
1 Passive Elements and Circuit Theory

The two-port equivalent circuits are widely used in radio frequency (RF) and microwave circuit
design to describe the electrical behavior of both active devices and passive networks [1–4]. The
two-port network impedance Z-parameters, admittance Y-parameters, or hybrid H-parameters are
very important to characterize the nonlinear properties of the active devices, bipolar or field-effect
transistors. The transmission ABCD-parameters of a two-port network are very convenient for design-
ing the distributed circuits like transmission lines or cascaded elements. The scattering S-parameters
are useful to characterize linear circuits, and are required to simplify the measurement procedure.
Transmission lines are widely used in matching circuits in power amplifiers, in resonant circuits
in the oscillators, filters, directional couplers, power combiners, and dividers. The design formulas
and curves are presented for several types of transmission lines including stripline, microstrip line,
slotline, and coplanar waveguide. Monolithic implementation of lumped inductors and capacitors is
usually required at microwave frequencies and for portable devices. Knowledge of noise phenomena,
such as the noise figure, additive white noise, low-frequency fluctuations, or flicker noise in active
or passive elements, is very important for the oscillator modeling in particular and entire transmitter
design in general.

1.1 IMMITTANCE TWO-PORT NETWORK PARAMETERS

The basic diagram of a two-port nonautonomous transmission system can be represented by the
equivalent circuit shown in Figure 1.1, where VS is the independent voltage source, ZS is the source
impedance, LN is the linear time-invariant two-port network without independent source, and ZL is
the load impedance. The two independent phasor currents I1 and I2 (flowing across input and output
terminals) and phasor voltages V1 and V2 characterize such a two-port network. For autonomous
oscillator systems, in order to provide an appropriate analysis in the frequency domain of the two-
port network in the negative one-port representation, it is sufficient to set the source impedance to
infinity. For a power amplifier or oscillator design, the elements of the matching or resonant circuits,
which are assumed to be linear or appropriately linearized, can be found among the LN-network
elements, or additional two-port linear networks can be used to describe their frequency domain
behavior.

For a two-port network, the following equations can be considered to be imposed boundary
conditions:

V1 + ZS I1 = VS (1.1)

V2 + ZL I2 = VL . (1.2)

Suppose that it is possible to obtain a unique solution for the linear time-invariant circuit shown in
Figure 1.1. Then the two linearly independent equations, which describe the general two-port network
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10 PASSIVE ELEMENTS AND CIRCUIT THEORY

FIGURE 1.1 Basic diagram of two-port nonautonomous transmission system.

in terms of circuit variables V1, V2, I1, and I2, can be expressed in a matrix form as

[M] [V ] + [N ] [I ] = 0 (1.3)

or

m11V1 + m12V2 + n11 I1 + n12 I2 = 0

m21V1 + m22V2 + n21 I1 + n22 I2 = 0

}
. (1.4)

The complex 2 × 2 matrices [M] and [N] in Eq. (1.3) are independent of the source and load
impedances ZS and ZL and voltages VS and VL, respectively, and they depend only on the circuit
elements inside the LN network.

If matrix [M] in Eq. (1.3) is nonsingular when |M| �= 0, then this matrix equation can be rewritten
in terms of [I] as

[V ] = − [M]−1 [N ] [I ] = [Z ] [I ] (1.5)

where [Z] is the open-circuit impedance two-port network matrix. In a scalar form, matrix Eq. (1.5)
is given by

V1 = Z11 I1 + Z12 I2 (1.6)

V2 = Z21 I1 + Z22 I2 (1.7)

where Z11 and Z22 are the open-circuit driving-point impedances, and Z12 and Z21 are the open-circuit
transfer impedances of the two-port network. The voltage components V1 and V2 due to the input
current I1 can be found by setting I2 = 0 in Eqs. (1.6) and (1.7), resulting in an open-output terminal.
Similarly, the same voltage components V1 and V2 are determined by setting I1 = 0 when the input
terminal becomes open-circuited. The resulting driving-point impedances can be written as

Z11 = V1

I1

∣∣∣∣
I2=0

Z22 = V2

I2

∣∣∣∣
I1=0

(1.8)

whereas the two transfer impedances are

Z21 = V2

I1

∣∣∣∣
I2=0

Z12 = V1

I2

∣∣∣∣
I1=0

. (1.9)

Dual analysis can be used to derive the short-circuit admittance matrix when the current compo-
nents I1 and I2 are considered as outputs caused by V1 and V2. If matrix [N] in Eq. (1.3) is nonsingular
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when |N | �= 0, this matrix equation can be rewritten in terms of [V] as

[I ] = − [N ]−1 [M] [V ] = [Y ] [V ] (1.10)

where [Y] is the short-circuit admittance two-port network matrix. In a scalar form, matrix Eq. (1.10)
is written as

I1 = Y11V1 + Y12V2 (1.11)

I2 = Y21V1 + Y22V2 (1.12)

where Y11 and Y22 are the short-circuit driving-point admittances, and Y12 and Y21 are the short-circuit
transfer admittances of the two-port network. In this case, the current components I1 and I2 due to the
input voltage source V1 are determined by setting V2 = 0 in Eqs. (1.11) and (1.12), thus creating a short
output terminal. Similarly, the same current components I1 and I2 are determined by setting V1 = 0
when input terminal becomes short-circuited. As a result, the two driving-point admittances are

Y11 = I1

V1

∣∣∣∣
V2=0

Y22 = I2

V2

∣∣∣∣
V1=0

(1.13)

whereas the two transfer admittances are

Y21 = I2

V1

∣∣∣∣
V2=0

Y12 = I1

V2

∣∣∣∣
V1=0

. (1.14)

In some cases, an equivalent two-port network representation can be redefined in order to express
the voltage source V1 and output current I2 in terms of the input current I1 and output voltage V2. If
the submatrix

[
m11 n12

m21 n22

]

given in Eq. (1.4) is nonsingular, then

[
V1

I2

]
= −

[
m11 n12

m21 n22

]−1 [
n11 m12

n21 m22

] [
I1

V2

]
= [H ]

[
I1

V2

]
(1.15)

where [H] is the hybrid two-port network matrix. In a scalar form, it is best to represent matrix Eq.
(1.15) as

V1 = h11 I1 + h12V2 (1.16)

I2 = h21 I1 + h22V2 (1.17)

where h11, h12, h21, and h22 are the hybrid H-parameters. The voltage source V1 and current component
I2 are determined by setting V2 = 0 for the short output terminal in Eqs. (1.16) and (1.17) as

h11 = V1

I1

∣∣∣∣
V2=0

h21 = I2

I1

∣∣∣∣
V2=0

(1.18)

where h11 is the driving-point input impedance and h21 is the forward current transfer function.
Similarly, the input voltage source V1 and output current I2 are determined by setting I1 = 0 when
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input terminal becomes open-circuited as

h12 = V1

V2

∣∣∣∣
I1=0

h22 = I2

V2

∣∣∣∣
I1=0

(1.19)

where h12 is the reverse voltage transfer function and h22 is the driving-point output admittance.
The transmission parameters, often used for passive device analysis, are determined for the

independent input voltage source V1 and input current I1 in terms of the output voltage V2 and output
current I2. In this case, if the submatrix

[
m11 n11

m21 n21

]

given in Eq. (1.4) is nonsingular, we obtain

[
V1

I1

]
= −

[
m11 n11

m21 n21

]−1 [
m12 n12

m22 n22

] [
V2

−I2

]
= [ABCD]

[
V2

−I2

]
(1.20)

where [ABCD] is the forward transmission two-port network matrix. In a scalar form, we can write

V1 = AV2 − B I2 (1.21)

I1 = CV2 − DI2 (1.22)

where A, B, C, and D are the transmission parameters. The voltage source V1 and current component
I1 are determined by setting I2 = 0 for the open output terminal in Eqs. (1.21) and (1.22) as

A = V1

V2

∣∣∣∣
I2=0

C = I1

V2

∣∣∣∣
I2=0

(1.23)

where A is the reverse voltage transfer function and C is the reverse transfer admittance. Similarly,
the input independent variables V1 and I1 are determined by setting V2 = 0 when the output terminal
is short-circuited as

B = V1

I2

∣∣∣∣
V2=0

D = I1

I2

∣∣∣∣
V2=0

(1.24)

where B is the reverse transfer impedance and D is the reverse current transfer function. The reason a
minus sign is associated with I2 in Eqs. (1.20) to (1.22) is that historically, for transmission networks,
the input signal is considered as flowing to the input port whereas the output current flowing to the
load. The direction of the current –I2 entering the load is shown in Figure 1.2.

The parameters describing the same two-port network through different two-port matrices
(impedance, admittance, hybrid, or transmission) can be cross-converted, and the elements of each

FIGURE 1.2 Basic diagram of loaded two-port transmission system.
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TABLE 1.1 Relationships Between Z-, Y-, H- and ABCD-Parameters.

[Z] [Y] [H] [ABCD]

[Z] Z11 Z12

Z21 Z22

Y22

�Y
− Y12

�Y

− Y21

�Y

Y11

�Y

�H

h22

h12

h22

− h21

h22

1

h22

A

C

AD − BC

C

1

C

D

C

[Y] Z22

�Z
− Z12

�Z

− Z21

�Z

Z11

�Z

Y11 Y12

Y21 Y22

1

h11
− h12

h11

h21

h11

�H

h11

D

B
− AD − BC

B

− 1

B

A

B

[H] �Z

Z22

Z12

Z22

− Z21

Z22

1

Z22

1

Y11
− Y12

Y11

Y21

Y11

�Y

Y11

h11 h12

h21 h22

B

D

AD − BC

D

− 1

D

C

D

[ABCD] Z11

Z21

�Z

Z21

1

Z21

Z22

Z21

− Y22

Y21
− 1

Y21

−�Y

Y21
− Y11

Y21

−�H

h21
− h11

h21

− h22

h21
− 1

h21

A B
C D

matrix can be expressed by the elements of other matrices. For example, Eqs. (1.11) and (1.12) for
the Y-parameters can be easily solved for the independent input voltage source V1 and input current
I1 as

V1 = −Y22

Y21
V2 + 1

Y21
I2 (1.25)

I1 = −Y11Y22 − Y12Y21

Y21
V2 + Y11

Y21
I2. (1.26)

By comparing the equivalent Eqs. (1.21) and (1.22) and Eqs. (1.25) and (1.26), the direct relation-
ships between the elements of the transmission ABCD-matrix and admittance Y-matrix are written
as

A = −Y22

Y21
B = − 1

Y21
(1.27)

C = −�Y

Y21
D = −Y11

Y21
(1.28)

where �Y = Y11Y22 − Y12Y21.
A summary of the relationships between the impedance Z-parameters, admittance Y-parameters,

hybrid H-parameters, and transmission ABCD-parameters is shown in Table 1.1, where �Z =
Z11 Z22 − Z12 Z21 and �H = h11h22 − h12h21.

1.2 SCATTERING PARAMETERS

The concept of incident and reflected voltage and current parameters can be illustrated by the one-port
network shown in Figure 1.3, where the network impedance Z is connected to the signal source VS
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FIGURE 1.3 Incident and reflected voltages and currents.

with the internal impedance ZS. In a common case, the terminal current I and voltage V consist
of incident and reflected components (assume their root mean square [rms] values). When the load
impedance Z is equal to the conjugate of source impedance expressed as Z = Z∗

S, the terminal current
becomes the incident current. It is calculated from

Ii = VS

Z∗
S + ZS

= VS

2ReZS
. (1.29)

The terminal voltage, defined as the incident voltage, can be determined from

Vi = Z∗
SVS

Z∗
S + ZS

= Z∗
SVS

2ReZS
. (1.30)

Consequently, the incident power, which is equal to the maximum available power from the source,
can be obtained by

Pi = Re
(
Vi I

∗
i

) = |VS|2
4ReZS

. (1.31)

The incident power can be presented in a normalized form using Eq. (1.30) as

Pi = |Vi|2 ReZS∣∣Z∗
S

∣∣2 . (1.32)

This allows the normalized incident voltage wave a to be defined as the square root of the incident
power Pi by

a =
√

Pi = Vi
√

ReZS

Z∗
S

. (1.33)

Similarly, the normalized reflected voltage wave b, defined as the square root of the reflected
power Pr, can be written as

b =
√

Pr = Vr
√

ReZS

ZS
. (1.34)
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The incident power can be expressed by the incident current Ii and the reflected power can be
expressed by the reflected current Ir, respectively, as

Pi = |Ii|2 ReZS (1.35)

Pr = |Ir|2 ReZS. (1.36)

As a result, the normalized incident voltage wave a and reflected voltage wave b can be given by

a =
√

Pi = Ii

√
ReZS (1.37)

b =
√

Pr = Ir

√
ReZS. (1.38)

The parameters a and b can also be called the normalized incident and reflected current waves,
or simply normalized incident and reflected waves, respectively, since the normalized current waves
and the normalized voltage waves represent the same parameters.

The voltage V and current I, related to the normalized incident and reflected waves a and b, can
be written as

V = Vi + Vr = Z∗
S√

ReZS
a + ZS√

ReZS
b (1.39)

I = Ii − Ir = 1√
ReZS

a − 1

1
√

ReZS
b (1.40)

where

a = V + ZS I

2
√

ReZS
b = V − Z∗

S I

2
√

ReZS
. (1.41)

The source impedance ZS is often purely real and, therefore, is used as the normalized impedance.
In microwave design technique, the characteristic impedance of the passive two-port networks,
including transmission lines and connectors, is considered as real and equal to 50 Ω. This is very
important for measuring S-parameters when all transmission lines, source, and load should have the
same real impedance. For ZS = Z∗

S = Z0, where Z0 is the characteristic impedance, the ratio of
the normalized reflected wave and the normalized incident wave for a one-port network is called the
reflection coefficient �, defined as

� = b

a
= V − Z∗

S I

V + ZS I
= V − ZS I

V + ZS I
= Z − ZS

Z + ZS
(1.42)

where Z = V/I .
For a two-port network shown in Figure 1.4, the normalized reflected waves b1 and b2 can also be

represented by the normalized incident waves a1 and a2, respectively, as

b1 = S11a1 + S12a2 (1.43)

b2 = S21a1 + S22a2 (1.44)

or, in a matrix form,

[
b1

b2

]
=
[

S11 S11

S21 S21

] [
a1

a2

]
(1.45)
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FIGURE 1.4 Basic diagram of S-parameter two-port network.

where the incident waves a1 and a2 and the reflected waves b1 and b2, for complex source and load
impedances ZS and ZL, are given by

a1 = V1 + ZS I1

2
√

ReZS
a2 = V2 + ZL I2

2
√

ReZL
(1.46)

b1 = V1 − Z∗
S I1

2
√

ReZS
b2 = V2 − Z∗

L I2

2
√

ReZL
(1.47)

where S11, S12, S21, and S22 are the S-parameters of the two-port network.
From Eq. (1.45) it follows that if a2 = 0, then

S11 = b1

a1

∣∣∣∣
a2=0

S21 = b2

a1

∣∣∣∣
a2=0

(1.48)

where S11 is the reflection coefficient and S21 is the transmission coefficient for ideal match-
ing conditions at the output terminal when there is no incident power reflected from the load.
Similarly,

S12 = b1

a2

∣∣∣∣
a1=0

S22 = b2

a2

∣∣∣∣
a1=0

(1.49)

where S12 is the transmission coefficient and S22 is the reflection coefficient for ideal matching
conditions at the input terminal.

To convert S-parameters to the admittance Y-parameters, it is convenient to represent Eqs. (1.46)
and (1.47) as

I1 = (a1 − b1)
1√
Z0

I2 = (a2 − b2)
1√
Z0

(1.50)

V1 = (a1 + b1)
√

Z0 V1 = (a2 + b2)
√

Z0 (1.51)

where it is assumed that the source and load impedances are real and equal to ZS = ZL = Z0.
Substituting Eqs. (1.50) and (1.51) to Eqs. (1.11) and (1.12) results in

a1 − b1√
Z0

= Y11 (a1 + b1)
√

Z0 + Y12 (a2 + b2)
√

Z0 (1.52)

a2 − b2√
Z0

= Y21 (a1 + b1)
√

Z0 + Y22 (a2 + b2)
√

Z0 (1.53)
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which can then be respectively converted to

−b1 (1 + Y11 Z0) − b2Y12 Z0 = −a1 (1 − Y11 Z0) + a2Y12 Z0 (1.54)

−b1Y21 Z0 − b2 (1 + Y22 Z0) = a1Y21 Z0 − a2 (1 − Y22 Z0) . (1.55)

Eqs. (1.54) and (1.55) can be easily solved for the reflected waves b1 and b2 as

b1

[
(1 + Y11 Z0) (1 + Y22 Z0) − Y12Y21 Z 2

0

] = a1

[
(1 − Y11 Z0) (1 + Y22 Z0) + Y12Y21 Z 2

0

]− 2a2Y12 Z0

(1.56)

b2

[
(1 + Y11 Z0) (1 + Y22 Z0) − Y12Y21 Z 2

0

] = −2a1Y21 Z0 + a2

[
(1 + Y11 Z0) (1 − Y22 Z0) + Y12Y21 Z 2

0

]
(1.57)

Comparing equivalent Eqs. (1.43) and (1.44) and Eqs. (1.56) and (1.57) gives the following
relationships between the scattering S-parameters and admittance Y-parameters:

S11 = (1 − Y11 Z0) (1 + Y22 Z0) + Y12Y21 Z 2
0

(1 + Y11 Z0) (1 + Y22 Z0) − Y12Y21 Z 2
0

(1.58)

S12 = −2Y12 Z0

(1 + Y11 Z0) (1 + Y22 Z0) − Y12Y21 Z 2
0

(1.59)

S21 = −2Y21 Z0

(1 + Y11 Z0) (1 + Y22 Z0) − Y12Y21 Z 2
0

(1.60)

S22 = (1 + Y11 Z0) (1 − Y22 Z0) + Y12Y21 Z 2
0

(1 + Y11 Z0) (1 + Y22 Z0) − Y12Y21 Z 2
0

. (1.61)

Similarly, the relationships of S-parameters with Z-, H-, and ABCD-parameters can be obtained
for the simplified case when the source impedance ZS and the load impedance ZL are equal to the
characteristic impedance Z0 [5].

1.3 INTERCONNECTIONS OF TWO-PORT NETWORKS

When analyzing the behavior of a particular electrical circuit in terms of the two-port network
parameters, it is often necessary to define the parameters of a combination of the two or more internal
two-port networks. For example, the general feedback amplifier circuit consists of an active two-port
network representing the amplifier stage, which is connected in parallel with a passive feedback
two-port network. In general, the two-port networks can be interconnected using parallel, series,
series–parallel, or cascade connections.

To characterize the resulting two-port networks, it is necessary to take into account which currents
and voltages are common for individual two-port networks. The most convenient set of parameters
is one for which the common currents and voltages represent a simple linear combination of the
independent variables. For the interconnection shown in Figure 1.5(a), the two-port networks Za and
Zb are connected in series for both the input and output terminals. Therefore, the currents flowing
through these terminals are equal when

I1 = I1a = I1b I2 = I2a = I2b (1.62)
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FIGURE 1.5 Different interconnections of two-port networks.
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or, in a matrix form,

[I ] = [Ia] = [Ib] . (1.63)

The terminal voltages of the resulting two-port network represent the corresponding sums of the
terminal voltages of the individual two-port networks when

V1 = V1a + V1b V2 = V2a + V2b (1.64)

or, in a matrix form,

[V ] = [Va] + [Vb] . (1.65)

The currents are common components, both for the resulting and individual two-port networks.
Consequently, to describe the properties of such a circuit, it is most convenient to use the impedance
matrices. For each two-port network Za and Zb, we can write using Eq. (1.62), respectively,

[Va] = [Za] [Ia] = [Za] [I ] (1.66)

[Vb] = [Zb] [Ib] = [Zb] [I ] . (1.67)

Adding both sides of Eqs. (1.66) and (1.67) yields

[V ] = [Z ] [I ] (1.68)

where

[Z ] = [Za] + [Zb] =
[

Z11a + Z11b Z12a + Z12b

Z21a + Z21b Z22a + Z22b

]
. (1.69)

The circuit shown in Figure 1.5(b) is composed of the two-port networks Ya and Yb connected
in parallel, where the common components for both resulting and individual two-port networks are
input and output voltages, respectively,

V1 = V1a = V1b V2 = V2a = V2b (1.70)

or, in a matrix form,

[V ] = [Va] = [Vb] . (1.71)

Consequently, to describe the circuit properties in this case, it is convenient to use the admittance
matrices that give the resulting matrix equation in the form

[I ] = [Y ] [V ] (1.72)

where

[Y ] = [Ya] + [Yb] =
[

Y11a + Y11b Y12a + Y12b

Y21a + Y21b Y22a + Y22b

]
. (1.73)

The series connection of the input terminals and parallel connection of the output terminals are
characterized by the circuit in Figure 1.5(c), which shows a series–parallel connection of two-port
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networks. The common components for this circuit are the input currents and the output voltages. As
a result, it is most convenient to analyze the circuit properties using hybrid matrices. The resulting
two-port hybrid matrix is equal to the sum of the two individual hybrid matrices written as

[H ] = [Ha] + [Hb] =
[

h11a + h11b h12a + h12b

h21a + h21b h22a + h22b

]
. (1.74)

Figure 1.5(d) shows the cascade connection of the two individual two-port networks. For such an
approach using the one-by-one interconnection of the two-port networks, the output voltage and the
output current of the first network is equal to the input voltage and the input current of the second
one, respectively, when

V1 = V1a I1 = I1a (1.75)

V2a = V1 − I2a = I1b (1.76)

V2b = V2 − I2b = −I2 (1.77)

In this case, it is convenient to use a system of ABCD-parameters given by Eqs. (1.21) and (1.22).
As a result, for the first individual two-port network shown in Figure 1.5(d),

[
V1a

I1a

]
=
[

Aa Ba

Ca Da

] [
V2a

−I2a

]
(1.78)

or, using Eqs. (1.75) and (1.76),

[
V1

I1

]
=
[

Aa Ba

Ca Da

] [
V1b

I1b

]
. (1.79)

Similarly, for the second individual two-port network,

[
V1b

I1b

]
=
[

Ab Bb

Cb Db

] [
V2b

−I2b

]
=
[

Ab Bb

Cb Db

] [
V2

−I2

]
. (1.80)

Then, substituting matrix Eq. (1.80) to matrix Eq. (1.79) yields

[
V1

I1

]
=
[

Aa Ba

Ca Da

] [
Ab Bb

Cb Db

] [
V2

−I2

]
=
[

A B
C D

] [
V2

−I2

]
. (1.81)

Consequently, the transmission matrix of the resulting two-port network obtained by the cascade
connection of the two or more individual two-port networks is determined by multiplying the trans-
mission matrices of the individual networks. This important property is widely used in the analysis
and design of transmission networks and systems.

1.4 PRACTICAL TWO-PORT NETWORKS

1.4.1 Single-Element Networks

The simplest networks, which include only one element, can be constructed by a series-connected
admittance Y , as shown in Figure 1.6(a), or by a parallel-connected impedance Z, as shown in
Figure 1.6(b).
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FIGURE 1.6 Single-element networks.

The two-port network consisting of the single series admittance Y can be described in a system of
Y-parameters as

I1 = Y V1 − Y V2 (1.82)

I2 = −Y V1 + Y V2 (1.83)

or, in a matrix form,

[Y ] =
[

Y −Y
−Y Y

]
(1.84)

which means that Y11 = Y22 = Y and Y12 = Y21 = −Y . The resulting matrix is a singular matrix with
|Y | = 0. Consequently, it is impossible to determine such a two-port network with the series admittance
Y-parameters through a system of Z-parameters. However, by using H- and ABCD-parameters, it can
be described, respectively, by

[H ] =
[

1/Y 1
−1 0

]
[ABCD] =

[
1 1/Y
0 1

]
. (1.85)

Similarly, for a two-port network with the single parallel impedance Z,

[Z ] =
[

Z Z
Z Z

]
(1.86)

which means that Z11 = Z12 = Z21 = Z22 = Z. The resulting matrix is a singular matrix with |Z| =
0. In this case, it is impossible to determine such a two-port network with the parallel impedance
Z-parameters through a system of Y-parameters. By using H- and ABCD-parameters, this two-port
network can be described by

[H ] =
[

0 1
−1 1/Z

]
[ABCD] =

[
1 0

1/Z 1

]
. (1.87)

1.4.2 π - and T-Type Networks

The basic configurations of a two-port network that usually describe the electrical properties of the
active devices can be represented in the form of a π -circuit shown in Figure 1.7(a) and in the form
of a T-circuit shown in Figure 1.7(b). Here, the π -circuit includes the current source gmV1 and the
T-circuit includes the voltage source rmI1.
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FIGURE 1.7 Basic diagrams of π - and T-networks.

By writing the two loop equations using Kirchhoff’s current law or applying Eqs. (1.13) and (1.14)
for the π -circuit, we obtain

I1 − (Y1 + Y3) V1 + Y3V2 = 0 (1.88)

I2 + (gm − Y3) V1 + (Y2 + Y3) V2 = 0. (1.89)

Eqs. (1.88) and (1.89) can be rewritten as matrix Eq. (1.3) with

[M] =
[

1 0
0 1

]
and [N ] =

[− (Y1 + Y3) Y3

−gm + Y3 − (Y2 + Y3)

]
.

Since matrix [M] is nonsingular, such a two-port network can be described by a system of
Y-parameters as

[Y ] = − [M]−1 [N ] =
[

Y1 + Y3 −Y3

gm − Y3 Y2 + Y3

]
. (1.90)

Similarly, for a two-port network in the form of a T-circuit using Kirchhoff’s voltage law or
applying Eqs. (1.8) and (1.9), we obtain

[Z ] = − [M]−1 [N ] =
[

Z1 + Z3 Z3

rm + Z3 Z2 + Z3

]
. (1.91)

If gm = 0 for a π -circuit and rm = 0 for a T-circuit, their corresponding matrices in a system of
ABCD-parameters can be written as, for π -circuit,

[ABCD] =

⎡
⎢⎢⎣

1 + Y2

Y3

1

Y3

Y1 + Y2 + Y1Y2

Y3
1 + Y1

Y3

⎤
⎥⎥⎦ (1.92)
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FIGURE 1.8 Equivalence of π - and T-circuits.

for T-circuit,

[ABCD] =

⎡
⎢⎢⎣

1 + Z2

Z3
Z1 + Z2 + Z1 Z2

Z3

1

Z3
1 + Z1

Z3

⎤
⎥⎥⎦ . (1.93)

For the appropriate relationships between impedances of a T-circuit and admittances of a π -circuit,
these two circuits become equivalent with respect to the effect on any other two-port network. For a
π -circuit shown in Figure 1.8(a), we can write

I1 = Y1V13 + Y3V12 = Y1V13 + Y3 (V13 − V23) = (Y1 + Y3) V13 − Y3V23 (1.94)

I2 = Y2V23 − Y3V12 = Y2V23 − Y3 (V13 − V23) = −Y3V13 + (Y2 + Y3) V23. (1.95)

Solving Eqs. (1.94) and (1.95) for voltages V13 and V23 yields

V13 = Y2 + Y3

Y1Y2 + Y1Y2 + Y1Y2
I1 + Y3

Y1Y2 + Y1Y2 + Y1Y2
I2 (1.96)

V23 = Y3

Y1Y2 + Y1Y2 + Y1Y2
I1 + Y1 + Y3

Y1Y2 + Y1Y2 + Y1Y2
I2. (1.97)

Similarly, for a T-circuit shown in Figure 1.8(b),

V13 = Z1 I1 + Z3 I3 = Z1 I1 + Z3 (I1 + I2) = (Z1 + Z3) I1 + Z3 I2 (1.98)

V13 = Z1 I1 + Z3 I3 = Z1 I1 + Z3 (I1 + I2) = Z3 I1 + (Z2 + Z3) I2 (1.99)

and the equations for currents I1 and I2 can be obtained by

I1 = Z2 + Z3

Z1 Z2 + Z1 Z2 + Z1 Z2
V13 − Z3

Z1 Z2 + Z1 Z2 + Z1 Z2
V23 (1.100)

I2 = − Z3

Z1 Z2 + Z1 Z2 + Z1 Z2
V13 + Z1 + Z3

Z1 Z2 + Z1 Z2 + Z1 Z2
V23. (1.101)

To establish a T- to π -transformation, it is necessary to equate the coefficients for V13 and V23

in Eqs. (1.100) and (1.101) to the corresponding coefficients in Eqs. (1.94) and (1.95). Similarly, to
establish a π - to T-transformation, it is necessary to equate the coefficients for I1 and I2 in Eqs. (1.98)
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TABLE 1.2 Relationships Between π - and T-Circuit Parameters.

T- to π -Transformation π - to T-Transformation

Y1 = Z2

Z1 Z2 + Z2 Z3 + Z1 Z3

Y2 = Z1

Z1 Z2 + Z2 Z3 + Z1 Z3

Y3 = Z3

Z1 Z2 + Z2 Z3 + Z1 Z3

Z1 = Y2

Y1Y2 + Y2Y3 + Y1Y3

Z2 = Y1

Y1Y2 + Y2Y3 + Y1Y3

Z3 = Y3

Y1Y2 + Y2Y3 + Y1Y3

and (1.99) to the corresponding coefficients in Eqs. (1.96) and (1.97). The resulting relationships
between admittances for a π -circuit and impedances for a T-circuit are given in Table 1.2.

1.5 THREE-PORT NETWORK WITH COMMON TERMINAL

The concept of a two-port network with two independent sources can generally be extended to any
multi-port networks. Figure 1.9 shows the three-port network where all three independent sources are
connected to a common point. The three-port network matrix Eq. (1.3) can be described in a scalar
form as

m11V1 + m12V2 + m13V3 + n11 I1 + n12 I2 + n13 I3 = 0
m21V1 + m22V2 + m23V3 + n21 I1 + n22 I2 + n23 I3 = 0
m31V1 + m32V2 + m33V3 + n31 I1 + n32 I2 + n33 I3 = 0

⎫⎬
⎭ . (1.102)

If matrix [N] in Eq. (1.102) is nonsingular when |N | �= 0, this system of three equations can
be rewritten in admittance matrix representation in terms of the voltage matrix [V], similarly to a
two-port network, by

⎡
⎣ I1

I2

I3

⎤
⎦ =

⎡
⎣ Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33

⎤
⎦
⎡
⎣ V1

V2

V3

⎤
⎦ . (1.103)

The matrix [Y] in Eq. (1.103) is the indefinite admittance matrix of the three-port network and
represents a singular matrix with two important properties: the sum of all terminal currents entering
the circuit is equal to zero, that is, I1 + I2 + I3 = 0; and all terminal currents entering the circuit

FIGURE 1.9 Basic diagram of three-port network with common terminal.



THREE-PORT NETWORK WITH COMMON TERMINAL 25

depend on the voltages between circuit terminals, which makes the sum of all terminal voltages equal
to zero, that is, V13 + V32 + V21 = 0.

According to the first property, adding the left and right parts of matrix Eq. (1.103) results in

(Y11 + Y21 + Y31) V1 + (Y12 + Y22 + Y32) V2 + (Y13 + Y23 + Y33) V3 = 0. (1.104)

Since all terminal voltages (V1, V2, and V3) can be set independently from each other, Eq. (1.104)
can be satisfied only if any column sum is identically zero,

Y11 + Y21 + Y31 = 0
Y12 + Y22 + Y32 = 0
Y13 + Y23 + Y33 = 0

⎫⎬
⎭ . (1.105)

The neither terminal currents will neither decrease nor increase, with the simultaneous change of
all terminal voltages, by the same magnitude. Consequently, if all terminal voltages are equal to a
nonzero value when V1 = V2 = V3 = V0, a lack of the terminal currents occurs when I1 = I2 = I3

= 0. For example, from the first row of the matrix Eq. (1.103) it follows that I1 = Y11V1 + Y12V2 +
Y13V3; then we can write

0 = (Y11 + Y12 + Y13) V0 (1.106)

which results due to the nonzero value V0 in

Y11 + Y12 + Y13 = 0. (1.107)

Applying the same approach to other two rows results in

Y11 + Y12 + Y13 = 0
Y21 + Y22 + Y23 = 0
Y31 + Y32 + Y33 = 0

⎫⎬
⎭ . (1.108)

Consequently, by using Eqs. (1.105) through (1.108), the indefinite admittance Y-matrix of three-
port network can be rewritten by

[Y ] =
⎡
⎣ Y11 Y12 − (Y11 + Y12)

Y21 Y22 − (Y21 + Y22)
− (Y11 + Y21) − (Y12 + Y22) Y11 + Y12 + Y21 + Y22

⎤
⎦ . (1.109)

By selecting successively terminal 1, 2, and 3 as the datum terminal, the corresponding three
two-port admittance matrices of the initial three-port network can be obtained. In this case, the
admittance matrices will correspond to a common emitter configuration shown in Figure 1.10(a), a
common base configuration shown in Figure 1.10(b), and a common collector configuration of the

FIGURE 1.10 Bipolar transistors with different common terminals.
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TABLE 1.3 Y- and Z-Parameters of Active Device with Different Common Terminal.

Y-Parameters Z-Parameters

Common emitter
(source)

Y11 Y12

Y21 Y22

Z11 Z12

Z21 Z22

Common base (gate) Y11 + Y12 + Y21 + Y22 − (Y12 + Y22)
− (Y21 + Y22) Y22

Z11 + Z12 + Z21 + Z22 − (Z12 + Z22)
− (Z21 + Z22) Z22

Common collector
(drain)

Y11 − (Y11 + Y12)
− (Y11 + Y21) Y11 + Y12 + Y21 + Y22

Z11 − (Z11 + Z12)
− (Z11 + Z21) Z11 + Z12 + Z21 + Z22

bipolar transistor shown in Figure 1.10(c), respectively. If the common emitter device is treated as a
two-port network characterized by four Y-parameters (Y11, Y12, Y21, and Y22), the two-port matrix of
the common collector configuration with grounded collector terminal is simply obtained by deleting
the second row and the second column in matrix Eq. (1.109). For the common base configuration
with grounded base terminal, the first row and the first column should be deleted because the emitter
terminal is considered the input terminal.

A similar approach can be applied to the indefinite three-port impedance network. This allows the
Z-parameters of the impedance matrices of the common base and the common collector configurations
through known impedance Z-parameters of the common emitter configuration of the transistor to be
determined. Parameters of the three-port network that can describe the electrical behavior of the
three-port bipolar or field-effect transistor configured with different common terminals are given in
Table 1.3.

1.6 LUMPED ELEMENTS

Generally, passive RF and microwave lumped or integrated circuits are designed based on the lumped
elements, distributed elements, or combination of both types of elements. Distributed elements repre-
sent any sections of the transmission lines of different lengths, types, and characteristic impedances.
The basic lumped elements are inductors and capacitors that are small in size in comparison with the
transmission-line wavelength λ, and usually their linear dimensions are less than λ/10 or even λ/16.
In applications where lumped elements are used, their basic advantages are small physical size and
low production cost. However, their main drawbacks are lower quality factor and power-handling
capability compared with distributed elements.

1.6.1 Inductors

Inductors are lumped elements that store energy in a magnetic field. Lumped inductors can be realized
using several different configurations, such as a short-section of a strip conductor or wire, a single
loop, or a spiral. The printed high-impedance microstrip-section inductor is usually used for low
inductance values, typically less than 2 nH, and often meandered to reduce the component size.
The printed microstrip single-loop inductors are not very popular due to their limited inductance per
unit area. The approximate expression for the microstrip short-section inductance in free space is
given by

L (nH) = 0.2 × 10−3l

[
ln

(
l

W + t

)
+ 1.193 + W + t

3l

]
Kg (1.110)
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FIGURE 1.11 Spiral inductor layouts.

where the conductor length l, conductor width W, and conductor thickness t are in microns, and the
term Kg accounts for the presence of a ground plane, defined as

Kg = 0.57 − 0.145 ln
W

h
, for

W

h
> 0.05 (1.111)

where h is the spacing from ground plane [6,7].
Spiral inductors can have a circular configuration, a rectangular (square) configuration shown in

Figure 1.11(a), or an octagonal configuration shown in Figure 1.11(b), if the technology allows 45◦

routing. The circular geometry is superior in electrical performance, whereas the rectangular shapes
are easy to lay out and fabricate. Printed inductors are based on using thin-film or thick-film Si or
GaAs fabrication processes, and the inner conductor is pulled out to connect with other circuitry
through a bondwire, an air bridge, or by using multilevel crossover metal. The general expression for
spiral inductor, which is also valid for its planar integration within accuracy of around 3%, is based
on Wheeler formula and can be obtained as

L (nH) = K1n2davg

1 + K2ρ
(1.112)

where n is the number of turns, davg = (dout + din)/2 is the average diameter, ρ = (dout + din)/(dout –
din) is the fill ratio, dout is the outer diameter in μm, din is the inner diameter in μm, and the coefficients
K1 and K2 are layout-dependent as follows: square—K1 = 2.34, K2 = 2.75; hexagonal—K1 = 2.33,
K2 = 3.82; octagonal—K1 = 2.25, K2 = 3.55 [8,9].

In contrast to the capacitors, high-quality inductors cannot be readily available in a standard
complementary metal-oxide-semiconductor (CMOS) technology. Therefore, it is necessary to use
special techniques to improve the inductor electrical performance. By using a standard CMOS tech-
nology with only two metal layers and a heavily doped substrate, the spiral inductor will have a
large series resistance, compared with three–four metal layer technologies, and the substrate losses
become a very important factor due to a relatively low resistivity of silicon. A major source of
substrate losses is the capacitive coupling when current is flowing not only through the metal strip,
but also through the silicon substrate. Another important source of substrate losses is the inductive
coupling when, due to the planar inductor structure, the magnetic field penetrates deeply into the
silicon substrate, inducing current loops and related losses. However, the latter effects are partic-
ularly important for large-area inductors and can be overcome by using silicon micromachining
techniques [10].
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FIGURE 1.12 Equivalent circuit of a square spiral inductor.

The simplified equivalent circuit for the CMOS spiral microstrip inductor is shown in Figure 1.12,
where Ls models the self and mutual inductances, Rs is the series coil resistance, Cox is the parasitic
oxide capacitance from the metal layer to the substrate, Rsi is the resistance of the conductive silicon
substrate, Csi is the silicon substrate parasitic capacitance, and Cc is the parasitic coupling capacitance
[11]. The parasitic silicon substrate capacitance Csi is sufficiently small, and in most cases it can be
neglected. Such a model shows an accurate agreement between simulated and measured data within
10% across a variety of inductor geometries and substrate dopings up to 20 GHz [12]. At frequencies
well below the inductor self-resonant frequency ωSRF, the coupling capacitance Cc between metal
segments due to fringing fields in both the dielectric and air regions can also be neglected since the
relative dielectric constant of the oxide is small enough [13]. In this case, if one side of the inductor
is grounded, the self-resonant frequency of the spiral inductor can approximately be calculated from

ωSRF = 1√
LsCox

√
Ls − R2

s Cox

Ls − R2
siCox

. (1.113)

At frequencies higher than self-resonant frequency ωSRF, the inductor exhibits a capacitive behav-
ior. The self-resonant frequency ωSRF is limited mainly by the parasitic oxide capacitance Cox, which
is inversely proportional to the oxide thickness between the metal layer and substrate. The frequency
at which the inductor quality factor Q is maximal can be obtained as

ωQ = 1√
LsCox

√
Rs

2Rsi

(√
1 + 4Rsi

3Rs
− 1

)0.5

. (1.114)

The inductor metal conductor series resistance Rs can be easily calculated at low frequencies
as the product of the sheet resistance and the number of squares of the metal trace. However, at
high frequencies, the skin effect and other magnetic field effects will cause a nonuniform current
distribution in the inductor profile. In this case, a simple increase in the diameter of the inductor metal
turn does not necessarily reduce correspondingly the inductor series resistance. For example, for the
same inductance value, the difference in resistance between the two inductors, when one of which
has a two times wider metal strip, is only a factor of 1.35 [14]. Moreover, at very high frequencies,
the largest contribution to the series resistance does not come from the longer outer turns, but from
the inner turns. This phenomenon is a result of the generation of circular eddy currents in the inner
conductors, whose direction is such that they oppose the original change in magnetic field. On the



LUMPED ELEMENTS 29

inner side of the inner turn, coil current and eddy current flow in the same direction, so the current
density is larger than average. On the outer side, both currents cancel, and the current density is
smaller than average. As a result, the current in the inner turn is pushed to the inside of the conductor.

In hybrid or monolithic applications, bondwires are used to interconnect different components
such as lumped elements, planar transmission lines, solid-state devices, and integrated circuits. These
bondwires, which are usually made of gold or aluminium, have 0.5- to 1.0-mil diameters, and their
lengths are electrically shorter compared with the operating wavelength. To characterize the electrical
behavior of the bondwires, simple formulas in terms of their inductances and series resistances
can be used. As a first-order approximation, the parasitic capacitance associated with bondwires
can be neglected. When l � d, where l is the bondwire length in μm and d is the bondwire diameter
in μm,

L (nH) = 0.2 × 10−3l

(
ln

4l

d
+ 0.5

d

l
− 1 + C

)
(1.115)

where C = 0.25 tanh (4δ/d) is the frequency-dependent correction factor, which is a function of
bondwire diameter and its material’s skin depth δ [8,15].

1.6.2 Capacitors

Capacitors are lumped elements that store energy due to an electric field between two electrodes (or
plates) when a voltage is applied across them. In this case, charge of equal magnitude but opposite
sign accumulates on the opposing capacitor plates. The capacitance depends on the area of the plates,
separation, and dielectric material between them. The basic structure of a chip capacitor shown in
Figure 1.13(a) consists of two parallel plates, each of area A = W × l and separated by a dielectric
material of thickness d and permittivity ε0εr, where ε0 is the free-space permittivity (8.85×10−12

farads/m) and εr is the relative dielectric constant.

FIGURE 1.13 Parallel capacitor topology and its equivalent circuit.
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Chip capacitors are usually used in hybrid integrated circuits when relatively high capacitance
values are required. In the parallel-plate configuration, the capacitance is commonly expressed as

C (pF) = 8.85 × 10−3εr
Wl

d
(1.116)

where W, l, and d are dimensions in millimeters. Generally, the low-frequency bypass capacitor
values are expressed in microfarads and nanofarads, high-frequency blocking and tuning capacitors
are expressed in picofarads, and parasitic or fringing capacitances are written in femtofarads. This
basic formula given by Eq. (1.116) can also be applied to capacitors based on a multilayer technique
[7]. The lumped-element equivalent circuit of a capacitor is shown in Figure 1.13(b), where Ls is the
series plate inductance, Rs is the series contact and plate resistance, and Cp is the parasitic parallel
capacitance. When C � Cp, the frequency ωSRF, at which the reactances of series elements C and Ls

become equal, is called the capacitor self-resonant frequency, and the capacitor impedance is equal
to the resistance Rs.

For monolithic applications, where relatively low capacitances (typically less than 0.5 pF) are
required, planar series capacitances in the form of microstrip or interdigital configurations can be
used. These capacitors are simply formed by gaps in the center conductor of the microstrip lines,
and they do not require any dielectric films. The gap capacitor, shown in Figure 1.14(a), can be
equivalently represented by a series coupling capacitance and two parallel fringing capacitances [16].
The interdigital capacitor is a multifinger periodic structure, as shown in Figure 1.14(b), where the
capacitance occurs across a narrow gap between thin-film transmission-line conductors [17]. These
gaps are essentially very long and folded to use a small amount of area. In this case, it is important to
keep the size of the capacitor very small relative to the wavelength, so that it can be treated as a lumped
element. A larger total width-to-length ratio results in the desired higher shunt capacitance and lower
series inductance. An approximate expression for the total capacitance of interdigital structure, with
s = W and length l less than a quarter wavelength, can be given by

C (pF) = (εr + 1) l [(N − 3) A1 + A2] (1.117)

FIGURE 1.14 Different series capacitor topologies.
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where N is the number of fingers and

A1 (pF/μm) = 4.409 tanh

[
0.55

(
h

W

)0.45
]

× 10−6 (1.118)

A2 (pF/μm) = 9.92 tanh

[
0.52

(
h

W

)0.5
]

× 10−6 (1.119)

where h is the spacing from the ground plane.
Series planar capacitors with larger values, which are called the metal-insulator-metal (MIM)

capacitors, can be realized by using an additional thin dielectric layer (typically less than 0.5 μm)
between two metal plates, as shown in Figure 1.14(c) [7]. The bottom plate of the capacitor uses
a thin unplated metal, and typically the dielectric material is silicon nitride (Si3N4) for integrated
circuits on GaAs and SiO2 for integrated circuits on Si. The top plate uses a thick-plated conductor
to reduce the loss in the capacitor. These capacitors are used to achieve higher capacitance values in
small areas (10 pF and greater), with typical tolerances from 10% to 15%. The capacitance can be
calculated according to Eq. (1.116).

1.7 TRANSMISSION LINE

Transmission lines are widely used in matching circuits in power amplifiers, in resonant and feedback
circuits in the oscillators, filters, directional couplers, power combiners, and dividers. When the
propagated signal wavelength is compared to its physical dimension, the transmission line can be
considered as a two-port network with distributed parameters, where the voltages and currents vary
in magnitude and phase over length.

Schematically, a transmission line is often represented as a two-wire line, as shown in Figure
1.15(a), where its electrical parameters are distributed along its length. The physical properties of a
transmission line are determined by four basic parameters:

1. The series inductance L due to the self-inductive phenomena of two conductors.

2. The shunt capacitance C in view of the close proximity between two conductors.

3. The series resistance R due to the finite conductivity of the conductors.

4. The shunt conductance G that is related to the dielectric losses in the material.

As a result, a transmission line of length �x represents a lumped-element circuit shown in
Figure 1.15(b), where �L, �C, �R, and �G are the series inductance, the shunt capacitance, the
series resistance, and the shunt conductance per unit length, respectively. If all these elements are
distributed uniformly along the transmission line, and their values do not depend on the chosen
position of �x, this transmission line is called the uniform transmission line. Any finite length of the
uniform transmission line can be viewed as a cascade of section length �x.

To define the distribution of the voltages and currents along the uniform transmission line, it is
necessary to write the differential equations using Kirchhoff’s voltage law for instantaneous values
of the voltages and currents in the line section of length �x, distant x from its beginning. For the
sinusoidal steady-state condition, the telegrapher equations for V(x) and I(x) are given by

d2V (x)

dx2
− γ 2V (x) = 0 (1.120)

d2 I (x)

dx2
− γ 2 I (x) = 0 (1.121)
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FIGURE 1.15 Transmission line schematics.

where γ = α + jβ = √
(�R + jω�L) (�G + jω�C) is the complex propagation constant (which

is a function of frequency), α is the attenuation constant, and β is the phase constant. The general
solutions of Eqs. (1.120) and (1.121) for voltage and current of the traveling wave in the transmission
line can be written as

V (x) = A1 exp (−γ x) + A2 exp (γ x) (1.122)

I (x) = A1

Z0
exp (−γ x) − A2

Z0
exp (γ x) (1.123)

where Z0 = √
(�R + jω�L) / (�G + jω�C) is the characteristic impedance of the transmission

line, V i = A1exp(−γ x) and V r = A2exp(γ x) represent the incident voltage and the reflected voltage,
respectively, and Ii = A1exp(−γ x)/Z0 and Ir = A2exp(γ x)/Z0 are the incident current and the reflected
current, respectively. From Eqs. (1.122) and (1.123) it follows that the characteristic impedance of the
transmission line Z0 represents the ratio of the incident (reflected) voltage to the incident (reflected)
current at any position on the line as

Z0 = Vi(x)

Ii(x)
= Vr(x)

Ir(x)
. (1.124)

For a lossless transmission line, when R = G = 0 and the voltage and current do not change
with position, the attenuation constant α = 0, the propagation constant γ = jβ = jω

√
�L�C , and

the phase constant β = ω
√

�L�C . Consequently, the characteristic impedance is reduced to Z0 =√
L/C and represents a real number. The wavelength is defined as λ = 2π /β = 2π/ω

√
�L�C and

the phase velocity as vp = ω/β = 1/
√

�L�C .
Figure 1.16 represents a transmission line of characteristic impedance Z0 terminated with a load

ZL. In this case, the constants A1 and A2 are determined at the position x = l by

V (l) = A1 exp (−γ l) + A2 exp (γ l) (1.125)

I (l) = A1

Z0
exp (−γ l) − A2

Z0
exp (γ l) (1.126)
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FIGURE 1.16 Loaded transmission line.

and equal to

A1 = V (l) + Z0 I (l)

2
exp (γ l) (1.127)

A2 = V (l) − Z0 I (l)

2
exp (−γ l) . (1.128)

As a result, wave equations for voltage V(x) and current I(x) can be rewritten as

V (x) = V (l) + Z0 I (l)

2
exp [γ (l − x)] + V (l) − Z0 I (l)

2
exp [−γ (l − x)] (1.129)

I (x) = V (l) + Z0 I (l)

2Z0
exp [γ (l − x)] − V (l) − Z0 I (l)

2Z0
exp [−γ (l − x)] (1.130)

which allows their determination at any position on the transmission line.
The voltage and current amplitudes at x = 0 as functions of the voltage and current amplitudes at

x = l can be determined from Eqs. (1.129) and (1.130) as

V (0) = V (l) + Z0 I (l)

2
exp (γ l) + V (l) − Z0 I (l)

2
exp (−γ l) (1.131)

I (0) = V (l) + Z0 I (l)

2Z0
exp (γ l) − V (l) − Z0 I (l)

2Z0
exp (−γ l) . (1.132)

By using the ratios cosh x = [exp(x) + exp(−x)]/2 and sinh x = [exp(x) − exp(−x)]/2, Eqs.
(1.131) and (1.132) can be rewritten in the form

V (0) = V (l) cosh (γ l) + Z0 I (l) sinh (γ l) (1.133)

I (0) = V (l)

Z0
sinh (γ l) + I (l) cosh (γ l) (1.134)

which represents the transmission equations of the symmetrical reciprocal two-port network expressed
through the ABCD-parameters when AD – BC = 1 and A = D. Consequently, the transmission ABCD-
matrix of the lossless transmission line with α = 0 can be given by

[ABCD] =
⎡
⎣ cos θ j Z0 sin θ

j sin θ

Z 0
cos θ

⎤
⎦ . (1.135)
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Using the formulas to transform ABCD-parameters into S-parameters yields

[S] =
[

0 exp (− jθ )
exp (− jθ ) 0

]
(1.136)

where θ = βl is the electrical length of the transmission line.
In the case of the loaded lossless transmission line, the reflection coefficient � is defined as the

ratio between the reflected voltage wave and the incident voltage wave, given at x as

�(x) = Vr

Vi
= A2

A1
exp (2 jβx) . (1.137)

By taking into account Eqs. (1.127) and (1.128), the reflection coefficient for x = l can be defined
as

� = Z − Z0

Z + Z0
(1.138)

where � represents the load reflection coefficient and Z = ZL = V(l)/I(l). If the load is mismatched,
only part of the available power from the source is delivered to the load. This power loss is called the
return loss (RL), and is calculated in decibels as

RL = −20log10 |�| . (1.139)

For a matched load when � = 0, a return loss is of ∞ dB. A total reflection with � = 1 means a
return loss of 0 dB when all incident power is reflected.

According to the general solution for voltage at a position x in the transmission line,

V (x) = Vi(x) + Vr(x) = Vi [1 + �(x)] . (1.140)

Hence, the maximum amplitude (when the incident and reflected waves are in phase) is

Vmax(x) = |Vi| [1 + |�(x)|] (1.141)

and the minimum amplitude (when these two waves are out of phase) is

Vmin(x) = |Vi| [1 − |�(x)|] . (1.142)

The ratio of Vmax to Vmin, which is a function of the reflection coefficient �, represents the voltage
standing wave ratio (VSWR). The VSWR is a measure of mismatch and can be written as

VSWR = Vmax

Vmin
= 1 + |�|

1 − |�| (1.143)

which can change from 1 to ∞ (where VSWR = 1 implies a matched load). For a load impedance
with zero imaginary part when ZL = RL, the VSWR can be calculated using VSWR = RL/Z0 when
RL ≥ Z0 and VSWR = Z0/RL when Z0 ≥ RL.

From Eqs. (1.133) and (1.134) it follows that the input impedance of the loaded lossless transmis-
sion line can be obtained as

Z in = V (0)

I (0)
= Z0

ZL + j Z0 tan (θ )

Z0 + j ZL tan (θ )
(1.144)

which gives an important dependence between the input impedance, the transmission-line parameters
(electrical length and characteristic impedance), and the arbitrary load impedance.
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1.8 TYPES OF TRANSMISSION LINES

Several types of transmission lines are available when designing RF and microwave active and passive
circuits. Coaxial lines have very high bandwidth and high power-handling capability, and are widely
used for impedance transformers and power combiners. Planar transmission lines as an evolution
of the coaxial and parallel-wire lines are compact and readily adaptable to hybrid and monolithic
integrated circuit fabrication technologies at RF and microwave frequencies [18]. If coaxial line is
deformed in such a manner that both the center and outer conductors are square or rectangular in
cross-section, and then if side walls of the rectangular coaxial system are extended to infinity, the
resultant flat-strip transmission system would have a form factor that is adaptable to the printed-circuit
technique. Similarly, if the parallel-wire line is replaced by its equivalent of a single wire and its image
in a conducting ground plane, and if this single wire is, in turn, progressively distorted into a flat strip,
the resulting transmission system is again a planar structure. There is an important aspect that differ
flat-strip transmission lines from coaxial lines. In a coaxial line, an impedance discontinuity acts as a
shunt capacitance, while a discontinuity in a flat strip has a series inductance in its equivalent circuit.
Holes and gaps in center conductor strips also represent discontinuities that can be utilized in many
applications to microwave circuitry.

1.8.1 Coaxial Line

A main type of wave propagated along a coaxial line shown in Figure 1.17 is the transverse electro-
magnetic (TEM) wave. When the transverse fields of a TEM wave are the same as the static fields that
can exist between the conductors, the electromagnetic properties of a coaxial line can be characterized
by the following parameters [19]: the shunt capacitance per unit length

C = 2πε0εr/ln

(
b

a

)
(1.145)

where a is the radius of inner conductor and b is the inner radius of outer conductor; the series
inductance per unit length

L = μ0μr

2π
ln

(
b

a

)
(1.146)

FIGURE 1.17 Coaxial line structure.
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where μ0 = 4π×10−7 H/m is the permeability of free space and μr is the relative magnetic constant
or substrate permeability; the series resistance per unit length

R = Rs

2π

(
1

b
+ 1

a

)
(1.147)

where Rs = ρ/�(f ) = √
πμ0ρ f is the surface resistivity, ρ is the metallization electrical resistivity,

�(f ) is the penetration depth, and f is the frequency; the shunt conductance per unit length

G = 2πσ/ln

(
b

a

)
= 2πωεoεr tanδ/ln

(
b

a

)
(1.148)

where σ is the dielectric conductivity and tanδ is the dielectric loss tangent; the characteristic
impedance

Z0 = η

2π
ln

(
b

a

)
(1.149)

where η = √
μ/ε is the wave impedance of the lossless coaxial line identical to the intrinsic impedance

of the medium.
The conductor loss factor (in Np/m) can be written as

αc = R

2Z0
(1.150)

whereas the dielectric loss factor (in Np/m) can be written as

αd = G Z0

2
= ση

2
= π

√
εr

tanδ

λ
(1.151)

where λ is the free-space wavelength.

1.8.2 Stripline

The geometry of a commonly used stripline is shown in Figure 1.18. The strip conductor of width W
is placed between two flat dielectric substrates with the same dielectric constant. The outer surfaces
of these substrates are metallized and serve as a ground conductor. In practice, the strip conductor
is etched on one of the dielectric substrates by photolithography process. Since the stripline has two
conductors and a homogeneous dielectric, it can support a pure TEM propagation mode, which is the
usual mode of operation. The advantages of striplines are good electromagnetic shielding and low
attenuation losses, which make them suitable for high-Q and low-interference applications. However,
striplines require strong symmetry that makes their tuning complicated due to difficult access to
center conductor. As a result, the stripline structure is not convenient for incorporating chip elements
and associated bias circuitry.

The exact expression for the characteristic impedance of a lossless stripline of zero thickness is
given by

Z0 = 30π√
εr

K (k)

K (k ′)
(1.152)
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FIGURE 1.18 Stripline structure.

where

K (k) =
π/2∫
0

dϕ√
1 − k2sin2ϕ

(1.153)

is the complete elliptic integral of the first kind, k = sech (πW/2b), and k ′ = √
1 − k2 [20,21].

An expression for the ratio K(k)/K(k′) can be simplified to

K (k)

K (k ′)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

π/ln

(
2

1 + √
k ′

1 − √
k ′

)
for 0 ≤ k ≤ 1√

2

1

π
ln

(
2

1 + √
k

1 − √
k

)
for

1√
2

≤ k ≤ 1

(1.154)

which provides the relative error lower than 3 × 10−6 [22].
In practice, it makes sense to use a sufficiently simple formula without complicated special

functions [23]. In this case, the formula for Z0 can be written within 1% of the exact results as

Z0 = 30π√
εr

b

We + 0.441b
(1.155)

where We is the effective width of the center conductor defined by

We

b
= W

b
−

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for
W

b
> 0.35b

(
0.35 − W

b

)2

for
W

b
< 0.35b

. (1.156)

For a stripline with a TEM propagation mode, the dielectric loss factor αd is the same as for
coaxial line, which is determined by Eq. (1.151). An approximation result for the conductor loss
factor αc (in Np/m) can be obtained by

αc =

⎧⎪⎪⎨
⎪⎪⎩

A
2.7 × 10−3 Rsεr Z0

30π (b − t)
for Z0

√
εr < 120

B
0.16Rs

Z0bπ
for Z0

√
εr > 120

(1.157)
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FIGURE 1.19 Stripline characteristic impedance versus W/b.

with

A = 1 + 2W

b − t
+ 1

π

b + t

b − t
ln

2b − t

t
(1.158)

B = 1 + b

0.5W + 0.7t

(
0.5 + 0.414t

W
+ 1

2π
ln

4πW

t

)
(1.159)

where t is the thickness of the strip [4].
Figure 1.19 shows the characteristic impedance Z0 of a stripline as a function of the normalized

strip width W/b for various εr according to Eqs. (1.155) and (1.156). Typical values of the main
electrical and thermal properties of some substrate materials are listed in Table 1.4.

TABLE 1.4 Electrical and Thermal Properties of Substrate Materials.

Typical Substrate
Dielectric Constant,

εr @ 10 GHz
Loss Tangent,

tanδ @ 10 GHz
Coefficient of Thermal
Expansion (ppm/◦C)

Alumina 99.5% 9.8 0.0003 6.7
Aluminum nitride 8.7 0.001 4.5
Barium tetratitanade 37 0.0002 8.3
Beryllia 99.5% 6.6 0.0003 7.5
Epoxy glass FR-4 4.7 0.01 3.0
Fused quartz 3.78 0.0001 0.5
Gallium arsenide 13.1 0.0006 6.5
Silicon 11.7 0.004 4.2
Teflon 2.5 0.0008 15
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1.8.3 Microstrip Line

In a microstrip line, the grounded metallization surface covers only one side of dielectric substrate,
as shown in Figure 1.20. Such a configuration is equivalent to a pair-wire system for the image of the
conductor in the ground plane which produces the required symmetry [24]. In this case, the electric
and magnetic field lines are located in both the dielectric region between the strip conductor and
the ground plane and in the air region above the substrate. As a result, the electromagnetic wave
propagated along a microstrip line is not a pure TEM, since the phase velocities in these two regions
are not the same. However, in a quasistatic approximation, which gives sufficiently accurate results as
long as the height of the dielectric substrate is very small compared with the wavelength, it is possible
to obtain the explicit analytical expressions for the electrical characteristics. Since microstrip line is
an open structure, it has a major fabrication advantage over the stripline due to simplicity of practical
realization, interconnection, and adjustments.

The exact expression for the characteristic impedance of a lossless microstrip line with finite strip
thickness is given by [25,26]

Z0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

60√
εre

ln

(
8h

We
+ We

4h

)
for

W

h
≤ 1

120π√
εre

[
We

h
+ 1.393 + 0.667 ln

(
We

h
+ 1.444

)]−1

for
W

h
≥ 1

(1.160)

where

We

h
= W

h
+ �W

h
(1.161)

�W

h
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1.25

π

t

h

(
1 + ln

4πW

t

)
for

W

h
≤ 1/2π

1.25

π

t

h

(
1 + ln

2h

t

)
for

W

h
≥ 1/2π

(1.162)

εre = εr + 1

2
+ εr − 1

2

1√
1 + 12h/W

− εr − 1

4.6

t

h

√
h

W
. (1.163)

Figure 1.21 shows the characteristic impedance Z0 of a microstrip line with zero strip thickness
as a function of the normalized strip width W/h for various εr according to Eqs. (1.160) to (1.163).

FIGURE 1.20 Microstrip line structure.
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FIGURE 1.21 Microstrip characteristic impedance versus W/h.

In practice, it is possible to use a sufficiently simple formula to estimate the characteristic
impedance Z0 of a microstrip line with zero strip thickness written as [27]

Z0 = 120π√
εr

h

W

1

1 + 1.735ε−0.0724
r (W/h)−0.836 . (1.164)

For a microstrip line in a quasi-TEM approximation, the conductor loss factor αc (in Np/m) as a
function of the microstrip-line geometry can be obtained by

αc =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1.38A
Rs

h Z0

32 − (We/h)2

32 + (We/h)2 for
W

h
≤ 1

6.1 · 10−5 A
Rs Z0εre

h

(
We

h
+ 0.667 We/h

1.444 + We/h

)
for

W

h
≥ 1

(1.165)

with

A = 1 + h

We

(
1 + 1

π
ln

2B

t

)
(1.166)

B =

⎧⎪⎪⎨
⎪⎪⎩

2πW for
W

h
≤ 1/2π

h for
W

h
≥ 1/2π

(1.167)

where We/h is given by Eqs. (1.161) and (1.162) [28].
The dielectric loss factor αd (in Np/m) can be calculated by

αd = 27.3
εr

εr − 1

εre − 1√
εre

tanδ

λ
. (1.168)

Conductor loss is a result of several factors related to the metallic material composing the ground
plane and walls, among which are conductivity, skin effect, and surface ruggedness. For most mi-
crostrip lines (except some kinds of semiconductor substrate such as silicon), the conductor loss is
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TABLE 1.5 Electrical Resistivity of Conductor Materials.

Material Symbol
Electrical Resistivity

(μ� cm) Material Symbol
Electrical Resistivity

(μ� cm)

Aluminum Al 2.65 Palladium Pd 10.69
Copper Cu 1.67 Platinum Pt 10.62
Gold Au 2.44 Silver Ag 1.59
Indium In 15.52 Tantalum Ta 15.52
Iron Fe 9.66 Tin Sn 11.55
Lead Pb 21.0 Titanium Ti 55.0
Molybdenum Mo 5.69 Tungsten W 5.6
Nickel Ni 8.71 Zinc Zn 5.68

much more significant than the dielectric loss. The conductor losses increase with increasing char-
acteristic impedance due to greater resistance of narrow strips. The electrical resistivity of some
conductor materials is given in Table 1.5.

1.8.4 Slotline

Slotlines are usually used when it is necessary to realize a high value of the characteristic impedance
Z0 [29,30]. A slotline is dual to a microstrip line and represents a narrow slot between two conductive
surfaces, one of which is grounded. Changing the width of the slot can easily change the characteristic
impedance of the slotline. The transverse electric H-mode wave propagates along the slotline. Three
basic types of slotlines are unilateral, antipodal, and bilateral. The geometry of a unilateral slotline
is shown in Figure 1.22, with a narrow gap in the conductive coating on one side of the dielectric
substrate and being bare on the other side of substrate. Slotline can be used either alone or with
microstrip line on the opposite side of substrate.

It is difficult to provide exact analytical expressions to calculate the slotline parameters. However,
an equation for Z0 can be obtained for a quasi-TEM approximation with zero conductor thickness
and infinite width of the entire slotline system as

for 0.02 ≤ W/h ≤ 0.2

Z0 = 72.62 − 15.283 lnεr + 50

(
1 − 0.02

h

W

)(
W

h
− 0.1

)
+ (19.23 − 3.693 lnεr) ln

(
102 W

h

)

−
(

11.4 − 2.636 lnεr − 102 h

λ

)2

×
[

0.139 lnεr − 0.11 + W

h
(0.465 lnεr + 1.44)

]
(1.169)

FIGURE 1.22 Slotline structure.
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FIGURE 1.23 Slotline characteristic impedance versus W/h.

for 0.2 ≤ W/h ≤ 1.0

Z0 = 113.19 − 23.257 lnεr + 1.25
W

h
(114.59 − 22.531 lnεr) + 20

(
1 − W

h

)(
W

h
− 0.2

)

−
[

0.15 + 0.1 lnεr + W

h
(0.899 lnεr − 0.79)

]

×
[

10.25 − 2.171 lnεr + W

h
(2.1 − 0.617 lnεr) − 102 h

λ

]2

(1.170)

where 0.01 ≤ h/λ ≤ 0.25/
√

εr − 1 and λ is the free-space wavelength [31].
Figure 1.23 shows the characteristic impedance Z0 of a slotline within the error of 2% as a function

of the normalized slot width W/h for h/λ = 0.02 and various εr = 9.7, 11, 12, . . . , 20 calculated by
Eqs. (1.169) and (1.170).

1.8.5 Coplanar Waveguide

A coplanar waveguide (CPW) is similar in structure to a slotline, the only difference being a third
conductor centered in the slot region. The center strip conductor and two outer grounded conductors
lie in the same plane on substrate surface, as shown in Figure 1.24 [32,33]. A coplanar configuration
has some advantages such as low dispersion, ease of attaching shunt and series circuit components, no
need for via holes, or simple realization of short-circuited ends, which makes a coplanar waveguide
suitable for hybrid and monolithic integrated circuits. In contrast to the microstrip and stripline, the
coplanar waveguide has shielding between adjacent lines that creates a better isolation between them.
However, like microstrip and stripline, the coplanar waveguide can be also described by a quasi-TEM
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FIGURE 1.24 Coplanar waveguide structure.

approximation for both numerical and analytical calculations. Because of the high dielectric constant
of the substrate, most of the RF energy is stored in the dielectric and the loading effect of the grounded
cover is negligible if it is more than two slot widths away from the surface. Similarly, the thickness
of the dielectric substrate with higher relative dielectric constants is not so critical, and practically it
should be one or two times the width W of the slots.

The approximate expression of the characteristic impedance Z0 for zero metal thickness which is
satisfactory accurate in a wide range of substrate thicknesses can be written as

Z0 = 30π√
εre

K (k ′)
K (k)

(1.171)

where

εre = 1 + εr − 1

2

K (k ′)
K (k)

K (k1)

K
(
k ′

1

) (1.172)

k = s/(s + 2W ), k1 = (sinh πs/4h)/(sinh π (s + 2W )/4h), k ′ = √
1 − k2, k ′

1 =
√

1 − k2
1 , and K is

the complete elliptic integral of the first kind [34]. The values of ratios K(k)/K(k′) and K(k1)/K(k ′
1) can

be defined from Eq. (1.154). Figure 1.25 shows the characteristic impedance Z0 of a coplanar waveg-
uide as a function of the parameter s/(s + 2W) for various εr according to Eqs. (1.171) and (1.172).

FIGURE 1.25 Coplanar waveguide characteristic impedance versus s/(s + 2W).
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1.9 NOISE

The electrical performance of RF and microwave transmitters of different applications can be affected
by many factors, with the effect of noise as one of the most fundamental. In this case, it is necessary
to keep the ratio of average (or peak) signal power to average noise power so large that the noise in
a transmitter path has no harmful effects on overall system performance. Several basic approaches
can provide this where it is possible, such as powerful transmitters and high-gain antennas to develop
large signals at the receiver input, stabilized oscillators with minimum phase noise, power amplifier
and mixer circuits so that they introduce a minimum amount of additional noise when processing
signals, and modulation and coding schemes that facilitate the separation of signal and noise.

1.9.1 Noise Sources

There are several primary noise sources in the electrical circuit. Thermal or white noise is created by
random motion of charge carriers due to thermal excitation, being always found in any conducting
medium whose temperature is above absolute zero whatever the nature of the conduction process or
the nature of the mobile charge carriers [35]. This random motion of carriers creates a fluctuating
voltage on the terminals of each resistive element which increases with temperature. However, if
the average value of such a voltage is zero, then the noise power on its terminal is not zero being
proportional to the resistance of the conductor and to its absolute temperature. The resistor as a
thermal noise source can be represented by either of the noise sources shown in Figure 1.26. The
noise voltage source and noise current source can be respectively described by Nyquist equations
through their mean-square noise voltage and noise current values as

e2
n = 4kT R� f (1.173)

i2
n = 4kT � f

R
(1.174)

where k = 1.38 × 10−23 J/K is the Boltzmann constant, T is the absolute temperature, and kT = 4 ×
10−21 W/Hz = −174 dBm/Hz at ambient temperature T = 290 K. The thermal noise is proportional
to the frequency bandwidth �f , and it can be represented by the voltage source in series with resistor
R, or by the current source in parallel to the resistor R. The maximum noise power can be delivered to
the load when R = RL, where RL is the load resistance, being equal to kT�f . Hence, the noise power
density when the noise power is normalized by �f is independent of frequency and is considered as
white noise. The root-mean-square noise voltage and current are proportional to the square root of
the frequency bandwidth �f .

Shot noise is associated with the carrier injection through the device p-n junction, being generated
by the movement of individual electrons within the current flow. In each forward biased junction,

FIGURE 1.26 Equivalent circuits to represent thermal noise sources.
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there is a potential barrier that can be overcome by the carriers with higher thermal energy. Such a
process is random and mean-square noise current can be given by

i2
n = 2q I� f (1.175)

where q is the electron charge and I is the direct current flowing through the p-n junction. The shot
noise depends on the thermal energy of the carriers near the potential barrier and its power density
is independent of frequency. It has essentially a flat spectral distribution and can be treated as the
thermal or white type of noise with current source i2

n connected in parallel to the small-signal junction
resistance. In a voltage noise representation, when the noise voltage source is connected in series
with such a resistor, it can be written as

e2
n = 2kT r� f (1.176)

where r = kT/qI is the junction resistance.
Circuits containing more than one resistor can be analyzed by reducing their number to the only

one (Thevenin) equivalent resistance to obtain the mean-square noise voltage in the form of Eq.
(1.173) [36]. As an example, the noise equivalent of a circuit shown in Figure 1.27(a), where a
signal source VS is driving a hypothetical noise-free load resistor Rin (which can be considered an
input of the power amplifier) through three noise resistors R1, R2, and R3, is a noise voltage source
e2

n = 2kT RT� f connected in series with an ideal (noise-free) resistor equal to the Thevenin resistance
RT, as shown in Figure 1.27(b).

Consider now a simple parallel RC circuit shown in Figure 1.28(a), where the thermal noise due
to the parallel resistor is represented by a parallel noise current source in. Nyquist has determined the
thermal noise output of a two-port network containing both resistive and reactive elements, as shown
in Figure 1.28(b). In this case, the mean-square thermal noise voltage is given by

e2
n = 4kT

∫
� f

R ( f ) d f (1.177)

FIGURE 1.27 Circuit with three resistors and its equivalent with noise voltage source.
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FIGURE 1.28 Noise characterization of two-port RC network.

where integration is performed over the frequency bandwidth of interest �f and

R ( f ) = R

1 + (2π f C R)2 (1.178)

is the real part of the output circuit impedance at frequency f .
Hence, the parallel current noise source can be equivalently transformed to the series noise voltage

source by integration over infinite frequency bandwidth with the total mean-square noise voltage given
by

e2
n = 4kT

2π

∞∫
0

Rdω

1 + (ωC R)2 =2kT R

π

∞∫
0

dω

1 + (ωC R)2 = kT

C
(1.179)

where the resistance R has no effect on the noise voltage which depends on the value of the capacitance
C and temperature T only [36,37].

1.9.2 Noise Figure

It is well-known that any linear noisy two-port network can be represented as a noise-free two-port
part with noise sources at the input and the output connected in different way [38,39]. For example,
the noisy linear two-port network with internal noise sources shown in Figure 1.29(a) can be redrawn,
either in the impedance form with external series voltage noise sources shown in Figure 1.29(b) or in
the admittance form with external parallel current noise sources shown in Figure 1.29(c).

However, to fully describe the noise properties of the two-port network at fixed frequency, some-
times it is convenient to represent it through the noise-free two-port part and the noise sources
equivalently located at the input. Such a circuit is equivalent to the configurations with noise sources
located at the input and the output [40]. In this case, it is enough to use four parameters: the noise
spectral densities of both noise sources and the real and imaginary parts of its correlation spectral
density. These four parameters can be defined by measurements at the two-port network terminals.
The two-port network current and voltage amplitudes are related to each other through a system of
two linear algebraic equations. By taking into account the noise sources at the input and the output,
these equations in the impedance and admittance forms can be respectively written as

V1 = Z11 I1 + Z12 I2 − Vn1 (1.180)

V2 = Z21 I1 + Z22 I2 − Vn2 (1.181)
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FIGURE 1.29 Linear two-port network with noise sources.

and

I1 = Y11V1 + Y12V2 − In1 (1.182)

I2 = Y21V1 + Y22V2 − In2 (1.183)

where the voltage and current noise amplitudes represent the Fourier transforms of noise fluctuations.
The equivalent two-port network with voltage and current noise sources located at its input is

shown in Figure 1.30(a), where [Y] is the two-port network admittance matrix and ratios between
current and voltage amplitudes can be written as

I1 = Y11 (V1 + Vni) + Y12V2 − Ini (1.184)

I2 = Y21 (V1 + Vni) + Y22V2. (1.185)
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FIGURE 1.30 Linear two-port network with noise sources at input.

From comparison of Eqs. (1.182) and (1.183) with Eqs. (1.184) and (1.185) it follows that

Vni = − In2

Y21
(1.186)

Ini = In1 − Y11

Y21
In2 (1.187)

representing the relationships between the current noise sources at the input and the output corre-
sponding to the circuit shown in Figure 1.29(c) and the voltage and current noise sources at the input
only corresponding to the circuit shown in Figure 1.30(a). In this case, Eqs. (1.186) and (1.187)
are valid only if Y21 �= 0 that always takes place in practice. Similar equations can be written for
the circuit with the series noise voltage source followed by a parallel noise current source shown in
Figure 1.30(b) in terms of impedance Z-parameters to represent the relationships between the voltage
noise sources at the input and the output corresponding to the circuit shown in Figure 1.29(b). The
use of voltage and current noise sources at the input enables the combination of all internal two-port
network noise sources.

To evaluate the quality of a two-port network, it is important to know the amount of noise added
to a signal passing through it. Usually, this can be done by introducing an important parameter such
as a noise figure or noise factor. The noise figure of the two-port network is intended as an indication
of its noisiness. The lower the noise figure, the less is the noise contributed by the two-port network.
The noise figure is defined as

F = Sin/Nin

Sout/Nout
(1.188)

where Sin/N in is the signal-to-noise ratio available at the input and Sout/Nout is the signal-to-noise ratio
available at the output.
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For a two-port network characterizing by the available power gain GA, the noise figure can be
rewritten as

F = Sin/Nin

GA Sin/GA(Nin + Nadd)
= 1 + Nadd

Nin
(1.189)

where Nadd is the additional noise power added by the two-port network referred to the input. From
Eq. (1.189) it follows that the noise figure depends on the source impedance ZS shown in Figure
1.31(a), but not on the circuit connected to the output of the two-port network.

Hence, if the two-port network is driven from the source with impedance ZS = RS + jXS, the noise
figure F of this two-port network in terms of the model shown in Figure 1.31(b) with input voltage
and current noise sources and noise-free two-port network can be obtained by

F = 1 + |en + ZSin|2
4kT RS� f

= 1 + Rn + |ZS|2 Gn + 2
√

RnGnRe (C ZS)

RS
(1.190)

FIGURE 1.31 Linear two-port networks to calculate noise figure.
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where

Rn = e2
ni

4kT � f
(1.191)

is the equivalent input-referred noise resistance corresponding to the noise voltage source,

Gn = i2
ni

4kT � f
(1.192)

is the equivalent input-referred noise conductance corresponding to the noise current source, and

C = inie∗
ni√

i2
nie

2
ni

(1.193)

is the correlation coefficient representing a complex number less than or equal to unity in magnitude
[39]. Here, Gn and Rn generally do not represent the particular circuit immitances but depend on the
bias level resulting in a dependence of the noise figure on the operating bias point of the active device.

As the source impedance ZS is varied over all values with positive RS, the noise figure F has a
minimum value of

Fmin = 1 + 2
√

RnGn

[√
1 − (ImC)2 + ReC

]
(1.194)

which occurs for the optimum source impedance ZSopt = RSopt + jXSopt given by

∣∣ZSopt

∣∣2 = Rn

Gn
(1.195)

XSopt =
√

Rn

Gn
ImC. (1.196)

As a result, the noise figure F for the input impedance ZS which is not optimum can be expressed
in terms of Fmin as

F = Fmin + ∣∣ZS − ZSopt

∣∣2 Gn

RS
= Fmin +

[(
RS − RSopt

)2 + (XS − XSopt

)2] Gn

RS
. (1.197)

Similarly, the noise figure F can be equivalently expressed using a model shown in Figure 1.31(c)
with source admittance YS = GS + jBS as

F = Fmin + ∣∣YS − YSopt

∣∣2 Rn

GS
= Fmin +

[(
GS − GSopt

)2 + (BS − BSopt

)2] Rn

GS
(1.198)

where Fmin is the minimum noise figure of the two-port network which can be realized with respect
to the source admittance YS, YSopt = GSopt + jBSopt is the optimal source admittance, and Rn is the
equivalent noise resistance which measures how rapidly the noise figure degrades when the source
admittance YS deviates from its optimum value YSopt [41]. Since the admittance YS is generally
complex, then its real and imaginary parts can be controlled independently. To obtain the minimum
value of the noise figure, the two matching conditions of GS = GSopt and BS = BSopt must be satisfied.

The physical interpretation of the noise sources which are assumed to be stationary random pro-
cesses is given by their self- and cross-power spectral densities which are defined as the Fourier
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transform of their auto- and cross-correlation function. These spectral densities in two-port matrix
form leads to the so-called correlation matrices with their admittance, impedance, or chain repre-
sentations [42]. The correlation matrix C belonging to the noise sources sn1 and sn2 can be written
as

C = 1

� f

[
sn1s∗

n1 sn1s∗
n2

sn2s∗
n1 sn2s∗

n2

]
(1.199)

where the asterisk denotes the complex conjugate. For example, the admittance correlation matrix
for the circuit shown in Figure 1.29 (c) with two parallel current noise sources is obtained as

CY = 1

� f

[
in1i∗

n1 in1i∗
n2

in2i∗
n1 in2i∗

n2

]
. (1.200)

Determination of the noise correlation matrix is based on the following procedure:

� Each element in the diagonal matrix is equal to the sum of the noise current of each element
connected to the corresponding node: the first diagonal element is the sum of noise currents
connected to the node 1, while the second diagonal element is the sum of noise currents
connected to node 2.

� The off-diagonal elements are the negative noise current of the element connected to the pair
of the corresponding node; therefore, a noise current source between nodes 1 and 2 goes into
the matrix at locations (1, 2) and (2, 1).

� If a noise current source is grounded, it will only contribute to one entry in the noise correlation
matrix—at the appropriate location on the diagonal; if it is not grounded, it will contribute
to four entries in the matrix—two diagonal entries corresponding to the two nodes and two
off-diagonal entries.

By applying these rules for the circuit with two current noise sources shown in Figure 1.32, the
admittance noise correlation matrix CY can be defined as

CY = 1

� f

[
i2
n1 −i2

n1

−i2
n1 i2

n1 + i2
n2

]
. (1.201)

FIGURE 1.32 Circuit with two noise current sources.
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To form the impedance noise correlation matrix with voltage noise sources, we can write

CZ = 1

� f

[
en1e∗

n1 en1e∗
n2

en2e∗
n1 en2e∗

n2

]
= [Z ] [CY] [Z ]T (1.202)

where [Z] is the impedance Z-matrix of the two-port network and T denotes the Hermitian or
transposed conjugation.

In the case where the correlation matrix cannot be theoretically derived, the measurements can
be used for its determination. Such measurements are usually done by defining the equivalent noise
resistance Rn, the optimal source admittance YSopt, and the minimum noise figure Fmin. As a result,
the chain representation of the noise correlation matrix is obtained as

CA = 4kT

⎡
⎢⎢⎣

Rn
Fmin − 1

2
− RnYSopt

Fmin − 1

2
− RnY ∗

Sopt Rn

∣∣YSopt

∣∣2
⎤
⎥⎥⎦ (1.203)

where T is the absolute temperature [42]. If the correlation matrix has been determined, the noise
parameters can be calculated analytically from

Rn = CA
11

4kT
(1.204)

YSopt =
√

CA
22

CA
11

− Im2

(
CA

12

CA
11

)
− jIm

(
CA

12

CA
11

)
(1.205)

Fmin = 1 + CA
12 + CA

11YSopt

2kT
. (1.206)

where CA
11, CA

12, CA
21, and CA

22 are the elements of the chain correlation matrix CA.
In a multistage transmitter system, the input signal travels through a cascade of many different

components, each of which may degrade the signal-to-noise ratio to some degree. For a cascade of
two stages having available gains GA1 and GA2 and noise figures F1 and F2, using Eq. (1.189) results
in the output-to-input noise power ratio Nout/N in written as

Nout

Nin
= GA2

[
GA1

(
1 + Nadd1

Nin

)
+ Nadd2

Nin

]
= GA1GA2

(
F1 + F2 − 1

GA1

)
(1.207)

where Nadd1 and Nadd2 are the additional noise powers added by the first and second stages, respectively.
Consequently, an overall noise figure F1,2 for a two-stage system based on Eq. (1.188) can be given
by

F1,2 = F1 + 1

GA1
(F2 − 1) . (1.208)

Eq. (1.208) can be generalized to a multistage transmitter system with n stages as

F1,n = F1 + F2 − 1

GA1
+ · · · + Fn − 1

GA1GA2 . . . GA(n−1)
(1.209)

which means that the noise figure of the first stage has the predominant effect on the overall noise
figure, unless GA1 is small or F2 is large [43].
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1.9.3 Flicker Noise

The flicker or 1/f noise is a low-frequency noise associated with a fluctuation in the conductance with
a power spectral density proportional to f −γ , where γ = 1.0 ± 0.1 in a wide frequency range, usually
measured from 1 Hz to 10 kHz [44]. Its spectrum cannot be exactly f −1 at offset frequencies from
f = 0 to f → ∞, since neither the integral over the power density nor the Fourier transform would
be able to have finite values. Unlike the thermal or shot noise sources, the origin of the 1/f noise is
not exactly clear and open to debate despite its predictable behavior. Generally, it is a result of both
surface and bulk effects in the semiconductor material and is not generated by the current. In series
experiments it was shown that there is a type of 1/f noise that is a fluctuation in the carrier mobility
due to lattice scattering.

Significant contribution to the low-frequency noise is made by the generation-recombination and
burst noises [45]. The generation-recombination noise associated with the fluctuations in the number
of the carriers rather than their mobility is due to trap centers within the bandgap of a semiconductor.
It may have any frequency behavior between f 0 and f −2. If not masked by thermal noise, the low-
frequency noise generated from these trap centers becomes f −2 at very high frequencies. However,
if the lifetime of the carriers in the semiconductor is finite, the noise spectral density reaches a
plateau at very low frequencies. Burst noise (random telegraph noise) is a special kind of generation-
recombination noise due to a single trap in the active device region. It is often observed in submicron
devices or in devices with very poor crystalline quality. In such devices, a trap level with certain
energy and at a specific location in the active device region (a single localized trap) traps and detraps
the carriers causing an on-off time-dependent signal similar to a telegraph signal [46].

The physical origin of a low-frequency 1/f noise for any type of the metal-oxide-semiconductor
field-effect transistor (MOSFET) devices including CMOS transistors is based on two dominant
processes: random fluctuation of the carriers in the channel due to fluctuations in the surface potential
caused by trapping and releasing of the carriers by traps located near the Si–SiO2 interface, and
mobility fluctuations due to carrier interactions with lattice fluctuations [47]. However, for a CMOS
transistor depending on its type, one effect can prevail over the other. For example, flicker noise
in n-channel devices is mostly attributed to carrier number fluctuations, while flicker noise in p-
channel devices is often attributed to mobility fluctuations. It was observed that pMOS transistors
have significantly lower 1/f noise than nMOS transistors of the same size and fabricated with the
same CMOS process (by one order of magnitude or more). This is because, when an n+-polysilicon
gate layer is used for both the nMOS and pMOS devices, nMOS transistors have a surface channel
while pMOS transistors have a buried channel [48].
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