:

 P X k p p kk[ ] ( )= = − = ∞−1 1 21 , , . . .  (1.16)

(iv) Poisson random variable
A random variable X is said to be Poisson random variable with parameter l 
if it has the following mass function:

 P X k
k

e k
k

[ ]
!

= = =−λ λ 0 1 2, , , . . .  (1.17)

Students should note that in subsequent chapters, the Poisson mass function 
is written as

 P X k
t

k
e k

k
t[ ]

( )

!
= = ′ =− ′λ λ 0 1 2, , , . . .  (1.18)

Here, the l in expression (1.17) is equal to the l′t in expression (1.18).



(v) Continuous uniform random variable
A continuous random variable X with its probabilities distributed uniformly 
over an interval (a, b) is said to be a uniform random variable and its density 
function is given by

 f x b a
a x b

otherwise
( ) = −

< <





1

0
 (1.19)

The corresponding distribution function can be easily calculated by using 
expression (1.11) as

 F x

x a

x a

b a
a x b

x b

( ) =

<
−
−

≤ <

≥










0

1

 (1.20)

(vi) Exponential random variable
A continuous random variable X is an exponential random variable with 
parameter l > 0, if its density function is defi ned by

 f x
e x

x

x

( ) =
>
≤





−λ λ 0

0 0
 (1.21)

The distribution function is then given by

 F x
e x

x

x

( ) =
− >

≤




−1 0

0 0

λ λ

 (1.22)

(vii) Gamma random variable
A continuous random variable X is said to have a gamma distribution with 
parameters a > 0 and l > 0, if its density function is given by

 f x

x e
x

x

x

( )
( )

( )=
>

≤







− −λ
α

α α λ1

0

0 0

Γ  (1.23)

where Γ(a) is the gamma function defi ned by

 Γ( )α αα= >
∞

− −∫
0

1 0x e dxx  (1.24)
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There are certain nice properties about gamma functions, such as

 
Γ Γ

Γ Γ

( ) ( ) ( ) ( )!

( ) ( )

k k k k n a positive eger

a

= − − = − =

= − >

1 1 1

1 0

α

α α α α

int

rreal number
 

(1.25)

(viii) Erlang-k or k-stage Erlang Random Variable
This is a special case of the gamma random variable when a (=k) is a positive 
integer. Its density function is given by

 
f x

x

k
e x

x

k k
x

( )

( )

( )!= −
>

≤







−
−λ λ

1

1
0

0 0

 
(1.26)

(ix) Normal (Gaussian) Random Variable
A frequently encountered continuous random variable is the Gaussian or 
Normal with the parameters of m (mean) and sX (standard deviation). It has a 
density function given by

 f x eX

X

x X( ) ( ) /= − −1

2 2

22 2

πσ
µ σ  (1.27)

The normal distribution is often denoted in a short form as N(m, s 2X).
Most of the examples above can be roughly separated into either continuous 

or discrete random variables. A discrete random variable can take on only a 
fi nite number of values in any fi nite observations (e.g. the number of heads 
obtained in throwing 2 independent coins). On the other hand, a continuous 
random variable can take on any value in the observation interval (e.g. the time 
duration of telephone calls). However, samples may exist, as we shall see later, 
where the random variable of interest is a mixed random variable, i.e. they have 
both continuous and discrete portions. For example, the waiting time distribu-
tion function of a queue in Section 4.3 can be shown as

F t e t

t
W

t( ) ( )

.

( )= − ≥
= <

− −1 0

0 0

1ρ µ ρ

This has a discrete portion that has a jump at t = 0 but with a continuous portion 
elsewhere.

1.1.4 Expected Values and Variances

As discussed in Section 1.1.3, the distribution function or pmf (pdf, in the case 
of continuous random variables) provides a complete description of a random 



variable. However, we are also often interested in certain measures which sum-
marize the properties of a random variable succinctly. In fact, often these are 
the only parameters that we can observe about a random variable in real-life 
problems.

The most important and useful measures of a random variable X are its 
expected value1 E[X] and variance Var[X]. The expected value is also known 
as the mean value or average value. It gives the average value taken by a 
random variable and is defi ned as

 E X kP X k
k

[ ] [ ]= =
=

∞

∑
0

for discrete variables  (1.28)

and E X xf x dx[ ] ( )=
∞

∫
0

for continuous variables  (1.29)

The variance is given by the following expressions. It measures the disper-
sion of a random variable X about its mean E[X]:

 
σ 2

2

2 2

=
= −
= −

Var X
E X E X
E X E X

[ ]
[( [ ]) ]
[ ] ( [ ])

for discrete variables  (1.30)

 

σ 2

0

2

0

2

0 0

2

=

= −

= − +

∞

∞ ∞

∫

∫ ∫

Var X

x E X f x d x

x f x dx E X xf x dx

[ ]

( [ ]) ( )

( ) [ ] ( )
∞∞

∫
= −

f x dx

E X E X

( )

[ ] ( [ ])2 2

 

 
(1.31)

s refers to the square root of the variance and is given the special name of 
standard deviation.

Example 1.4

For a discrete random variable X, show that its expected value is also given by

E X P X k
k

[ ] [ ]= >
=

∞

∑
0
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Solution

By defi nition, the expected value of X is given by

 E X kP X k k P X k P X k
k k

[ ] [ ] { [ ] [ ]}= = = ≥ − ≥ +
=

∞

=

∞

∑ ∑
0 0

1  (see (1.8))

= ≥ − ≥ + ≥ − ≥
+ ≥ − ≥ + ≥ −
P X X P X P X

P X P X P X P X
[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [
1 2 2 2 2 3

3 3 3 4 4 4 4 ≥≥ +

= ≥ = >
=

∞

=

∞

∑ ∑
5

1 0

]

[ ] [ ]

. . .

k k

P X k P X k

Example 1.5

Calculate the expected values for the Binomial and Poisson random 
variables.

Solution

1. Binomial random variable

E X k
n

k
p p

np
n

k
p P

k

n
k n k

k

n
k

[ ] ( )

( )

= 



 −

=
−
−





 −

=

−

=

−

∑

∑
1

1

1

1

1

1
1 nn k

j

n
j n jnp

n

j
p p

np

−

=

− −=
−



 −

=

∑
0

11
1( )( )

2. Poisson random variable

E X k
k

e

e
k

e e

k

k

k

k

[ ]
!

( )
( )

( )!
( )

=

=
−

=
=

=

∞
−

−

=

∞ −

−

∑

∑
0

1

1

1

λ

λ λ

λ
λ

λ

λ

λ λ



Table 1.1 summarizes the expected values and variances for those random 
variables discussed earlier.

Example 1.6

Find the expected value of a Cauchy random variable X, where the density 
function is defi ned as

f x
x

u x( )
( )

( )=
+
1

1 2π

where u(x) is the unit step function.

Solution

Unfortunately, the expected value of E[X] in this case is

E X
x

x
u x dx

x

x
dx[ ]

( )
( )

( )
=

+
=

+
= ∞

−∞

∞ ∞

∫ ∫π π1 12 0 2

Sometimes we get unusual results with expected values, even though the 
distribution of the random variable is well behaved.

Another useful measure regarding a random variable is the coeffi cient of 
variation which is the ratio of standard deviation to the mean of that random 
variable:

C
E X

x
X≡ σ

[ ]

PROBABILITY THEORY 15

Table 1.1 Means and variances of some common random 
variables

Random variable E[X] Var[X]

Bernoulli p pq
Binomial np npq
Geometric 1/p q/p2

Poisson l l
Continuous uniform (a + b)/2 (b − a)2/12
Exponential 1/l 1/l2

Gamma a/l a/l2

Erlang-k 1/l 1/kl2

Gaussian m s 2
X
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1.1.5 Joint Random Variables and Their Distributions

In many applications, we need to investigate the joint effect and relationships 
between two or more random variables. In this case we have the natural 
extension of the distribution function to two random variables X and Y, namely 
the joint distribution function. Given two random variables X and Y, their joint 
distribution function is defi ned as

 F x y P X x Y yXY( ) [ ], ,≡ ≤ ≤  (1.32)

where x and y are two real numbers. The individual distribution function FX 
and FY, often referred to as the marginal distribution of X and Y, can be 
expressed in terms of the joint distribution function as

 
F x F x P X x Y

F y F y P X Y y
X XY

Y XY

( ) ( [ ]

( ) ( ) [ ]

= ∞ = ≤ ≤ ∞
= ∞ = ≤ ∞ ≤

, ) ,

, ,
 

(1.33)

Similar to the one-dimensional case, the joint distribution also enjoys the 
following properties:

(i) FXY(−∞, y) = FXY(x, −∞) = 0
(ii) FXY(−∞, −∞) = 0 and FXY(∞, ∞) = 1
(iii) FXY(x1, y) ≤ FXY(x2, y) for x1 ≤ x2

(iv) FXY(x, y1) ≤ FXY(x, y2) for y1 ≤ y2

(v) P[x1 < X ≤ x2, y1 < Y ≤ y2] =  FXY(x2, y2) − FXY(x1, y2) 
− FXY(x2, y1) + FXY(x1, y1)

If both X and Y are jointly continuous, we have the associated joint density 
function defi ned as

 f x y
d

dxdy
F x yXY XY( ) ( ), ,≡

2

 (1.34)

and the marginal density functions and joint probability distribution can be 
computed by integrating over all possible values of the appropriate variables:

 

f x f x y dy

f y f x y dx

X XY

Y XY

( ) ( )

( ) ( )

=

=

−∞

∞

−∞

∞

∫

∫

,

,

 

(1.35)



F x y f u v dudvXY

x y

XY( ) ( ), ,=
−∞ −∞
∫ ∫

If both are jointly discrete then we have the joint probability mass function 
defi ned as

 p x y P X x Y y( ) [ ], ,≡ = =  (1.36)

and the corresponding marginal mass functions can be computed as

 

P X x p x y

P Y y p x y

y

x

[ ] ( )

[ ] ( )

= =

= =

∑

∑

,

,
 

(1.37)

With the defi nitions of joint distribution and density function in place, 
we are now in a position to extend the notion of statistical independence 
to two random variables. Basically, two random variables X and Y are said 
to be statistically independent if the events {x ∈ E} and {y ∈ F} are inde-
pendent, i.e.:

P[x ∈ E, y ∈ F ] = P[x ∈ E ] · P[y ∈ F ]

From the above expression, it can be deduced that X and Y are statistically 
independent if any of the following relationships hold:

• FXY (x, y) = FX (x) · FY (y)
• fXY (x, y) = fX (x) · fY (y)   if both are jointly continuous
• P[x = x, Y = y] = P[X = x] · P[Y = y] if both are jointly discrete

We summarize below some of the properties pertaining to the relationships 
between two random variables. In the following, X and Y are two independent 
random variables defi ned on the same sample space, c is a constant and g and 
h are two arbitrary real functions.

(i) Convolution Property
 If Z = X + Y, then

 • if X and Y are jointly discrete

 P Z k P X i P Y j P X i P Y k i
i j k i

k

[ ] [ ] [ ] [ ] [ ]= = = = = = = −
+ = =
∑ ∑

0

 (1.38)

PROBABILITY THEORY 17



18 PRELIMINARIES

 • if X and Y are jointly continuous

 
f z f x f z x dx f z y f y dy

f x f y

Z X Y X Y

X Y

( ) ( ) ( ) ( ) ( )

( ) ( )

= − = −

= ⊗

∞ ∞

∫ ∫
0 0

 

(1.39)

where ⊗ denotes the convolution operator.

(ii) E[cX ] = cE[X ]
(iii) E[X + Y ] = E[X ] + E[Y ]
(iv) E[g(X)h(Y )] = E[g(X )] · E[h(Y )] if X and Y are independent
(v) Var[cX ] = c2Var[X ]
(vi) Var[X + Y ] = Var[X ] + Var[Y ] if X and Y are independent
(vi) Var[X ] = E[X2] − (E[X ])2

Example 1.7: Random sum of random variables

Consider the voice packetization process during a teleconferencing session, 
where voice signals are packetized at a teleconferencing station before being 
transmitted to the other party over a communication network in packet form. 
If the number (N) of voice signals generated during a session is a random vari-
able with mean E(N), and a voice signal can be digitized into X packets, 
fi nd the mean and variance of the number of packets generated during a tele-
conferencing session, assuming that these voice signals are identically 
distributed.

Solution

Denote the number of packets for each voice signal as Xi and the total number 
of packets generated during a session as T, then we have

T = X1 + X2 +  .  .  .  + XN

To calculate the expected value, we fi rst condition it on the fact that N = k 
and then use the total probability theorem to sum up the probability. That is:

E T E T N k P N k

kE X P N k

E X E N

i

N

i

N

[ ] [ | ] [ ]

[ ] [ ]

[ ] [ ]

= = =

= =

=

=

=

∑

∑
1

1



To compute the variance of T, we fi rst compute E[T2]:

E T N k Var T N k E T N k
kVar X k E X

[ | ] [ | ] ( [ | ])
[ ] ( [ ])

2 2

2 2

= = = + =
= +

and hence we can obtain

E T kVar X k E X P N k

Var X E N E N E X
k

N

[ ] ( [ ] ( [ ]) ) [ ]

[ ] [ ] [ ]( [ ]

2

1

2 2

2

= + =

= +
=

∑
))2

Finally:

Var T E T E T
Var X E N E N E X E X E N

[ ] [ ] ( [ ])
[ ] [ ] [ ]( [ ]) ( [ ]) ( [ ])

= −
= + −

2 2

2 2 2 22

2= +Var X E N E X Var N[ ] [ ] ( [ ]) [ ]

Example 1.8

Consider two packet arrival streams to a switching node, one from a voice 
source and the other from a data source. Let X be the number of time slots until 
a voice packet arrives and Y the number of time slots till a data packet arrives. 
If X and Y are geometrically distributed with parameters p and q respectively, 
fi nd the distribution of the time (in terms of time slots) until a packet arrives 
at the node.

Solution

Let Z be the time until a packet arrives at the node, then Z = min(X, Y ) and we 
have

P Z k P X k P Y k

F k F k F kZ X Y

[ ] [ ] [ ]

( ) { ( )}{ ( )}

> = > >

− = − −1 1 1

but

F k p p p
p

p

p

X
j

j
k

k

( ) ( )
( )

( )

( )

= − = − −
− −

= − −
=

∞
−∑

1

11
1 1

1 1

1 1
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Similarly

FY(k) = 1 − (1 − q)k

Therefore, we obtain

F k p q
p q

Z
k k

k

( ) ( ) ( )
[( )( )]

= − − −
= − − −

1 1 1
1 1 1

Theorem 1.1

Suppose a random variable Y is a function of a fi nite number of independent 
random variables {Xi}, with arbitrary known probability density functions 
(pdf). If

Y Xi=
=
∑
i

n

1

then the pdf of Y is given by the density function:

 g y f x f x f x f xY X X X Xn n( ) ( ) ( ) ( ) ( )= ⊗ ⊗ ⊗1 1 2 2 3 3 . . .  (1.40)

The keen observer might note that this result is a general extension of expres-
sion (1.39). Fortunately the convolution of density functions can be easily 
handled by transforms (z or Laplace).

Example 1.9

Suppose the propagation delay along a link follows the exponential 
distribution:

fX(xi) = exp(−xi) for xi ≥ 0 for i = 1  .  .  .  10.

Find the density function g(y) where y = x1+ x2+  .  .  .  x10.

Solution

Consider the effect of the new random variable by using Theorem 1.1 above, 
where each exponential random variable are independent and identically 

distributed with g(y) = 
y e

i

i y− −

−

1

1( )!
 for y ≥ 0 as shown in Figure 1.5.



1.1.6 Independence of Random Variables

Independence is probably the most fertile concept in probability theorems, for 
example, it is applied to queueing theory under the guise of the well-known 
Kleinrock independence assumption.

Theorem 1.2

[Strong law of large numbers]
For n independent and identically distributed random variables {Xn, n ≥ 1}:

 Y X X X n E X nn n= + → → ∞{ } [ ]1 2 1. . . / as  (1.41)

That is, for large n, the arithmetic mean of Yn of n independent and identically 
distributed random variables with the same distribution is close to the expected 
value of these random variables.

Theorem 1.3

[Central Limit theorem]
Given Yn as defi ned above:
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 { [ ]} ( )Y E X n N nn − ≈ >>1
20 1, forσ  (1.42)

where N(0,s 2) denotes the random variable with mean zero and variance s 2 
of each Xn.

The theorem says that the difference between the arithmetic mean of Yn and 
the expected value E[X1] is a Gaussian distributed random variable divided by 

n for large n.

1.2 z-TRANSFORMS – GENERATING FUNCTIONS

If we have a sequence of numbers {f0, f1, f2,  .  .  .  fk  .  .  .}, possibly infi nitely long, 
it is often desirable to compress it into a single function – a closed-form expres-
sion that would facilitate arithmetic manipulations and mathematical proofi ng 
operations. This process of converting a sequence of numbers into a single 
function is called the z-transformation, and the resultant function is called the 
z-transform of the original sequence of numbers. The z-transform is commonly 
known as the generating function in probability theory.

The z-transform of a sequence is defi ned as

 F z f z
k

k
k( ) ≡

=

∞

∑
0

 (1.43)

where zk can be considered as a ‘tag’ on each term in the sequence and hence 
its position in that sequence is uniquely identifi ed should the sequence need to 
be recovered. The z-transform F(z) of a sequence exists so long as the sequence 
grows slower than ak, i.e.:

lim
k

k

k

k

a→∞
= 0

for some a > 0 and it is unique for that sequence of numbers.
z-transform is very useful in solving difference equations (or so-called recur-

sive equations) that contain constant coeffi cients. A difference equation is an 
equation in which a term (say kth) of a function f(•) is expressed in terms of 
other terms of that function. For example:

fk−1 + fk+1 = 2fk

This kind of difference equation occurs frequently in the treatment of queueing 
systems. In this book, we use ⇔ to indicate a transform pair, for example, 
fk ⇔ F(z).



1.2.1 Properties of z-Transforms

z-transform possesses some interesting properties which greatly facilitate the 
evaluation of parameters of a random variable. If X and Y are two independent 
random variables with respective probability mass functions fk and fg, and their 
corresponding transforms F(z) and G(z) exist, then we have the two following 
properties:

(a) Linearity property

 af bg aF z bG zk k+ ⇔ +( ) ( )  (1.44)

This follows directly from the defi nition of z-transform, which is a linear 
operation.

(b) Convolution property
If we defi ne another random variable H = X + Y with a probability mass func-
tion hk, then the z-transform H(z) of hk is given by

 H z F z G z( ) ( ) ( )= ⋅  (1.45)

The expression can be proved as follows:

H z h z

f g z

f g z

k
k

k

k i

k

i k i
k

i k i
i k i

k

i

( ) =

=

=

=

=

∞

=

∞

=
−

=

∞

=

∞

−

=

∞

∑

∑∑

∑∑

∑

0

0 0

0

0

ff z g z

F z G z

i
i

k i
k i

k i

=

∞

−
−∑

= ⋅( ) ( )

The interchange of summary signs can be viewed from the following:

     Index i
   Index f0g0

   k f0g1 f1g0

   ↓ f0g2 f1g1  .
    .  .  . .  .  . .  .  . .
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(c) Final values and expectation

(i) F z z( ) = =1 1  (1.46)

(ii) E X
d

dz
F z z[ ] ( )= =1  (1.47)

(iii) E X
d

dz
F z

d

dz
F zz z[ ] ( ) ( )2

2

2 1 1= += =  (1.48)

Table 1.2 summarizes some of the z-transform pairs that are useful in our sub-
sequent treatments of queueing theory.

Example 1.10

Let us fi nd the z-transforms for Binomial, Geometric and Poisson distributions 
and then calculate the expected values, second moments and variances for these 
distributions.

(i) Binomial distribution:

B z
n

k
p p z

p pz

d

dz
B z np p p

X
k

n
k n k k

n

X

( ) ( )

( )

( ) (

= 



 −

= − +

= − +

=

−∑
0

1

1

1 zz n) −1

therefore

E X
d

dz
B z npX z[ ] ( )= ==1

Table 1.2 Some z-transform pairs

Sequence z-transform

uk = 1k = 0, 1, 2  .  .  . 1/(1 − z)
uk−a za/(1 − z)
Aak A/(1 − az)
kak az/(1 − az)2

(k + 1)ak 1/(1 − az)2

a/k! aez



and
d

dz
B z np n p p pz

E X n n p np

E X E

X
n

2

2
2

2 2

2 2 2

1 1

1

( ) ( ) ( )

[ ] ( )

[ ]

= − − +

= − +

= −

−

σ [[ ]
( )

X
np p= −1

(ii) Geometric distribution:

G z p p z
pz

p z

E X
p

p z

pz p

k

k k( ) ( )
( )

[ ]
( )

( )

( (

= − =
− −

=
− −

+
−

−

=

∞
−∑

1

11
1 1

1 1

1

1 11

1

2
1 1

1 1

2
1

2

2
1

2

2
2

−
=

= −





= −

=

=

p z p

d

dz
G z

p p

p p

z

z

) )

( )

σ

(iii) Poisson distribution:

G z
t

k
e z e e e

E X
d

dz
G z

k

k
t k t tz t z

z

( )
( )

!

[ ] ( )

( )= = =

=

=

∞
− − + − −

=

∑
0

1

1

λ λ λ λ λ

== =

=

= − =

− −

=

λ λ

λ

σ λ

λte t

d

dz
G z t

E X E X t

t z

z

( )

( ) ( )

[ ] [ ]

1

2

2
1

2

2 2 2

Table 1.3 summarizes the z-transform expressions for those probability mass 
functions discussed in Section 1.2.3.
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Table 1.3 z-transforms for some of the discrete random 
variables

Random variable z-transform

Bernoulli G(z) = q + pz
Binomial G(z) = (q + pz)n

Geometric G(z) = pz/(1 − qz)
Poisson G(z) = e−lt(1−z)
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Example 1.11

This is a famous legendary puzzle. According to the legend, a routine morning 
exercise for Shaolin monks is to move a pile of iron rings from one corner 
(Point A) of the courtyard to another (Point C) using only a intermediate point 
(Point B) as a resting point (Figure 1.6). During the move, a larger ring cannot 
be placed on top of a smaller one at the resting point. Determine the number 
of moves required if there are k rings in the pile.

Solution

To calculate the number of moves (mk) required, we fi rst move the top (k − 1) 
rings to Point B and then move the last ring to Point C, and fi nally move the 
(k − 1) rings from Point B to Point C to complete the exercise. Denote its 

z-transform as M z m z
k

k
k( ) =

=

∞

∑
0

 and m0 = 0, then from the above-mentioned 

recursive approach we have

m m m k

m m

k k k

k k

= + + ≥

= +

− −

−

1 1

1

1 1

2 1

Multiplying the equation by zk and summing it from zero to infi nity, we have

k
k

k

k
k

k

k

km z m z z

M z m zM z
z

z

=

∞

=

∞

−
=

∞

∑ ∑ ∑= +

− = +
−

1 1
1

1

0

2

2
1

( ) ( )

and

M z
z

z z
( )

( )( )
=

− −1 1 2

A B C

Figure 1.6 A famous legendary puzzle



To fi nd the inverse of this expression, we do a partial fraction expansion:

M z
z z

z z z( ) ( ) ( ) ( )=
−

+
−
−

= − + − + − +
1

1 2

1

1
2 1 2 1 2 12 2 3 3 . . .

Therefore, we have mk = 2k − 1

Example 1.12

Another well-known puzzle is the Fibonacci numbers {1, 1, 2, 3, 5, 8, 13, 21, 
.  .  .}, which occur frequently in studies of population grow. This sequence of 
numbers is defi ned by the following recursive equation, with the initial two 
numbers as f0 = f1 = 1:

fk = fk−1 + fk−2 k ≥ 2

Find an explicit expression for fk.

Solution

First multiply the above equations by zk and sum it to infi nity, so we have

k
k

k

k
k

k

k
k

kf z f z f z

F z f z f z F z f z

=

∞

=

∞

−
=

∞

−∑ ∑ ∑= +

− − = − +

2 2
1

2
2

1 0 0
2( ) ( ( ) ) FF z

F z
z z

( )

( ) =
−
+ −

1

12

Again, by doing a partial fraction expression, we have

F z
z z z z z z

z

z

z z

( )
[ ( / )] [ ( / )]

=
−

−
−

= + +



 −

1

5 1

1

5 1

1

5
1

1

5
1

1 1 2 2

1 1 2

. . . ++ +





z

z2

. . .

where

z z1 2
1 5

2

1 5

2
=

− +
=

− −
and
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Therefore, picking up the k term, we have

fk

k k

= +





− −

















+ +
1

5

1 5

2

1 5

2

1 1

1.3 LAPLACE TRANSFORMS

Similar to z-transform, a continuous function f(t) can be transformed into 
a new complex function to facilitate arithmetic manipulations. This trans-
formation operation is called the Laplace transformation, named after the 
great French mathematician Pierre Simon Marquis De Laplace, and is 
defi ned as

 F s L f t f t e dtst( ) [ ( )] ( )= =
−∞

∞
−∫  (1.49)

where s is a complex variable with real part s and imaginary part jw; i.e. 
s = s + jw and j = −1. In the context of probability theory, all the density 
functions are defi ned only for the real-time axis, hence the ‘two-sided’ Laplace 
transform can be written as

 F s L f t f t e dtst( ) [ ( )] ( )= =
−

∞
−∫

0

 (1.50)

with the lower limit of the integration written as 0− to include any discontinuity 
at t = 0. This Laplace transform will exist so long as f(t) grows no faster than 
an exponential, i.e.:

f(t) ≤ Meat

for all t ≥ 0 and some positive constants M and a. The original function f(t) is 
called the inverse transform or inverse of F(s), and is written as

f(t) = L−1[F(s)]

The Laplace transformation is particularly useful in solving differential equa-
tions and corresponding initial value problems. In the context of queueing 
theory, it provides us with an easy way of fi nding performance measures of a 
queueing system in terms of Laplace transforms. However, students should 
note that it is at times extremely diffi cult, if not impossible, to invert these 
Laplace transform expressions.



1.3.1 Properties of the Laplace Transform

The Laplace transform enjoys many of the same properties as the z-
transform as applied to probability theory. If X and Y are two independent 
continuous random variables with density functions fX (x) and fY (y), 
respectively and their corresponding Laplace transforms exist, then their 
properties are:

(i) Uniqueness property

 f f F s F sX Y X Y( ) ( ) ( ) ( )τ τ= =implies  (1.51)

(ii) Linearity property

 af x bf y aF s bF sX Y X Y( ) ( ) ( ) ( )+ ⇒ +  (1.52)

(iii) Convolution property

If Z = X + Y, then

 
F s L f z L f x y

F s F s
Z z X Y

X Y

( ) [ ( )] [ ( )]

( ) ( )

= = +
= ⋅

+  
(1.53)

(iv) Expectation property

 E X
d

ds
F s E X

d

ds
F sX s X s[ ] ( ) [ ] ( )= − == =0

2
2

2 0and  (1.54)

 E X
d

ds
F sn n

n

n X s[ ] ( ) ( )= − =1 0
 (1.55)

(v) Differentiation property

 L f x sF s fX X X[ ( )] ( ) ( )′ = − 0  (1.56)

 L f x s F s sf fX X X X[ ( )] ( ) ( ) ( )′′ = − − ′2 0 0  (1.57)

Table 1.4 shows some of the Laplace transform pairs which are useful in our 
subsequent discussions on queueing theory.
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Example 1.13

Derive the Laplace transforms for the exponential and k-stage Erlang probabil-
ity density functions, and then calculate their means and variances.

(i) exponential distribution

F s e e dx
s

e
s

ss x s x( ) ( )= = −
+







=
+

∞
− − − +

∞

∫
0 0

λ λ
λ

λ
λ

λ λ

F s e e dx
s

e
s

E X
d

ds
F s

sx x s x( )

[ ] (

( )= = −
+







=
+

= −

∞
− − − +

∞

∫
0 0

λ λ
λ

λ
λ

λ λ

))

[ ] ( )

[ ] [ ]

[ ]

s

s

E X
d

ds
F S

E X E X

C
E X

=

=

=

= =

= − =

= =

0

2
2

2
0

2

2 2 2
2

1

2

1

1

λ

λ

σ
λ

σ

(ii) k-stage Erlang distribution

F s e
x

k
e dx

k
x e dxss

k k
x

k
k s x( )

( )! ( )!
( )=

−
=

−

=

∞
−

−
−

∞
− − +∫ ∫

0

1

0

1

1 1

λ λ

λ

λ λ

kk

k
k s x

s k
s x e d s x

( ) ( )!
{( ) } ( )( )

+ −
+ +

∞
− − +∫λ

λ λλ

1 0

1

Table 1.4 Some Laplace transform pairs

Function Laplace transform

d (t) unit impulse 1
d(t − a) e−as

1 unit step 1/s
t 1/s2

tn−1/(n − 1)! 1/sn

Aeat A/(s − a)
teat 1/(s − a)2

tn−1eat/(n − 1)! 1/(s − a)n n = 1,2,  .  .  .



The last integration term is recognized as the gamma function and is equal to 
(k − 1)! Hence we have

F s
s

k

( ) =
+


 )λ

λ

Table 1.5 gives the Laplace transforms for those continuous random variables 
discussed in Section 1.1.3.

Example 1.14

Consider a counting process whose behavior is governed by the following two 
differential-difference equations:

d

dt
P t P t P t k

d

dt
P t P t

k k k( ) ( ) ( )

( ) ( )

= − + >

= −

−λ λ

λ

1

0 0

0

Where Pk(t) is the probability of having k arrivals within a time interval (0, t) 
and l is a constant, show that Pk(t) is Poisson distributed.

Let us defi ne the Laplace transform of Pk(t) and P0(t) as

F s e P t dt

F s e P t dt

k
st

k

st

( ) ( )

( ) ( )

=

=

∞
−

∞
−

∫

∫

0

0

0

0

From the properties of Laplace Transform, we know

L P t sF s P

L P t sF s P

k k k[ ( )] ( ) ( )

[ ( )] ( ) ( )

′ = −

′ = −

0

00 0 0
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Table 1.5 Laplace transforms for some probability 
functions

Random variable Laplace transform

Uniform a < x < b F(s) = e−s(a+b)/s(b − a)
Exponent F(s) = l/s + l
Gamma F(s) = la/(s + l)a

Erlang-k F(s) = lk/(s + l)k
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Substituting them into the differential-difference equations, we obtain

F s
P

s

F s
P L s

s
k

k k

0
0

1

0

0

( )
( )

( )
( ) ( )

=
+

=
+

+
−

λ
λ

λ

If we assume that the arrival process begins at time t = 0, then P0(0) = 1 and 
Pk(0) = 0, and we have

F s
s

F s
s

F s
s

F s

s

k k

k

k

k

0

1 0

1

1
( )

( ) ( ) ( )

( )

=
+

=
+

=
+


 )

=
+

−

+

λ
λ

λ
λ

λ
λ
λ

Inverting the two transforms, we obtain the probability mass functions:

P e

P t
t

k
e

t

k

k
t

0 0( )

( )
( )

!

=

=

−

−

λ

λλ

1.4 MATRIX OPERATIONS

In Chapter 8, with the introduction of Markov-modulated arrival models, we 
will be moving away from the familiar Laplace (z-transform) solutions to a 
new approach of solving queueing systems, called matrix-geometric solutions. 
This particular approach to solving queueing systems was pioneered by Marcel 
F Neuts. It takes advantage of the similar structure presented in many interest-
ing stochastic models and formulates their solutions in terms of the solution of 
a nonlinear matrix equation.

1.4.1 Matrix Basics

A matrix is a m × n rectangular array of real (or complex) numbers enclosed 
in parentheses, as shown below:
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A a

a a a

a a a

a a a

ij

n

n

m m mn

= =



















( )

11 12 1

21 22 2

1 2

where aij’s are the elements (or components) of the matrix. A m × 1 matrix is 
a column vector and a 1 × n matrix is a row vector. In the sequel, we denote 
matrices by capital letters with a tilde (∼) on top, such as Ã,B̃ & C̃, column 
vectors by small letters with a tilde, such as f̃  & g̃, and row vectors by small 
Greek letters, such as p̃ & ṽ.

A matrix whose elements are all zero is called the null matrix and denoted 
by 0̃. A diagonal matrix (Λ̃) is a square matrix whose entries other than those 
in the diagonal positions are all zero, as shown below:
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diag a a a
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nn
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( )11 12
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0 0
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, , . . . ,

If the diagonal entries are all equal to one then we have the identity 
matrix (Ĩ ).

The transpose ÃT of a m × n matrix Ã = (aij) is the n × m matrix obtained by 
interchanging the rows and columns of Ã, that is
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A a
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a a a

T
ji

m

m

n n mn

= =



















( )

11 21 1

12 22 2

1 2

The inverse of an n-rowed square matrix Ã is denoted by Ã−1 and is an n-
rowed square matrix that satisfi es the following expression:

ÃÃ−1 = Ã−1Ã = Ĩ

Ã−1 exists (and is then unique) if and only if A is non-singular, i.e. if and 
only if the determinant of A is not zero, Ã ≠ 0. In general, the inverse of Ã is 
given by
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where Aij is the cofactor of aij in Ã. The cofactor of aij is the product of (−1)i+j 
and the determinant formed by deleting the ith row and the jth column from 
the det Ã. For a 2 × 2 matrix Ã, the inverse is given by

� �A
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a a
A

a a a a

a a
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 =

−
−

−
−11 12

21 22

1

11 22 21 12

22 12

21 11

1
and 




We summarize some of the properties of matrixes that are useful in manipu-
lating them. In the following expressions, a and b are numbers:

(i) a(Ã + B̃) = aÃ + aB̃  and (a + b)Ã = aÃ + bÃ
(ii) (aÃ)B̃ = a(ÃB̃) = Ã(aB̃) and Ã(B̃C̃) = (ÃB̃)C̃
(iii) (Ã + B̃)C̃ = ÃC̃ + B̃C̃  and C̃(Ã + B̃) = C̃Ã + C̃B̃
(iv) ÃB̃ ≠ B̃Ã in general
(v) ÃB̃ = 0̃ does not necessarily imply Ã = 0̃ or B̃ = 0̃
(vi) (Ã + B̃)T = ÃT + B̃T  and (ÃT)T = Ã
(vii) (ÃB̃)T = B̃TÃT  and det Ã = det ÃT

(viii) (Ã−1)−1 = Ã   and (ÃB̃)−1 = B̃−1Ã−1

(ix) (Ã−1)T = (ÃT)−1  and (Ã2)−1 = (Ã−1)2

1.4.2 Eigenvalues, Eigenvectors and Spectral Representation

An eigenvalue (or characteristic value) of an n × n square matrix Ã = (aij) is a 
real or complex scalar l satisfying the following vector equation for some 
non-zero (column) vector x̃ of dimension n × 1. The vector x̃ is known as the 
eigenvector, or more specifi cally the column (or right) eigenvector:

 � � �Ax x= λ  (1.58)

This equation can be rewritten as (Ã − lĨ )x̃ = 0 and has a non-zero solution 
x̃ only if (Ã − lĨ ) is singular; that is to say that any eigenvalue must satisfy 
det(Ã − lĨ ) = 0. This equation, det(Ã − lĨ ) = 0, is a polynomial of degree n 
in l and has exactly n real or complex roots, including multiplicity. Therefore, 



A has n eigenvalues l1, l2,  .  .  .  , ln  with the corresponding eigenvectors x̃1, 
x̃2,  .  .  .  , x̃n. The polynomial is known as the characteristic polynomial of A and 
the set of eigenvalues is called the spectrum of Ã.

Similarly, the row (or left) eigenvectors are the solutions of the following 
vector equation:

 � � �π λπA =  (1.59)

and everything that is said about column eigenvectors is also true for row 
eigenvectors.

Here, we summarize some of the properties of eigenvalues and 
eigenvectors:

(i) The sum of the eigenvalues of Ã is equal to the sum of the diagonal entries 
of Ã. The sum of the diagonal entries of Ã is called the trace of Ã.

 tr A
i

i( )� = ∑λ  (1.60)

(ii) If A has eigenvalues l1, l2,  .  .  .  , ln, then lk
1, l k2,  .  .  .  , l kn are eigenvectors 

of Ãk, and we have

 tr A kk

i
i
k( )� = =∑λ 1 2, , . . .  (1.61)

(iii) If Ã is a non-singular matrix with eigenvalues l1, l2,  .  .  .  ,ln, then 
l1

−1>, l 2−1),  .  .  .  , l n−1 are eigenvectors of Ã−1. Moreover, any eigenvector 
of Ã is an eigenvector of Ã−1.

(iv) Ã and ÃT do not necessarily have the same eigenvectors. However, if 
ÃTx̃ = lx̃ then x̃TÃ = lx̃T, and the row vector x̃T is called a left eigenvector 
of Ã.

It should be pointed out that eigenvalues are in general relatively diffi cult to 
compute, except for certain special cases.

If the eigenvalues l1, l2,  .  .  .  , ln of a matrix Ã are all distinct, then the cor-
responding eigenvectors x̃1, x̃2, ..., x̃n are linearly independent, and we can 
express Ã as

 � � � �A N N= −Λ 1  (1.62)

where Λ̃ = diag(l1, l2,  .  .  .  , ln), Ñ = [x̃1, x̃2,  .  .  .  , x̃n] whose ith column is x̃i, Ñ −1 
is the inverse of Ñ, and is given by
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By induction, it can be shown that Ãk = ÑΛ̃kÑ−1.
If we defi ne B̃k to be the matrix obtained by multiplying the column vector 

x̃k with the row vector p̃k, then we have
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(1.63)

It can be shown that
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� � �
A N N

B B Bn n
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= + + +

−Λ 1

1 1 2 2λ λ λ. . .
 

(1.64)

and

 � � � �A B B Bk k k
n
k

n= + + +λ λ λ11 1 2 2 . . .  (1.65)

The expression of Ã in terms of its eigenvalues and the matrices B̃k is called 
the spectral representation of Ã.

1.4.3 Matrix Calculus

Let us consider the following set of ordinary differential equations with con-
stant coeffi cients and given initial conditions:

 

d

dt
x t a x t a x t a x t
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dt
x t a x t
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n n
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aa x t a x tn nn n2 2( ) ( )+ +. . .

 

(1.66)



In matrix notation, we have

 � � �x t Ax t( ) ( )′ =  (1.67)

where x̃(t) is a n × 1 vector whose components xi(t)are functions of an inde-
pendent variable t, and x(t)′ denotes the vector whose components are the 
derivatives dxi /dt. There are two ways of solving this vector equation:

(i)  First let us assume that x̃(t) = eltp̃, where P̃ is a scalar vector and substitute 
it in Equation (1.67), then we have

leltp̃ = Ã(eltp̃)

Since elt ≠ 0, it follows that l and p̃ must satisfy Ãp̃ = l̃ p̃; therefore, if li 
is an eigenvector of A and p̃i is a corresponding eigenvector, then elitp̃i is 
a solution. The general solution is given by

 � �x t e p
i

n

i
t

i
i( ) =

=
∑

1

α λ  (1.68)

where ai is the constant chosen to satisfy the initial condition of Equation 
(1.67).

(ii)  The second method is to defi ne the matrix exponential eÃt through the 
convergent power series as

 exp . . . +
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 (1.69)

By differentiating the expression with respect to t directly, we have

d
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e A A t
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2
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Therefore, eÃt is a solution to Equation (1.67) and is called the fundamental 
matrix for (1.67).

We summarize some of the useful properties of the matrix exponential 
below:
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(i) eÃ(s+t) = eÃseÃt

(ii) eÃt is never singular and its inverse is e−Ãt

(iii) e(Ã+B̃)t = eÃteB̃t for all t, only if ÃB̃ = B̃Ã

(iv) 
d

dt
e Ae e AAt At At� � �� �= =

(v) ( )� � � � � �I A A I A A
i

i− = = + + +−

=

∞

∑1

0

2 . . .

(vi) eÃt = ÑeΛ̃ tÑ−1 
           = el1tB̃1 + el2tB̃2 +  .  .  .  + elntB̃n

where
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and B̃i are as defi ned in Equation (1.63).
Now let us consider matrix functions. The following are examples:

� �A t
t

t t
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0

42
and

sin cos

0 sin
θ

θ θ
θ

We can easily extend the calculus of scalar functions to matrix functions. In 
the following, Ã(t) and B̃(t) are matrix functions with independent variable t 
and Ũ a matrix of real constants:

(i) 
d

dt
U� = 0

(ii) 
d

dt
A t B t

d

dt
A t
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Problems

 1. A pair of fair dice is rolled 10 times. What will be the probability that 
‘seven’ will show at least once.

 2. During Christmas, you are provided with two boxes A and B contain-
ing light bulbs from different vendors. Box A contains 1000 red bulbs 
of which 10% are defective while Box B contains 2000 blue bulbs 
of which 5% are defective.

 (a)  If I choose two bulbs from a randomly selected box, what is the 
probability that both bulbs are defective?

 (b)  If I choose two bulbs from a randomly selected box and fi nd that 
both bulbs are defective, what is the probability that both came 
from Box A?

 3. A coin is tossed an infi nite number of times. Show that the probabil-
ity that k heads are observed at the nth tossing but not earlier equals 

n

k
n−

−




 − −1

1
1p p)k k( , where p = P{H}.

 4. A coin with P{H} = p and P{T} = q = 1 − p is tossed n times. 
Show that the probability of getting an even number of heads is 
0.5[1 + (q − p)n].

 5. Let A, B and C be the events that switches a, b and c are closed, 
respectively. Each switch may fail to close with probability q. Assume 
that the switches are independent and fi nd the probability that a 
closed path exists between the terminals in the circuit shown for 
q = 0.5.

 6. The binary digits that are sent from a detector source generate bits 
1 and 0 randomly with probabilities 0.6 and 0.4, respectively.

 (a)  What is the probability that two 1 s and three 0 s will occur in 
a 5-digit sequence.

 (b)  What is the probability that at least three 1 s will occur in a 5-
digit sequence.
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 7. The binary input X to a channel takes on one of two values, 0 
or 1, with probabilities 3/4 and 1/4 respectively. Due to noise 
induced errors, the channel output Y may differ from X. There 
will be no errors in Y with probabilities 3/4 and 7/8 when the input 
X is 1 or 0, respectively. Find P(Y = 1), P(Y = 0) and P(X = 1
Y = 1).

 8. A wireless sensor node will fail sooner or later due to battery 
exhaustion. If the failure rate is constant, the time to failure T 
can be modelled as an exponentially distributed random vari-
able. Suppose the wireless sensor node follow an exponential 
failure law in hours as fT  (t) = a u(t)e−at, where u(t) is the unit 
step function and a > 0 is a parameter. Measurements show 
that for these sensors, the probability that T exceeds 104 hours 
is e−1 (≈0.368). Using the value of the parameter a determined, 
calculate the time t0 such that the probability that T is less than 
t0 is 0.05.

 9. A communication network consists of fi ve links that interconnect 
four routers, as shown below. The probability that each of the 
link is operational is 0.9 and independent. What is the probability 
of being able to transmit a message from router A to router B 
(assume that packets move forward in the direction of the 
destination)?

Router B

Router A

Router D

Router C

Figure 1.8 Communication network with 5 links



10. Two random variables X and Y take on the values i and 2i with 
probability 1/2i (i = 1,2,  .  .  .). Show that the probabilities sum to one. 
Find the expected value of X and Y.

11. There are three identical cards, one is red on both sides, one is 
yellow on both sides and the last one is red on one side and yellow 
on the other side. A card is selected at random and is red on the 
upper side. What is the probability that the other side is yellow?
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