
Part I

ActionScript 3.0
Language Basics

IN THIS PART

Chapter 1
Introducing ActionScript 3.0

Chapter 2
ActionScript 3.0 Language
Basics

Chapter 3
Functions and Methods

Chapter 4
Object-Oriented Programming

Chapter 5
Validating Your ProgramCO
PYRIG

HTED
 M

ATERIA
L





Introducing
ActionScript 3.0

In this chapter you’ll look at what ActionScript is, where you can use it, and
what you can do with it. You’ll learn where ActionScript fits in the grand
scheme of the Flash Platform, and you’ll take a complete tour of the tools

and technologies involved therein.

What Is ActionScript 3.0?
You may well already know the answer to this question, because you had enough
interest in it to buy this book! ActionScript 3.0 is the language used to program
interactive Flash content. Where this content goes and how you can build it is
the subject of the following section.

ActionScript 3.0 is a well-organized, mature language that shares much of its
syntax and methodologies with other object oriented, strongly typed languages,
so an experienced programmer can readily pick it up. Don’t fear, though, for this
book introduces ActionScript from the bottom up and starts gently.

If you’ve used Flash before but never ActionScript, you might know that you can
build content for Flash Player without ActionScript — but without ActionScript,
Flash is just an animation tool (though, admittedly, a good one). ActionScript is
necessary when you want to create Flash content that is highly dynamic, respon-
sive, reusable, and customizable. Here’s just a short list of the many things you
can accomplish using ActionScript:

� Loading images

� Playing audio and video

� Drawing programmatically

� Loading data such as XML files

� Responding to user events such as mouse clicks

3



Part I: ActionScript 3.0 Language Basics

To get the most out of the Flash Platform, you’re gonna need ActionScript 3.0. And as you learn what
it can do, you’ll be amazed at its power. But let’s look at how ActionScript fits into the Flash universe.

Exploring the Flash Platform
The wild world of Flash is by no means small, and wrapping your head around ActionScript and all
the technologies related to it is challenging. Even if you don’t know all the latest technologies in the
peripheries, it’s essential that you know major parts of the Flash Platform and how they work together.
Defining that term and what it encompasses will be the goal of this section.

You’ll examine the different parts of the Flash Platform from the perspectives of you building content
and the user getting and running content. I’ll define and discuss the tools, languages, platforms, and
runtimes involved in the process. Figure 1-1 shows a bird’s-eye view of the Flash Platform.

FIGURE 1-1

A high-level overview of the Flash Platform

ActionScript

API

Compiler

Runtime

Platform

Library
package { 
 class Smiley {
 }
}

Flash
Player

Box2D

mxmlc

SWF

SWF

Flash Player 10, plugin

Windows Vista

internet

Intel x86

use

use

Delivery & Execution

Development
Sprite

Timer

CircleShape

You, the programmer, write in a computer programming language, ActionScript 3.0. You use tools, like
Flash Builder, and specifically a compiler, to convert your code into an executable, in this case a SWF.

4



Chapter 1: Introducing ActionScript 3.0

The SWF is delivered to the end user on her platform and executes inside a runtime, usually Flash
Player, of which there are many versions. Let’s break this down.

A Programmer’s Perspective
For all the ways that the Flash Platform is unique, it shares the same basic steps as most programming
environments. You write code in a language using some kind of editor, tool, or integrated develop-
ment environment, and you use a compiler to convert that code into a file that can be run on the
target environment.

Language
A computer programming language defines the grammar and lexicon that you’ll be working in to cre-
ate beautiful code. ActionScript 3.0, Python, Java, Lua, and C# are different languages. They all look
different and have different rules for what you type where, what words are reserved, how to loop and
how to write comments, and even where you can and can’t put spaces. ActionScript 3.0 is not the
same language as ActionScript 2.0, and neither is ActionScript 1.0.

ActionScript 3.0 has some features in common with modern JavaScript, because both are designed to
adhere to specifications of a family of languages called ECMAScript. At the time of writing, this fact is
little more than a curiosity, because most JavaScript in use is written to a baseline standard far behind
the kind of JavaScript that starts to look like ActionScript 3.0. Furthermore, adherence to ECMAScript
standards has provided little visible benefit, and progress marches on. In general, ActionScript 3.0
looks most like Java or C#. Coming to ActionScript 3.0 from either of these languages, or Action-
Script 2.0, should be a fairly smooth ride. In this second edition, I’ve removed any emphasis put on
transitioning from ActionScript 2.0 to ActionScript 3.0.

I’ll describe some features of the language here. This might help some of you who have several lan-
guages under your belts already and can benefit from a description of ActionScript 3.0. If you don’t
understand any of these terms, please don’t fret! The rest of this Part exists to investigate these quali-
ties of the language in depth.

ActionScript 3.0 can use both dynamic and strong typing, but the compiler, the language, this book,
and most of the world want you to use it with strong typing. If you want to live in a dynamic world,
you can do so by turning off strict mode in your compiler or development environment. Action-
Script 3.0 is an object oriented language that makes heavy use of namespaces. It has facilities for
reflection. It embodies some elements of functional programming.

Maybe it goes without saying, but ActionScript 3.0 is the primary language used in the Flash universe.
However, it’s not the only one.

Depending on the platform and runtime you’re targeting — that is to say, where, on what device, and
on what software you want your content to run — you might use another language that this book is
not about. I’ll get into this more once you look at the platforms and runtimes that exist in the Flash
universe. But rest assured that ActionScript 3.0 is the way to go for the Flash Platform right now. Most
other options are for older technology.

There’s another language that’s a big part of the Flash Platform, and that’s MXML. MXML is a declar-
ative XML language used to program Flex. The interesting thing is that MXML compiles into Action-
Script 3.0 during building. It’s also used interchangeably with ActionScript 3.0. I won’t discuss MXML
or Flex in this book, but because Flex is a superset of Flash, this book provides an excellent, maybe
prerequisite, background for any Flex developer.

Mixed into ActionScript 3.0 are several microlanguages, tailor-made for solving specific kinds of prob-
lems more efficiently than the grammar of ActionScript 3.0 would allow. Technically, these are part of

5



Part I: ActionScript 3.0 Language Basics

the ActionScript 3.0 language specification, but when you use them you can tell instantly that another
dialect is being spoken. These are E4X, a language for manipulating XML; regular expressions, a lan-
guage for searching for and manipulating patterns of text; and XML itself, a way to store hierarchical
information. Furthermore, there are closely associated languages, like Pixel Bender language, used to
write Pixel Bender shaders. Although this language can’t be written directly into ActionScript 3.0 code
like E4X, it is necessary to use some of Flash Player’s features. All of these languages are important
parts of Flash Platform development and cannot be ignored by an ActionScript 3.0 developer.

There are two major points of confusion when speaking about the ActionScript 3.0 language. First is
the fact that ActionScript 3.0 can change, and has changed, without changes to that little ‘‘3.0’’ num-
ber sitting in its title. It’s a living language, and it’s being developed even as you read this book. (Hello
readers from the future! Have we learned how to speak to dolphins yet or what?) So how can Action-
Script 3.0 change? Well, there are two ends that have to agree: the compiler has to make something
out of your code, and the runtime has to be able to run what the compiler makes. But the fact is,
all it takes is for the compiler to change to support a change in the language. Both can be modified
at the same time, or the compiler only could change, to allow for alterations in the language. The
compiler is the most important because it’s the only part of the entire Flash Platform that sees actual
ActionScript 3.0 source. This kind of change has already happened. The compiler shipped in Flash
CS4, Flash Builder, and in newer builds of the Flex SDK supports syntax for parameterized types that
you’ll see in Chapter 9, ‘‘Vectors.’’ This syntax, TypeA.<TypeB>, looks like utter rubbish to an older
ActionScript 3.0 compiler like that in Flash CS3, yet it is (now) part of ActionScript 3.0. We sim-
ply have to be careful. The second point of confusion when speaking about ActionScript 3.0 is the
difference between ActionScript 3.0 and the Flash Player API.

API
Where a language determines keywords (like for, class, and is), syntax (like where to put curly
braces), and grammar (like how subexpressions are evaluated and what can and can’t go on the left
side of an assignment), it’s really the Application Programming Interface, or API, that gets most of the
work done. It’s easy to confuse these two, so let’s untangle them once and for all.

The language by itself can’t do much of anything. Without an API it’s little more than a glorified
calculator. You can do operations like creating variables, assigning values, summing up things, and
concatenating strings; you can even create classes and functions. That said, there’s a whole lot to
learn about the language itself, and you could in theory make it through the end of Part II, ‘‘Core
ActionScript 3.0 Data Types,’’ before using any of the Flash Player API, if you keep your eyes closed
strategically. It’s the runtime (Flash Player or AIR) that provides most of the exciting stuff the Flash
Platform has to offer: graphics, sound, animation, networking, video, and so on. None of this is built
into the language.

You can draw an analogy between programming languages and spoken or written languages. It’s nec-
essary to understand the grammar and pronunciation of a language, but that alone is not sufficient for
communication. You need a rich vocabulary, and that’s what the API provides.

If you don’t mind skipping ahead to some topics discussed in Chapter 4, ‘‘Object Oriented Program-
ming,’’ an easy way to determine what’s part of the core language and what’s part of the API is to look
at how it’s namespaced. Any classes and functions in the default package are part of the language, like
Error, XML, int, and Number. Anything in the flash.* package and its subpackages is part of the
Flash Player API, like flash.display.Sprite and flash.geom.Matrix3D. The Flash Player
API is a library of classes and functions that get real stuff done.

Each runtime you target when building a program has its own API associated with it. In this book,
I’ll only cover the Flash Player runtime (specifically only versions 9 and up) and the Flash Player API.

6



Chapter 1: Introducing ActionScript 3.0

There is one more runtime I could potentially target: the AIR runtime. The good thing about the AIR
API is that it’s a superset of the Flash Player API. In other words, if you want to build AIR apps, every-
thing you learn in this book will be applicable, and much will be necessary.

The runtime and the API it supports are fundamentally linked. Adobe engineers add new features
into new versions of the Flash Player (the runtime) and simultaneously expose those features to pro-
grammers through additions to the Flash Player API. Changes to the API are far more frequent than
changes to the language. That’s why, in this book, I note when topics I discussed are particular to a
certain version of the API.

Libraries
The Flash Player API is a staggeringly large collection of classes and methods that help you make
interesting things happen on the screen, as the weight of this book attests to. But the brilliant thing
about code is its extensibility. For every ability that the Flash Player API enables, there are dozens of
ways that people have taken advantage of it to build something more complicated or make some task
easier. And many of these people have been so kind as to share their hard-written code with the world
(although a few do expect compensation).

When you build applications for the Flash platform, in addition to using the Flash Player API — a
given — you can use any number of other libraries, leveraging their capabilities to pull off some
impressive feats without breaking a sweat yourself. My favorite libraries include tweening libraries
that let you animate things about the screen with a single line of code; physics engines that let you
simulate collisions, friction, gravity, and other forces; 3D engines that let you present 3D objects and
scenes; loading libraries that let you streamline the slightly annoying process of getting several types
of assets loaded into a larger application; and data structure libraries that provide optimized storage
for specific purposes.

A library is simply a collection of code that you can use. Sometimes you have the actual Action-
Script 3.0 code that makes it up, and sometimes you use a precompiled binary (a SWC). In either
case, you use libraries like you use the API. You create and access classes that they contain to get the
job done. Libraries extend your programming toolbox with new, usually job-specific tools. In fact,
the API is itself a library; what makes it special is that it’s built into the runtime.

Because there are as many libraries as there are stars in the sky, I only mention them when there’s a
specific task that developers overwhelmingly use a library to accomplish, and in this case I’ll just give
a quick description of the library and let you know where you can find more information.

Compilers, Tools, and IDEs
There’s one critical piece in this puzzle I haven’t covered yet. ActionScript 3.0 code is text. You write
it down in plaintext files. But to get from plaintext files to something you can actually run — in
this case a SWF — you have to compile it. To put it simply, compiling translates the text of a
program — the source code — into a simpler language that the runtime can run directly. We speak
and understand human languages like English and French. Your computer speaks a certain instruction
set that depends on what processor is inside it. It would be quite painful to program directly in
the computer’s language. (Some people come close by programming in assembly languages.) And
it would be quite difficult and imprecise to have the computer interpret meanings from a regular,
spoken language. So we have computer languages to bridge this gap — and compilers to translate.
Unlike translating spoken languages, there can be no ambiguity in the compiler’s translation.
If the compiler doesn’t understand the code you’ve written or believes it’s incorrect, it fails to
compile. You’ll learn to recognize and deal with compiler errors in Chapter 5, ‘‘Validating Your
Program.’’

7



Part I: ActionScript 3.0 Language Basics

So how do you use these compilers, and where do you obtain them? This all depends on the develop-
ment environment you set up for yourself. In the Flash universe, most of the available versions of the
ActionScript 3.0 compiler are integrated tightly with some tool.

The tools and Integrated Development Environments, or IDEs, you’re likely to come across are

� Adobe Flash Builder

� Adobe Flash Professional

� FlashDevelop

� FDT

In addition, there are free and open-source versions of the Flex SDK available for download from
Adobe. These toolchains are not IDEs, but they contain a compiler. All the tools in the previous list
are either integrated with their own compiler or integrate tightly with a copy of the Flex SDK that you
provide or that comes bundled with it. Because of the tight integration between these tools and the
compiler, you may not even be aware of the compiler. For example, when you choose Publish or Test
Movie in Flash, you invoke Flash’s ActionScript compiler. With the default settings in Flash Builder,
the compiler is invoked every time you save a file!

For every tool in this list but Flash, the compilers used are part of Adobe’s Flex SDK, which comes
in both free and open-source flavors. You can get the latest and greatest versions of these at no cost
at http://opensource.adobe.com/. Specifically, these come with five major compilers: mxmlc
to compile MXML and ActionScript 3.0; asc to compile ActionScript 3.0; fsch, a shell for repeated
compilation; compc to compile SWCs instead of SWFs; and adl to compile and package AIR
applications.

Source code is just text, so you can write it with any text editor you like. But because it’s structured
code, you can use tools to help you write this code faster and with fewer errors. IDEs, like Flash
Builder, give you intelligent tools for writing ActionScript 3.0 code; searching it; discovering rela-
tionships between parts of the code; auto-completing your typing; exploring files; searching through
projects; renaming classes, methods, and variables; and more. Possibly the most powerful feature of
a good IDE, however, is its integration of an interactive debugger, which you can see how to use
in Chapter 25, ‘‘Using the AVM2 Debugger and Profiler.’’ Using an IDE makes a programmer’s life
much better, but you can always fall back on using a text editor to write ActionScript 3.0 source
code and running mxmlc yourself. It’s entirely up to you to decide what tools to use in your devel-
opment environment. Personally, I recommend that you use Flash Builder if you’re going to follow
along with the book. I recommend against using Flash Professional for any serious ActionScript 3.0
programming.

Once you’ve compiled your ActionScript 3.0 program, you’ll end up with a SWF file.

SWFs
A SWF file, or simply ‘‘a SWF,’’ is an efficient, compressed binary file that can contain graphics, ani-
mation, text, bitmaps, sounds, video, and even arbitrary data. Most importantly for us, it also contains
compiled ActionScript. The main purpose of a SWF is to get the stuff into the world (possibly across
the great expanses of the internet, and onto the screens of your users) that we, as programmers, create.
The end consumer of a SWF file is the Flash Player runtime.

I mentioned one other runtime: the AIR runtime. When compiling AIR apps, an .air file is gener-
ated, but even this is a package that contains SWFs for its executable ActionScript code.

8



Chapter 1: Introducing ActionScript 3.0

Flex
I’ve tiptoed around Flex up until this point. Many newcomers to the Flash Platform are confused by
Flex versus Flash, often with respect to the naming of certain products. Let’s clear the air here.

Flex is two things. Primarily, it’s a big, well-designed library for developing Rich Internet Applications,
or RIAs. RIA is something of a vague buzzword encompassing programs that live on the internet and
have some of the features once reserved for desktop applications: widgets like scrollbars to scroll, but-
tons and tabs to click, flippers to flip, and so on; multiple screens and transitions; display of tables
and data. The Flex framework is a library that contains all these widgets, the ability to skin them, lots
of code for easily connecting to web services, and more. As a library, it adds on to the capabilities of
the Flash Player API, not replaces them. Furthermore, the end product of a program that uses Flex is a
SWF, just like any other SWF, and it runs in Flash Player just like any other SWF. The only difference
is that when you use the Flex framework, that SWF either contains or references the Flex framework
library.

The second major component of Flex is a declarative XML language called MXML. This is a sepa-
rate language from ActionScript 3.0, although when you compile a project with a Flex compiler, it is
converted into ActionScript 3.0 code — and it coexists happily with ActionScript 3.0 code.

I won’t cover either the Flex API or MXML in this book. However, it’s important to know that Flex is
still based in ActionScript and can be built targeting the same Flash Player runtimes. Because the Flex
framework is a library built on top of ActionScript 3.0 and the Flash Player API, what you will learn
in this book is indispensable for Flex development.

Note
A word about the use of the word ‘‘Flex’’ in product names: Flash Builder 4 is the successor to Flex Builder
3. Both of these tools can be equally well used to build either Flash or Flex applications, which the change of
name is meant to emphasize. You’ll also see the term ‘‘Flex’’ in the Flex SDK. The truth is that the Flex SDK
bundles all you’ll need to compile and package Flash, Flex, and AIR applications. �

In Short
Let’s quickly put back together the programmer’s experience with the Flash Platform, in a typical
example. You open your IDE, Flash Builder. You start writing code in the ActionScript 3.0 lan-
guage and use classes from the Flash Player API. You choose Run from the menu, and Flash Builder
builds and runs your program, compiling all your ActionScript 3.0 code into a SWF and opening that
SWF in Flash Player.

A User’s Perspective
One of the biggest benefits of programming for the Flash Platform is that your content can be easily
run in so many places for so many users. The two runtimes, Flash Player and AIR, are widely sup-
ported on multiple platforms.

Runtimes
A runtime is an environment in which a program executes. The runtime provides all the services nec-
essary to do the things that the API promised were available. In the Flash Player API, you can create
an instance of Camera to gain access to a connected webcam; the Flash Player runtime has to deal
with the potentially complex task of finding the connected hardware and pulling a video stream from

9



Part I: ActionScript 3.0 Language Basics

it. In ActionScript 3.0 and the Flash Player API, you can programmatically draw graphics; it’s up to
the Flash Player runtime to render those graphics and work with the operating system to display them
on-screen.

I’ve mentioned two runtimes: AIR and Flash Player. AIR, because it’s a runtime made for desktop
applications, contains additional capabilities, such as rendering web pages and spawning new win-
dows in the user’s operating system. Another runtime in the Flash universe, Flash Lite, is a somewhat
dated environment for mobile and embedded devices. It doesn’t support ActionScript 3.0, so I won’t
waste time on it. I’ll only cover the Flash Player runtime here.

Platforms and Platform Independence
A platform is considered a combination of the hardware and operating system in use. More specif-
ically, it is the instruction set of the CPU that matters to the platform, although these are mostly
standardized. Users who want to run Flash content (stuff made with ActionScript 3.0 and the Flash
Player API) must be able to run Flash Player on their platform.

At the time of writing, Flash Player 10 is supported on PCs with x86 processors running Windows
98 and up; Macs with PowerPC (G3, G4) or Intel processors running OS X 10.4 and up; PCs with
x86 processors running several flavors of Linux including Red Hat, SUSE, and Ubuntu; and systems
with x86 or SPARC processors running Solaris 10. Notably, at the time of writing, 64-bit processors
are not supported, but commercially used 64-bit processors have no problem running in 32-bit mode,
so I can still use Flash Player on my desktop’s screaming Core i7 processor (which may be stone age
by the time you read this). Also, at the time of writing, Flash Player 10.1 is planned to roll out on
multiple mobile devices, including the latest Android OS and Palm webOS. In addition, there are
other exotic Flash Player runtimes for platforms. For example, a PlayStation 3 with updated firmware
has a Flash Player runtime on par with Flash Player 9.

In any case, that whole paragraph just means this: almost everyone can get access to the Flash Player
runtime. One of the great things about the Flash Platform is that it’s platform independent. It doesn’t
matter what kind of computer you use to compile your program: the resulting SWF file is completely
indifferent to where it was born and where it’s going. It’s simply a binary file, and anyone who knows
how to read and interpret it may do so, just like, say, a JPG image file. The other component of plat-
form independence is that it doesn’t matter what platform your user is on; users on different platforms
are able to run the same SWF and see the same outcome.

This model of platform independence is just the same as Java’s. Once Java code is compiled, it can be
sent anywhere and run on any platform — that is, any platform where a Java Runtime Environment is
available. Contrast this with traditional software development or game development, where a product
is made for one platform and must be significantly reprogrammed or, at minimum, recompiled to be
available on another platform. And considering that Flash content is widely distributed on the internet,
the benefit of platform independence is clear. As the programmer, you don’t want to have to make one
SWF for every platform, and the users don’t want to have to choose their platform every time they
view a web page with Flash content.

The Flash Player Zoo
You’ve already seen that the Flash Player is available on different platforms. It also comes in several
flavors and a plethora of versions.

There is a standalone Flash Player used to run SWF files from a user’s computer. This can be bundled
with a SWF to generate an executable that launches Flash Player and the bundled content at the same
time. This is a Flash Player projector. Most common, there are the plug-in Flash Players that operate
inside your browser to host Flash content in a web page. (On PCs these come in both ActiveX plug-in
and Netscape plug-in varieties.)

10



Chapter 1: Introducing ActionScript 3.0

Furthermore, all these flavors of Flash Player are available in debugger versions. You can learn more
about the debugger versions in Chapter 24, ‘‘Errors and Exceptions.’’

Finally, there are lots of versions of Flash Player in existence. The major version of Flash Player is
most important (for example, Flash Player 9 or Flash Player 10). The minor versions and revision
numbers appear after the major version number, such as in Flash Player 10.0.22.87. In general, major
versions introduce suites of new features, and minor revisions are mostly bug fixes and performance
enhancements, although some feature changes creep in.

When you compile ActionScript 3.0 code, you can target a specific major version of Flash Player,
because as I mentioned earlier, every version of Flash Player is tied to the Flash Player API for that
version. All ActionScript 3.0 code is compiled to target Flash Player 9 at a minimum.

The good news is that you don’t need to worry about the differences between all the flavors of Flash
Player. The same SWF will work in Flash Player of the same version of every platform, no matter if
it’s the standalone version or the plug-in version, and no matter what browser the plug-in version is
being hosted by.

In Short
Here you see a typical user’s interaction with the Flash Platform. The user downloads or upgrades to
Flash Player 10. She opens Firefox on her Mac and navigates to a page with Flash content. Behind the
scenes, her browser downloads the SWF file from the internet and runs the plug-in version of Flash
Player 10, and the Flash Player runs the content of the SWF. End result: she sees the Flash content
hosted in the web page.

From ActionScript 2.0 to ActionScript 3.0
If you’ve programmed in ActionScript 2.0 before, ActionScript 3.0 has a whole lot of new features
for you to explore. Here is an overview of the key new features. You may skip this section if you are
coming to ActionScript 3.0 from a different language.

Display List
In ActionScript 2.0, there were three basic types of objects that could be displayed: movie clips,
buttons, and text fields. These types didn’t inherit from a common source, meaning polymorphism
didn’t work for these display types. Furthermore, instances of these display types always had a fixed,
parent-child relationship with other instances. For example, to create a movie clip, you had to create
that movie clip as a child of an existing movie clip. It was not possible to move a movie clip from one
parent to another.

In ActionScript 3.0 there are many new display types. In addition to the familiar types such as movie
clips, buttons, and text fields, you’ll now find new types such as shapes, sprites, loaders, bitmaps, and
more. All display types in ActionScript 3.0 inherit from flash.display.DisplayObject, allow-
ing you to use them interchangeably in many cases. Furthermore, display objects in ActionScript 3.0
can be constructed independent of any other display object, and these objects can be associated as
children of other display objects and even moved from one parent container to another. In other
words, you can create a text field in ActionScript 3.0 simply by calling the constructor, and that text
field will exist independent of any parent container object.

var text:TextField = new TextField();

11



Part I: ActionScript 3.0 Language Basics

You can then add the text field to a parent container at any time. The following example illustrates
this with a display object called container, which could be a sprite or any other display object con-
tainer type:

container.addChild(text);

Note
In the preceding example, container is used as a generic variable name that would presumably refer to an
object created elsewhere in the code. �

The hierarchy of parent containers and their children is known as the display list in ActionScript 3.0.

Runtime Errors
ActionScript 3.0 provides many new runtime errors. This is an important new feature because it allows
you to diagnose problems much more quickly. In ActionScript 2.0, when an error occurred at run-
time, it would frequently occur silently, and it would be difficult for you as the developer to determine
what the problem was. With improved runtime errors and error reporting in the debug player, it is
now much easier to debug ActionScript 3.0 applications than it was with ActionScript 2.0.

Runtime Data Types
Strict typing in ActionScript 2.0 was only used by the compiler, not at runtime. At runtime, all Action-
Script 2.0 types are dynamic. However, in ActionScript 3.0, strict typing is preserved at runtime as
well. The advantage is that now runtime data mismatches are reported as errors, and application per-
formance and memory management are improved as a result of preserved typing at runtime.

Method Closures
In ActionScript 3.0 all methods have proper method closures, which means that a reference to
a method always includes the object from which the method was originally referenced. This is
important for event handling, and it stands in stark contrast to method closures in ActionScript 2.0.
In ActionScript 2.0, when you reference a method, the object from which the method is referenced
does not persist. This causes problems, most notably when adding event listeners. In ActionScript 2.0,
a delegate is often used as a solution. However, in ActionScript 3.0, delegates are not necessary.

Intrinsic Event Model
In ActionScript 3.0, the event model is built into the core language. Many native ActionScript classes,
including all the display object types, inherit from the flash.events.EventDispatcher class.
This means that there is one standard way to dispatch and handle events in ActionScript 3.0.

Regular Expressions
Regular expressions are a powerful way to find substrings that match patterns. ActionScript 3.0
includes an intrinsic RegExp class, which allows you to run regular expressions natively in
Flash Player.

E4X
E4X is short for ECMAScript for XML, and it is a new way to work with XML data in ActionScript.
Although you can still work with XML as you did in ActionScript 2.0 by traversing the DOM, E4X
allows you to work with XML in a much more speedy and intuitive manner.

12



Chapter 1: Introducing ActionScript 3.0

Summary

� AS3 is used to program interactive content for the Flash Platform.

� AS3 is object oriented and usually strongly typed, and it supports dynamic types.

� The Flash Platform encompasses languages, APIs, tools and IDEs, compilers, and the Flash
Player and AIR runtimes.

� AS3 is the principal language used for Flash; MXML turns into AS3.

� Without the Flash Player API, you can’t do much with AS3.

� The API is tightly tied to the runtime. This book is about ActionScript 3.0 and the Flash
Player API.

� There are many tools for building Flash content. Most rely on the ActionScript compilers in the
Flex SDK.

� You compile your ActionScript code to produce a SWF.

� SWFs are portable, compressed, and platform independent. They contain compiled code and
other resources.

� SWFs are consumed by Flash Player.

� Flash Player comes on many platforms in many different flavors.

� All a user needs to run your Flash content is a compatible version of Flash Player.

13




