1

Introduction

1.1 Background

In the 1960s, the great science-fiction writer Isaac Asimov [1] predicted a future
full of robots, protecting and sometimes controlling human destiny. Fifty years
later, a human-like and all-purpose robot still remains a dream of the robotics
research community. However, technological progress in the last couple of
decades have ensured that human lifestyle, human interactions and collaboration
patterns have changed so dramatically that if anyone like Asimov had written
about today’s world 50 years back, it would have seemed like science fiction.
If we compare the interaction and collaboration patterns of today with those of
a decade back, we will find stark differences between the two. E-mails, blogs,
messengers and so on are common tools used nowadays which were unknown
ten years ago. People seldom stand in a queue in a bank; automated teller
machines (ATMs) have become an essential commodity. Similarly, credit cards
have taken over from cash and cheques as the new mode of transaction. Internets
have become the de facto source of information for millions of people. The new
technologies have redefined the ways in which interaction and collaboration
between different individuals take place, which in turn are creating a new
social-interaction methodology. For example, English is fast becoming a lingua
franca for the technical community across the world and the interactions of that
community are redefining the English language in a significant way. In addition,
geographical and cultural borders are slowly disappearing as social networking
sites like Orkut [2], Facebook [3] and so on change the ways people interact.
Similar changes are also taking place in the enterprise-computing scenario. Until
recently, application developers could safely assume that the target environment
was homogeneous, secure, reliable and centrally-managed. However, with the
advent of different collaborative and data-sharing technologies, new modes of
interaction are evolving. These evolutionary pressures generate new requirements

Distributed Systems Security ~A. Belapurkar, A. Chakrabarti, S. Padmanabhuni, H. Ponnapalli, N. Varadarajan
and S. Sundarrajan © 2009 John Wiley & Sons, Ltd

2 Distributed Systems Security: Issues, Processes and Solutions

for distributed application development and deployment. Enterprises are now
witnessing increasing collaboration and data sharing among the different
participating entities, resulting in the need for and use of distributed resources
and computing. Another important element that has increased the complexity
of IT operations is the need for integration of different applications, with
middleware developed in different platforms and by different vendors. We
are also seeing a spurt of mergers and acquisitions which require integration
of technologies across enterprises. Moreover, the enterprises are outsourcing
the nonessential elements of the IT infrastructure to various forms of service
provider. The technologies that have transformed the world so significantly fall
under the bracket of distributed computing technologies.

Distributed computing technologies follow a similar pattern of interaction,
where disparate and sometimes heterogeneous systems interact with one another
over a common communication platform. Initiated by the academic and research
community to fulfill the need to connect and collaborate, slowly this technology
was adopted by enterprises. Finally, enterprises and user communities cannot live
without some application of distributed computing. However, with the widespread
adoption of distributed computing, experts are pointing out security issues that
can hurt the enterprises and user communities in a huge way. Analyzing the
security issues and solutions in distributed computing is not simple as there is
a need to identify the interactions between different layers of the distributed
computing environment. Different solutions exist and it is necessary to identify
the different layers of the distributed computing environment and analyze the
security issues in a holistic manner. This book is an effort in that direction.

1.2 Distributed Systems

Distributed systems involve the interaction between disparate independent entities,
bounded by common language and protocols and working toward a common goal.
Different types of distributed systems are found in real life. One of the biggest
and perhaps the most complex distributed system is human society itself. In the
digital world, the Internet has become a very important distributed environment
for everybody.

1.2.1 Characteristics of Distributed Systems

If we look at any distributed system, for example the Internet, there are several
mandatory characteristics, in addition to ‘good-to-have’ or desirable characteris-
tics. Mandatory characteristics determine the basic nature of distributed systems,
such as having multiple entities, heterogeneity, concurrency and resource sharing.

(1) Multiple entities: One of the key characteristics of a distributed system is the
presence of multiple — in many cases a great many — entities participating

Introduction 3

2

3)

“)

in the system. The entities can be users or subsystems which compose the
distributed system.

Heterogeneity: Another key characteristic is the heterogeneous nature of the
entities involved. The heterogeneity may lie in the type of system or user,
underlying policies and/or the data/resources that the underlying subsystems
consume. The heterogeneity of distributed systems can be best observed in the
Internet, where multitudes of systems, protocols, policies and environments
interact to create a scalable infrastructure.

Concurrency: Another important characteristic that distinguishes any dis-
tributed system from a centralized one is concurrency. Different components
of distributed systems may run concurrently as the components may be loosely
coupled. Therefore there is a need to understand the synchronization issues
during the design of distributed systems.

Resource sharing: Sharing of resources is another key characteristic of dis-
tributed systems.

In addition to the above mandatory characteristics, there are several desirable
characteristics for a distributed system.

ey

2)

3

Openness: A desirable characteristic for a distributed system is openness of
the underlying architecture, protocols, resources and infrastructure, where they
can be extended or replaced without affecting the system behavior. If we
look at the Internet, this issue is nicely handled through the use of open
standards: we can see the interplay between different protocols, standards,
infrastructures and architectures without affecting the activities of the Internet
as a whole.

Scalability: One of the key motivations for going from a centralized system
to a distributed one is to increase the overall scalability of the system. Hence
to have a highly scalable system is desirable in any form of distributed system.
Transparency: Another desirable characteristic is to have transparency in the
operation. From the user’s and the subsystem’s point of view, the under-
lying systems should be transparent. Primarily, transparency can be of two
types — location transparency and system transparency. The first type talks
about the need to be transparent regarding the location disparity between dif-
ferent systems. The second talks about the need to be transparent about system
issues like failure, concurrency, scaling, migration and so on.

1.2.2 Types of Distributed System

Distributed systems can be divided into mainly three types: distributed comput-
ing systems, distributed information systems and distributed pervasive systems.
The first type of system is mainly concerned with providing computations in a
distributed manner. The second type of system is mainly concerned with providing

4 Distributed Systems Security: Issues, Processes and Solutions

Distributed Integration System

CORBA
l—> Web Services
-_DCOM

Distributed Computing System

CCNUMA || Clusters || Grid

Distributed Information System

Distributed Distributed
Storage File System

Figure 1.1 Distributed system landscape.

P2P based
(OceanStore)

information in a distributed manner, while the third type is the next-generation
distributed system, which is ubiquitous in nature.

1.2.2.1 Distributed Computing Systems

Distributed computing systems provide computations in a distributed manner.
Computing power is needed in many different industries, including banking and
finance, life sciences, manufacturing and so on. If we look at the computing
resources available, we shall find that the laptops of today are perhaps as pow-
erful as servers a decade ago. Moore’s law, which states that computing power
doubles every 18 months, is valid even today and will probably be true for the
next 5—6 years. With the growth of the multicore technologies, Moore’s law can
be extended even further [4]. Computing power is increasing and so is demand.
In this rat race, researchers have found an able ally in the form of networking.
Between 2001 and 2010, while processing power is supposed to increase 60 times,
networking capabilities are supposed to increase by 4000 times. This means that
at the same cost, 4000 times the same bandwidth will be available in 2010 as
compared to 2001 [5]. Therefore, the computing architectures developed a decade
back will probably require a rethink based on the technological progress in the
fields of computers and networks. Last decade saw the development of a field
called cluster computing [6], where different computing resources are connected

Introduction 5

together using a very-high-speed network like Gigabit Ethernet or more recently
Infiniband [7]. In addition to the technological progress and the huge requirement
of computing power, the enterprises have also undergone a radical shift in IT
operations in the last few years. Enterprises are now witnessing increasing col-
laboration and data sharing among the different participating entities, resulting in
the need for and use of distributed resources and computing. Another important
element that has increased the complexity of IT operations is the need for integra-
tion of different applications: middlewares developed on different platforms and
by different vendors. We are also seeing a spurt of mergers and acquisitions that
require integration of technologies across enterprises. Moreover, the enterprises
are outsourcing the nonessential elements of the IT infrastructure. The dual pull
of requiring more computing power and the integration of heterogeneous compo-
nents into the IT infrastructure has led to the development of grid technology. This
technology is seeing a classical evolution pattern. Initiated by the academic and
research community to fulfill its needs, it is slowly being adopted by the enter-
prises, especially those who have high computing needs, such as the life sciences,
finance and manufacturing industries. However, the promise of grid computing
goes beyond that and the next few years should see a gradual adoption of grid as
the natural choice among the other enterprises. But a widespread adoption of grid
computing depends upon the ability of researchers and practitioners to reduce the
pitfalls that lie along the way. One such pitfall is security, which is the focus of
this book as a whole. In this chapter we will briefly talk about grid computing’s
evolution, benefits and concerns.

1.2.2.2 Distributed Information Systems

Distributed information systems are responsible for storing and retrieving infor-
mation in a distributed manner. There are many manifestations of this type of
distributed system. The underlying storage system can be distributed in the form
of storage area networks (SANs). SANs have become de facto storage infras-
tructures in most enterprises. SAN is a high-speed data storage network that
connects different types of storage device. One of the most popular modes of
storage communication is the Fibre Channel fabric. Another paradigm of the dis-
tributed information system is the distributed file system (DFS). The first secure
DFS in common use was atheos file system (AFS) [8]. This file system was
later followed by DFS [9]. AFS servers store sub-trees of the file system and
use Kerberos [10] to provide authenticated access to the trees. Network file sys-
tem (NFS) is another very popular DFS, which allows users distributed over the
network to access distributed files. With the growth of peer-to-peer (P2P) tech-
nologies, highly-distributed storage is in vogue. Systems like OceanStore [11] are
becoming popular. This uses a large number of untrusted storage devices to store
redundant copies of encrypted files and directories in persistent objects. Objects
are identified by globally unique identifiers (GUID), which are generated in a

6 Distributed Systems Security: Issues, Processes and Solutions

similar fashion to the unique identifiers in SAN file system (SFS). Each identifier
is a hash of the owner’s public key and a name. Objects can point to other objects
to enable directories. All objects are encrypted by the client. By replicating the
objects among servers, clients can even avoid malicious servers deleting their
data. The extensive use of replication and public keys makes revocation of access
and deletion of data difficult to achieve, but it does provide a nice model for a
completely decentralized DFS.

1.2.2.3 Distributed Integration Systems

Distributed integration systems are responsible for integrating applications, poli-
cies and interfaces across diverse distributed systems. The last couple of decades
have seen numerous implementations of distributed computing, such as CORBA
[12], Java RMI [13], DCOM [14] and so on. None of these systems were taken up
in a big way by the industries, mainly because of their tightly-coupled nature. Cur-
rent trends in the application space suggest that enterprises are moving away from
monolithic tightly-coupled systems toward loosely-coupled dynamically-bound
components. With the growth of the Internet as a premier means of commu-
nication, a new paradigm called the Web Services [15] emerged, facilitating a
new style of architecting systems, termed as service-oriented architecture (SOA).
Web Services can be thought of as reusable, loosely-coupled software components
that are deployed over the network, or specifically the World Wide Web. There
are some advantages that the experts claim as the major reasons for the adoption
of Web Services as a de facto standard for application integration. These are:

(1) Simplicity: Implementation of Web Services is very simple from the point of
view of programmers and as a result, easy and fast deployments are possible.
All the underlying technologies and protocols are based on Extended Markup
Language (XML) [16], which is simple and intuitive.

(2) Loosely coupled: Since the very design of Web Services is based on loose
coupling of its different components, they can be deployed on demand.

(3) Platform independent: Web Services architecture is platform- and language-
independent since it is based on XML technologies. Therefore, one can write
a client in C++ running on Windows, while the Web Service is written in
Java running on Linux.

(4) Transparent: Since most of the deployed Web Services use Hypertext Trans-
fer Protocol (HTTP) [17] for transmitting messages, they are transparent to
firewalls, which generally allow HTTP to pass through. This may not always
be the case for CORBA, RMI and so on.

According to many experts, CORBA and RMI provide a much better alternative
to Web Services because of the flexibility and features that CORBA provide.
Moreover, performance-wise the CORBA/RMI combination may be better than

Introduction 7

protocol designed over HTTP. However, because of its simplicity and the backing
of the big commercial vendors, Web Services is steadily becoming a standard
which none can ignore. There are many forums where debates are being pursued
as we move on to the different components which constitute the Web Services.
There are three main components of Web Services:

e SOAP: The Simple Object Access Protocol (SOAP) [18] is a lightweight pro-
tocol for exchange of information between diverse and distributed computing
environments. It combines the extensibility and portability of XML with the
ubiquitous Web technology of HTTP. It provides a framework for defining how
an XML message is structured, using rich semantics for indicating encoding
style, array structure and data types.

e WSDL: The Web Service Description Language (WSDL) [19] can be used to
describe a Web Service, providing a standard interface. A WSDL document is
written in XML and describes a service as a set of endpoints, each consisting of
a collection of operations. XML input and output messages are defined for each
operation and their structure and data types are described using an XML Schema
in the WSDL document. The Web Description Services Language (WDSL) and
XML Schema provide a complete definition for the service interface, allowing
programmatic access to the Web Service in the manner of an API. Tasks like
data requests or code executions can be performed by sending or receiving
XML messages using, for example, SOAP.

e UDDI: The Universal Description, Discovery and Integration (UDDI) [20] spec-
ification defines a way to publish and discover information about Web Services.
It is a collaboration between Ariba, IBM and Microsoft to speed interoperabil-
ity and adoption of Web Services. The project includes a business registry (an
XML document) and a set of operations on it. The registry can be used by
programs to find and get information about Web Services and check compat-
ibility with them, based on their descriptions. UDDI allows categorization of
Web Services so that they can be located and discovered, and WSDL enables
a programmatic interface to a service once it has been located.

1.2.3 Different Distributed Architectures

There are four different types of architecture that are used for designing dis-
tributed systems, namely client—server-based systems, Multinode systems, P2P
systems and service-oriented systems. The first type of system is a client- and a
server-based system, the second type of system distributes the data or the infor-
mation across multiple nodes or systems, the third type of system is a P2P-based
architecture where all components are peers or at the same level, and the last type
of system is a federated model where interactions happen via standards-based
messages.

8 Distributed Systems Security: Issues, Processes and Solutions

1.2.3.1 Client-Server-Based Architecture

Client—server-based architecture is the most popular distributed system that has
been used over the years. In this architecture, the server is responsible for provid-
ing service to the client or a set of clients. In a client—server kind of environment,
a client requests a service from the server, which the server provides over the net-
work in a remote environment. The main advantage of a client—server system is
that the business services are abstracted from the set of clients accessing them.
Security is implemented at the link and the end server, while fault tolerance is
applied at the server end by replicating the functionality. Though extremely pop-
ular, there are some inherent limitations in this type of architecture, which led
practitioners and researchers to other models.

e Scalability: One of the primary limitations of this model is scalability. If the
number of users increases significantly, the system fails to handle such a large
load. There are two ways to handle this issue: scale up or scale out. Scaling
up means moving to a higher end server to handle the same type of request.
Though this may be an effective solution in some cases, it does not scale as
there is a limitation to scaling up. The second approach, or scale-out approach,
distributes the server into multiple servers, which improves scalability. We will
talk about this approach later.

e Flexibility: Just having a client and a server reduces the overall flexibility of
the system, the reason being that database management, application business
logic and other processes are embedded in the server code and hence inflexible.
Practitioners and designers slowly moved to a three-tier architecture mainly to
tackle this problem.

1.2.3.2 Multinode

One variation of the client—server technology distributes the server into multiple
nodes that can be used for parallel processing. There are several advantages of
such a multinode configuration, namely performance, fault tolerance and scalabil-
ity. Performance can be improved, since the different nodes involved in the process
provide part of the service a single node was supposed to perform. Different com-
ponents of the multinode system are: processing nodes, scheduler or load balancer
and clients. Having different nodes perform similar actions can result in improve-
ment of fault tolerance. Moreover, multinode systems improve scalability since
they can scale out instead of scaling up. However, the advantages of multinode
systems come at a cost, which is complexity. Managing synchronization, security,
load balancing and so on in such an environment is extremely challenging.

Introduction 9

1.2.3.3 Peer-to-Peer

The third type of architecture, which is becoming at the moment, is P2P. This type
of system is different from client—server-based systems as, in P2P systems, all
the nodes in the distributed system participate in the same hierarchy. This means
that there is no concept of client and server, and each participant assumes the
role of client and server based on need and requirement. Systems like Gnutella,
Napster and so on are based on such principles. P2P systems have found signifi-
cant applications in the area of file distribution and transfer. They are also being
applied in the area of data and information storage. P2P systems have several
advantages in terms of scalability and fault tolerance. Since the system is depen-
dent on end systems and nodes, it scales infinitely. The scalability property is
exhibited by all the P2P systems. Similarly, fault tolerance is also an important
characteristic of such a system. However, several challenges exist, in the form of
security and service level agreement (SLA). Since the end systems are responsi-
ble for performance, guaranteeing service is almost impossible. Management of
security is also extremely difficult as maintaining security at the end systems is a
challenge.

1.2.3.4 Service-Oriented Architecture

SOA is the latest in the evolution of distributed architectures, which builds upon
the client—server and other such distributed architecture models. SOA implemen-
tations revolve around the basic idea of a service. A service refers to a modular,
self-contained piece of software, which has a well-defined functionality expressed
in abstract terms independent of the underlying implementation. Basically, any
implementation of SOA has three fundamental roles: service provider, service
requestor and service registry, and three fundamental operations: publish, find
and bind. The service provider publishes details pertaining to service invocation
with a services registry. The service requestor finds the details of a service from
the service registry. The service requestor then invokes (binds) the service on the
service provider. Web Services, described earlier, represent the most popular form
of implementation of SOA.

1.2.4 Challenges in Designing Distributed Systems

The challenges in designing a distributed system lie in managing the different dis-
parate entities responsible for providing the end service. Synchronization between
the different entities needs to be handled. Similarly, security and fault tolerance
are extremely important and need to be handled as well.

10 Distributed Systems Security: Issues, Processes and Solutions

1.2.4.1 Synchronization

One of the most complex and well-studied problem in the area of distributed
systems is synchronization. The problem of synchronizing concurrent events also
occurs in nondistributed systems. However, in distributed systems, the problem
gets amplified many times. Absence of a globally-shared clock, absence of global
shared memory in most cases and the presence of partial failures makes synchro-
nization a complex problem to deal with. There are several issues, like clock
synchronization, leader election, collecting global states, mutual exclusion and
distributed transactions, which are critical and have been studied in detail in
literature.

e Clock synchronization: Time plays a crucial role as it is sometimes necessary
to execute a given action at a given time, timestamping data/objects so that all
machines or nodes see the same global state. Several algorithms for clock syn-
chronization have been proposed, which include synchronization of all clocks
with a central clock or through agreement. In the first case, the time server or
external clock periodically sends the clock information to all the nodes, either
through a broadcast or through multicast mechanisms, and the nodes adjust the
clock based on the received information and the round-trip time calculation. In
the second mechanism, the nodes exchange information so that the time clock
can be calculated in a P2P fashion. It is to be noted that clock synchroniza-
tion is a major issue in distributed systems and clock skew always needs to be
considered when designing such a system.

e Leader election: This is another critical synchronization problem used in many
distributed systems. Many varieties of solution are available, ranging from the
old leader forcing the new leader on the group members based on certain
selection criteria, to polls or votes where the node receiving the maximum
number of votes gets elected as the leader.

e Collection global state: In some applications, especially when debugging a
distributed system, knowledge of the global states is especially useful. Global
state in a distributed system is defined as the sum of the local states and states
in transit. One mechanism is to obtain a distributed snapshot which represents
the consistent and global state in which the distributed system would have been.
There are several challenges in moving a process to the consistent state.

e Mutual exclusion: In some cases, it is required that certain processes access
critical sections or data in a mutually-exclusive manner. One way to tackle
such a problem is to emulate the centralized system by having the server man-
age the process lock through the use of tokens. Tokens can also be managed
in a distributed manner using a ring or a P2P system, which increases the
complexity.

Introduction 11

1.2.4.2 Fault Tolerance

If we look at the issue of fault tolerance from the distributed systems perspective,
it is both an opportunity and a threat. It is an opportunity as distributed systems
bring with them natural redundancy, which can be used to provide fault tolerance.
However, it is a threat as the issue of fault tolerance is complex, and extensive
research has been carried out in this area to tackle the problem effectively. One
of the issues that haunts distributed systems designers is the source of many
failures. Failures can happen in processing nodes and transmission media, and
due to distributed agreement.

e Processing sites: The fact that the processing sites of a distributed system are
independent of each other means that they are independent points of failure.
While this is an advantage from the viewpoint of the user of the system, it
presents a complex problem for developers. In a centralized system, the failure
of a processing site implies the failure of all the software as well. In contrast,
in a fault-tolerant distributed system, a processing site failure means that the
software on the remaining sites needs to detect and handle that failure in some
way. This may involve redistributing the functionality from the failed site to
other, operational, sites, or it may mean switching to some emergency mode of
operation.

o Communication media: Another kind of failure that is inherent in most dis-
tributed systems comes from the communication medium. The most obvious,
of course, is a permanent hard failure of the entire medium, which makes com-
munication between processing sites impossible. In the most severe cases, this
type of failure can lead to partitioning of the system into multiple parts that are
completely isolated from each other. The danger here is that the different parts
will undertake activities that conflict with each other. Intermittent failures are
more difficult to detect and correct, especially if the media is wireless in nature.

e Errors due to transmission delays: There are two different types of problem
caused by message delays. One type results from variable delays (jitter). That
is, the time it takes for a message to reach its destination may vary significantly.
The delays depend on a number of factors, such as the route taken through the
communication medium, congestion in the medium, congestion at the process-
ing sites (e.g. a busy receiver), intermittent hardware failures and so on. If
the transmission delay is constant then we can much more easily assess when
a message has been lost. For this reason, some communication networks are
designed as synchronous networks, so that delay values are fixed and known in
advance. However, even if the transmission delay is constant, there is still the
problem of out-of-date information. Since messages are used to convey infor-
mation about state changes between components of the distributed system, if

12 Distributed Systems Security: Issues, Processes and Solutions

the delays experienced are greater than the time required to change from one
state to the next, the information in these messages will be out of date. This can
have major repercussions that can lead to unstable systems. Just imagine trying
to drive a car if visual input to the driver were delayed by several seconds.

e Distributed agreement: The problem of distributed agreement has been briefly
touched upon in the previous subsection. There are many variations of this
problem, including time synchronization, consistent distributed state, distributed
mutual exclusion, distributed transaction commit, distributed termination, dis-
tributed election and so on. However, all of these reduce to the common problem
of reaching agreement in a distributed environment in the presence of failures.

1.2.4.3 Security

Perhaps the most compelling challenge associated with distributed systems is the
issue of security. The complexity of the issue arises from the different points of
vulnerability that exist in a distributed system. The processing nodes, transmission
media and clients are the obvious points that need to be secured. With the growth
of heterogeneity in different layers of enterprise infrastructure, the complexity
increases enormously. This whole book is devoted to this subject. In the next
section, we will provide a brief motivation for different layers of distributed
systems in an enterprise scenario and touch upon the security issues to be delved
into in this book.

1.3 Distributed Systems Security

As mentioned earlier, security in distributed systems is critical and absolutely
essential. However, it is also extremely challenging. Distributed security in the
digital world is akin to security in the real world. As the last few years would sug-
gest, protecting physical infrastructure is turning out to be a nightmare for security
professionals. The reason is that malicious adversaries can reside anywhere, and
everything is their potential target. In the digital world as well, protecting the
infrastructure is turning out to be a catching game. The main reason for this is
that the IT infrastructure in all enterprises is distributed in nature. Before under-
standing the security in distributed systems in relation to enterprise I'T, we need to
understand the enterprise I'T landscape. In this section, we will discuss the enter-
prise IT scenario in a layered perspective. The whole book will then be aligned
to this layered view with respect to distributed IT security.

1.3.1 Enterprise IT — A Layered View

Figure 1.2 shows a high-level view of the layered enterprise. The view consists
of four main layers: hosts, infrastructure, applications and services. While the

Introduction 13

Infrastructure Layer

Figure 1.2 Layered enterprise view.

host layer consists of client desktops and low-end servers, forming the lowest
stratum of the enterprise IT, the infrastructure layer consists of network, storage
and middleware functionalities, which are used by the application, host and
service layers. The applications are custom and component of the shelf (COTS)
applications that are used in the enterprises in a day-to-day manner. Finally, we
have the service layer, which provides standards-based services to the external
world as well as to the enterprise itself. We will take this view into account for
all our subsequent discussions.

1.3.1.1 Hosts

The lowest layer in the enterprise consists of hosts, which are mainly composed
of client desktops and low-end servers. Even a few years back, hosts were meant
only to submit requests to servers and perform some low-end user-level tasks like
editing Word files and so on. However, with the growth of grid computing, con-
cepts like cycle stealing, scavenging and so on are coming to the fore. Middleware
technologies are able to take advantages of idle desktops or low-end servers like
the blades for distributed processing. With the growth of P2P technologies, hosts
are also managing distributed files in a much more scalable manner. Technologies
like Torrent [21] are redefining the way storage is carried out today. With the
growth of dimensions of hosts, several issues need to be tackled which were not
a problem before.

14 Distributed Systems Security: Issues, Processes and Solutions

e Manageability: The issue of managing heterogeneous systems is becoming
increasingly complex. With hundreds and thousands of hosts a part of the com-
puting and storage infrastructure, this is an administrator’s nightmare. Several
management and monitoring tools are needed to address this problem.

e Metering: With hosts becoming more and more important in the overall business
scenario, metering assumes a very important role. How to meter and what to
meter are serious questions.

e Security: Perhaps the most challenging issue in the host-based storage and
computation is security. Not only do hosts need to be protected from mali-
cious outside agents, infrastructure needs to be protected from malicious hosts
as well.

1.3.1.2 Infrastructure

The second layer in the IT enterprise is the infrastructure. It is diverse and complex
because of the sheer heterogeneity of products, technologies and protocols used
in enterprises today. The infrastructure is basically composed of two main com-
ponents: the physical infrastructure, consisting of high-end servers, storage and
networks, and the middleware, consisting of the cluster and grid middlewares.

e Physical infrastructure: Physical infrastructure consists of the server infrastruc-
ture, network infrastructure and storage infrastructure. One of the key character-
istics of the physical infrastructure is heterogeneity. From the size and type of
servers used, through the networking speed to the storage devices, heterogene-
ity remains a key ingredient. Another key characteristic is that each component
of the physical infrastructure is distributed in nature, making security a major
concern.

e Middleware: Cluster and grid middleware dominates in a high-performance
environment. Integration of grid technologies with mainstream IT is a
challenge.

1.3.1.3 Applications

Applications address the diverse enterprise needs of an enterprise, be they business
applications or horizontal technological applications. Of special importance is
the emergence of Web-based applications as a crucial component of enterprise
landscape, essential for delivering the right functions to consumers via the Web.
From a security perspective, application security has assumed major importance
in the recent past. Security issues may crop up due to either weakness in the
design of an application, or an insecure coding practice, which can compromise
some of the security requirements. In the case of the Web, the openness of the
medium and the protocols is responsible for further security complexity.

Introduction 15

1.3.1.4 Services

Services represent a higher level of interaction in distributed systems, building
over the underlying applications and data. Hence the typical underlying distributed
system security issues (including confidentiality, integrity and so on) are appli-
cable; additionally, the specific concerns arising out of the loose coupling and
interaction via XML messages introduce extra complexities. The higher level of
loose coupling required for SOA mandates more flexible ways of handling secu-
rity for SOA. Additionally, standards will be key as there is a need to interoperate
across heterogeneous implementations of underlying systems. Finally, the open-
ness and plain-text nature of XML-based distributed invocations is a cause of
further complexity and higher vulnerability. Likewise, typical distributed-system
attacks like DOS, cross-site scripting attacks and so on manifest at service level
too, albeit with variations.

1.3.2 Trends in IT Security

As we move toward a distributed IT infrastructure, security issues become more
and more critical. The pervasive growth of the IT infrastructure, along with its
heterogeneous nature, makes security a really complex issue to look at. If we
look at a typical IT infrastructure, there are hundreds of different applications that
are interacting with one another. The applications are either custom built, vendor
products or even open-source systems. Each of the products interacts with com-
plex sets of infrastructure components, including servers, desktops, middlewares
and so on. Added to this complexity is that of the heterogeneous networking
infrastructure, including wired, wireless and so on, and devices like BlackBer-
rys, personal digital assistants (PDAs) and others. With the growth of sensor
networks, integration of IT infrastructure and small sensor motes will make the
problems exceedingly challenging. With the heterogeneity and pervasive nature of
enterprises set to grow, several security trends have been identified in this section,
which are slowly being adopted by enterprises around the world. The key security
trends that can be observed are: movement of security to higher layers, protec-
tion of the periphery, protection of identities, standardization and integration of
heterogeneous policies and infrastructure.

1.3.2.1 Security in Higher Layers

One of the security trends that is observed currently is the movement of security
implementation to higher layers. If we look at the different layers of enterprise
systems, security protocols and systems are available at each and every one. For
example, most of the enterprises conform to SOA. Different security protocols are
available at the infrastructure layer, the middleware layer and so on. Enterprises
are slowly exploring the ideas of having security at the Web Services layer, which

16 Distributed Systems Security: Issues, Processes and Solutions

has led to the standardization and development of WS-Security standards. Simi-
larly, enterprises are looking at securing the higher layers so that more flexibility
can be obtained. However, one of the issues in moving security up the layers is
performance versus scalability. The higher the security implementation the more
the security overhead, and hence the more the performance overhead. Therefore,
the decision to have security at a particular layer depends on the amount of flex-
ibility that the system requires and the performance requirement of the system.
Taking the above example, instead of WS-Security, one can implement Transport
Layer Security (TLS). The performance of a TLS-based system will be more than
that of a WS-Security-based system; however WS-Security provides an end-to-end
secure environment which is not provided by TLS.

1.3.2.2 Protection of the Periphery

Another important trend that can be observed in enterprise-security cenarios is that
the security is provided at the periphery to protect the network by filtering the
traffic flowing to and from it. Different types of filtering technique are employed
to protect the data flowing into the network. Filtering can be as simple as going
through the packets and preventing data coming from certain ports. Similarly,
requests going to a particular port can be prevented. However, enterprises are
also moving toward more sophisticated methods of filtering, like application-level
filtering and XML-based filtering techniques. In these techniques, the filters or
firewalls actually look into the XML or application payload and identify whether
the packet is of a malicious nature.

1.3.2.3 Protection of Identities

When I reflect upon my activities today, I find that I have used multiple cre-
dentials to access resources of different forms. I used my company identity card
to enter the office premises, entered the password to get into the office network,
used my smart card to access the high-security lab, used my personal identifica-
tion number (PIN) to access my ATM account, and used my passport to get a
US visa — and this was just one day. Different identity checks were required by
different systems, and my identities were in different forms, which I either carried
in my head or as a card or a paper. I am surely not an exception; every one of
us is doing the same, maintaining multiple credentials to access different forms
of resource. This has really become pronounced with the growth of Information
Technologies, where there are multitudes of system interfaces which require some
sort of user authentication. As a result, individuals possess multiple digital iden-
tities and credentials, many of which are short-lived. At this point, one may be
concerned about the relationship between identities and credentials. The identity
of an individual user is unique; however, it may be manifested in different ways
to disparate systems through user credentials. For example, my identity credential

Introduction 17

to the United States consulate is my passport, while to the company network
it is the combination of the network’s user ID and password. Therefore, when
we talk of managing different user identities, it is actually the user-identification
credentials we are talking about. However, credentials go beyond just identifying
the user: they may authorize a user to access a certain resource or be used as a
proof of authentication. Credentials can be short-lived, for example identity cards
or passwords which expire when the individual leaves a company, or after a fixed
amount of time. Other examples of short-time credentials are the tickets issued in
busses for a short ride. Individuals manage their credentials by a combination of
papers, cards and their own memory, as I did today. Secure management of user
credentials is a very important challenge. Identity theft topped the list of com-
plaints to the United States Federal Trade Commission in 2002, accounting for
43% of all complaints [22]. Therefore, identity and user-credential management
is surely a very important problem, and several research and development efforts
are being undertaken in this direction.

1.3.2.4 Standardization

With the growth of heterogeneity in the enterprises, standardization is fast becom-
ing a key for any enterprise security system. If we look at any enterprise, the
number of heterogeneous elements available is mind-boggling. Several enterprises
over the years have custom-built applications, even middlewares, to interact with
vendor products. When architects look at the security issues in such enterprises,
they find the need to integrate security across these products, middlewares and
applications. The way to solve the problem is through standardized interfaces
and protocols. There are a couple of advantages to taking the standardized route,
especially in designing the security systems in enterprises. Firstly, rather than
designing a custom protocol, standards are based on well-established theoretical
bases and principles. Hence, through standards, one can be sure that vulnerabilities
are not introduced in those layers. Secondly, standard interfaces make integration
a slightly less cumbersome problem.

1.3.2.5 Integration

Perhaps the most complex and challenging problem in any enterprise is the inte-
gration of different protocols, standards, applications, middlewares and so on.
This becomes especially complex for new and evolving technologies, like grid
computing for example. Though technically grid computing is a powerful technol-
ogy which provides flexibility and performance in the current infrastructure setup,
when enterprises move into the grid environment, the challenges of integration
just hide all the benefits that exist. Enterprises which have application servers,
data-base tiers, different business intelligence products and monitoring tools, and
management systems, would integrate with an open-source Globus toolkit that

18 Distributed Systems Security: Issues, Processes and Solutions

is based on standards like Security Assertion Markup Language (SAML) and
WS-Security. However, the enterprises do not support those standards and either
the enterprise applications have to move to the newer standards, which may
involve a lot of work and customization, or the grid systems must be customized
to work with the existing standards and protocols. In most cases, enterprises pre-
fer the second route as they generally do not want to touch the systems which
‘work’. As a result, the vicious circle of newer technologies and integration dif-
ficulties persists.

1.4 About the Book

In this book we look at the global picture of the distributed computing systems
and their security vulnerabilities, and the issues and current solutions therein. We
divide the distributed systems into four layers: infrastructure, host, application and
service. The reason for this layering lies in the fact that enterprises have systems
built in this manner, and integration issues come to the fore when analyzing
them as we have done. The host issues look at the issues pertaining to a host in
a distributed computing system and the vulnerabilities that it will be subjected
to; vulnerabilities include mobile codes coming into the system and tasks being
executed. The infrastructure level issues concern the infrastructure as a whole,
that is the networking and the mobile infrastructure on which the distributed
systems are perched. The application layer is concerned with applications that are
being developed on top of the infrastructure. Lastly, the service layer looks at
building distributed services. As we can see, each of the layers presents unique
challenges in terms of security. Moreover, the book looks at the orchestration
of applications and services across the different layers in order to look at the
global picture.

1.4.1 Target Audience

The book does not assume that the reader is an expert in security or distributed
systems technologies. However, some prior knowledge about general security
principles and/or distributed computing technologies will be required to under-
stand the chapters covering advanced security issues. The book is primarily
targeted at architects who design and build secure distributed systems. It would
also benefit managers who make business decisions and researchers who can find
research gaps in existing systems.

e Professionals and architects: Through this book, professionals and architects
working on distributed systems will be made aware of the security require-
ments. It will also enlighten them about the security features of some existing
open-source as well as proprietary products. The book also aims at identifying
processes and models which could help architects design more secure systems.

Introduction 19

e Managers and CIOs: Though the book has significant technical depth, managers
and CIOs will gain significantly from it by understanding the processes, gaps
and solutions which exist. The book therefore will be able to provide them with
information which will be useful for making important business decisions.

e Researchers and students: Experienced researchers and students in the field of
distributed computing will be able to get a comprehensive overview of all the
security issues in distributed computing. This will help them make important
research decisions by analyzing the existing gaps.

References

[1] Isaac Asimov Online (2008) http://www.asimovonline.com, accessed on June 13th, 2008.
[2] Orkut (2008) http://www.orkut.com, accessed on June 13th, 2008.
[3] Facebook (2008) http://www.facebook.com, accessed on June 13th, 2008.
[4] Koch, G. (2005) Discovering Multi-Core: Extending the Benefits of Moore’s Law , Technology
Intel® Magazine.
[5] Vilett, C. (2001) Moore’s Law vs. Storage Improvements vs. Optical Improvements, Scientific
American.
[6] Rajkumar B. (eds) (2003) High Performance Cluster Computing: Architectures and Systems,
Kluwer Academic Publishers.
[7] InfiniBand Trade Association (2008) InfiniBand Architecture Specification, Vol. 1, Release 1.1,
November 2002. Available from http://www.infinibandta.org, accessed on June 13th, 2008.
[8] Howard, J.H., Kazar, M.L., Menees, S.G. et al. (1988) Scale and Performance in a Distributed
File System, Vol. 6.1, ACM Transactions on Computer Systems, pp. 51-81.
[9] Kazar, M.L., Leverett, B.W., Anderson, O.T. et al. (1990) Decorum file system architec-
tural overview. Proceedings of the Usenix Summer 1990 Technical Conference, USENIX,
pp. 151-64.
[10] Neumann, C. and Ts’o, T. (1994) Kerberos: an authentication service for computer networks.
IEEE Communications Magazine, 32(9):33-38, September 1994.
[11] Kubiatowicz, J., Bindel, D., Chen, Y. etal. (1999) Oceanstore: An Architecture for
Global-Scale Persistent Storage, ASPLOS.
[12] Vinoski, S. (1997) CORBA: integrating diverse applications within distributed heterogeneous
environments. /[EEE Communications Magazine, 14, 2 February 1997.
[13] Grosso, W. (2001) Java RMI, O’Reiley.
[14] Ruben, W. and Brain, M. (1999) Understanding DCOM , Prentice Hall. ISBN 0-13-095966-9.
[15] Cerami, E. Web Services Essentials, O’Reilley, ISBN: 0596002246, 2002.
[16] Ray, E. Learning XML, O’Reilley, ISBN: 0596004206, 2003.
[17] Fielding, R., Gettys, J., Mogul, J. et al. (1999) Hypertext Transfer Protocol — HTTP 1.1, IETF
RFC 2616, June, 1999.
[18] W3C Team (2003) SOAP Version 1.2, Part 0: Primer, W3C Recommendations, June 2003.
[19] W3C Team (2001) Web Services Description Language (WSDL) 1.1, W3C Note, March
2001.
[20] Computer Associates (2005) IBM, Microsoft, Oracle, SAP, SeeBeyond Technologies, Systinet,
and Others, UDDI v.3.0, OASIS Standard, Feb 2005.
[21] BitTorrent (2008) http://www.bittorrent.org, accessed on 13th June 2008.
[22] Basney, J., Yurcik, W., Bonilla, R. and Slagell, A. (2006) Credential Wallets: A Classification
of Credential Repositories, Highlighting MyProxy. 31st Annual TPRC, Research Conference
on Communication, Information, and Internet Policy, Sep. 2006.

