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Introduction to Ecological Modeling

In ecology we want to quantify theories about population growth, animal behav-
ior, life historics, environmental influences, and so on. A mathematical model
is an analytical statement that quantifies and explains a certain phenomencn
or observation.

1.1 Mathematical Models

By a mathematical model we usually mean an equation, or set of equations,
or some other relationships that describe some phenomenon that we observe
in science, engineering, economics, or some other area, that provides a quan-
titative prediction of observations. By mathematical modeling we mean
the proecess by which we formulate and analyze model equations and compare
observations to the predictions that the models makes. This process includes
introducing the important and relevant quantitics or variables involved in the
model; making model-specific assumptions about those quantities; solving the
model equations, if possible; comparing the solutions to real data, and inter-
preting the rosults. Often, the solution method involves computer simulation
or approximation. The comparison to data may lead to revision and refinement
until we are satisfied that the model describes the phenomenon accurately and is
predictive of similar observations, This process is depicted schematically in Fig.
1.1. In summary, mathematical modeling involves physical intuitien, formula-
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Figure 1.1 Schematic of the modcling process.

tion of equations, solution techniques, analysis, and tests of validity. A good
mathematical model is simple, applies to many sitnations, and is predictive.
Stated in a different way, in the modeling process the overarching objective is
to make sense of the natural world as we observe it, by inventing caricatures of
reality. Seientific exactness is sometimes sacrificed for mathematical traciabil-
ity. Models help us clarify verbal descriptions of nature and the mechanisms
that make up natural laws, and they help us determine which processes are
important and which are unimportant.

One issue is the level of complexity of a model. With modern computer
technology it is tempting to build complicated models that include every pos-
sible effect we can think of, with large numbers of parameters and variables,
Simulation models {also called agent-based models) like these have their place,
but computer output does not always allow us to discern which are the im-
portant processes and which are not. In building a model, it is nsually a good
idea to err on the side of simplicity and then build in complexity as nceded or
desired.

Mathematical models are classified in several ways: stochastic vs. determin-
istic, continuous vs. discrete, static vs. dynamic, quantitative vs. qualitative,
descriptive vs. explanatory, and so on. In this book we are interested in model-
ing the underlying reasons for the phenomena we observe {explanatory) rather
than fitting the data with formulas (descriptive) as is often done in statistics.
For example, fitting measurements of the size of an animal over its lifctime by
a regresgion curve is descriptive, and it gives some information. But describing
the dynamics of growth by a differential equation relating growth rates, food
assimilation rates, and energy malintenance requirements tells more about the
underlying processes involved.

The reader i3 alrcady familiar with many mathematical models. For exam-
ple. in an elementary science course we learn that Newton's second law, F' = ma
(force cquals mass times acceleration), governs mechanical systems, The law of
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mass action in chemistry describes how fast chemical reactions oceur, and the
logistics equation models growth and competition in a population.

The first step in the modeling process is to select relevant variables (inde-
pendent and dependent) and parameters that describe the problem. Biolegical
quantities have dimensions such as time, mass, and degrees, or correspond-
ing units such as seconds, kilograms, and degrees Celsius. The equations we
write down as models must be dimensionally correct. Apples cannot equal or-
anges. Verifying that each term in a model equation has the same dimensions
is the first task in obtaining a correct model. We should always be aware of
the dimensions of the quantities, both variables and parameters, and we should
always try to identify the biological meaning of the terms in the equations we
obtain. Another general rule is always to allow the biclogical issues to drive the
mathematics, not vice versa.

Example 1.1

Suppose that we want to know how fast a certain species of fish grow. One
strategy s to go to the lab and every few days measure the length of each
member of a cohort of newly hatched eggs. We can record at each time the
average length L of the fish and plot the data points en a set of time-length,
tL, axes. These data points are shown as pluses in Fig. 1.2. Then we can fit a
curve to the data that has the same shape as the data. For example, we might
determine constants ¢ and b for which the curve

L=01-e (1.1)

fits the data. Equation (1.1} is a satistactory model for the growth, It is a
descriptive model that explains how the growth occurs, but it gives no clue
as to why it ocecurs in this way. An ezplanatory model, on the other hand, is
a model that provides reasons for the shape of the growth curve. That is, it
gives mechanisms that explain the growth. In this case, as we observe later, the
explanatory model is a differential equation which states that the growth rate is
equal 10 the rate at which nutrients are assimilated minus the rate at which they
are used for body maintenance and respiration. Out of this explanatory model
comes equation (1.1) automatically; and there iz an underlying mechanisin
based on energetics that tells us why the growth occurs in the way it does. O

Example 1.2

MATLAB has simple commands to plot curves. Let us consider the two growth
formulas Ly = 5(1 — e7%%) and L, = 8(1 — 7%} for times 0 < ¢ < 10. We
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Figure 1.2 A set of data points {+} and a curve of the form L = b{1 —~ ¢,
a,b > 0, that fits the data. Such a curve, which is a descriptive model, can be
found by regression, which is discussed in a later section.

can use MATLAB to plot these curves on the same axces using the commands

t=0:0.05:10;
L1=5%(1-exp(-0.5%t});
L2=8*(1-exp(-0.5*%t));
plot{t,L1,t,L2)

The comrmand plot(t,L1) graphs just a single curve. To make two plots side by
side, use the subplot command:

subplot(1,2,1), plot(t,L1)
subplot(1,2,2), plot(t,1.2)

The command subplot{n,m,p) creates an n x m array of plots, putting the
current plot in the pth position. O

EXERCISES

1. Suppose that a marine animal essentially has a spherical shape with radius
r. If it assimilates nutrients at a rate proportional to its surface area, and
if it uses nutrients at a rate proportional to its volume, what would be its
size {radius) if its intake and use rates are in balance?

2. Darlington’s rule is a descriptive model that relates the number of specics $
of birds on an island of area A (mi?) near a mainland. The rule is S = cA®,
where ¢ and b are constants found by fitting the curve to data. For example,
in the West Indies, ¢ = 8.76 and b= 0.113.

(a) Plot the West, Indies model on the A5 axes (with A the abscissa, or
horizontal axis}. Then plot the model on a set of log A, log & axes,
where the logarithm is base 10.
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(b} Can you give reasons why the curve has the shape it hag?

3. The immigration rate of bird species (species per time) from a mainland to
an offshore island is L,(1 — S/ P), where I, is the maximum immigration
rate, P is the size of the source pool of species on the mainland, and 9 is
the namber of species already occupying the island. Further, the extinction
rate is ES/P, where E is the maximum extinction rate. The growth rate
of the number of species on the island is the immigration rate minus the
extinction rate.

{a} Plot the immigration and extinction rates vs. S, and determine the
number of species for which the net rate of growth is zero, or the
rmumber of species is in equilibrium. (This exercise requires generic plots
of functions. A generic plot is a plot of the form of the equation,
regardless of what the constants may be. For example, we know that
y = mx + b plots as a straight line regardless of m and b, so a generic
plot is just a straight line. We could indicate on the plot, if possible,
what the constants tnean; for example, b is the y intercept.)

{b) Suppose that two islands of the same size are at different distances
from the mainland. Birds arrive from the source pool, and they have
the same extinction rate on each island. However, the maximum im-
migration rate is larger for the island farther away. Which island will
have the larger number of species at equilibrium?

4. If a herbivore enters a patch where food has density F (items per area),
one can model the rate of comsumption ¢ (items per time), the rate at
which food items are eaten, by the equation

adF
O — (1.2)
1+ ardF
where a is the search rate of the herbivore (area per time), d is the fraction
of the food items discovered of those present, and 7 is the time it takes
to consume a single item. This equation, called a type II functional
response, will be derived later.

{a) Make a table of the quantities in model (1.2} and indicate the dimen-
sions of each as well as a suitable set of units for a field mouse hunting
for small edible food items.

(b) What is the shape of the graph of C vs. F for F' taking on all positive
values? At what value of C does the rate sqturate as F' gets vory large?
What is the ecological meaning of this saturation value? Why is this
response an example of a law of diminishing returns?
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(c) At what food density is the consumption rate half its saturation value?

{d)} The risk of any one food item being consumed is R = C/F. What are
the dimensions of R? What is the shape of the graph of the risk R vs,
F7

{e) If the fraction d of items discovered is a linear function of food density
F (ie.,d=~F) find C as a function of F' and plot the shape of the
curve. This model for C is called a type III functional response.
What are the dimnensions of the proportionality constant 7

(f) A simple consumption rate where there is no handling time is the linear
rate, C' = adF, which is called a type I functional response. Sketch
this consumption rate and the risk vs. F.

{(g) Contrast the shapes of the three consumption curves as well as the
shapes of the associated curves for risk.

{(h) Discuss situations where these responses might be appropriate or in-
appropriate.

1.2 Rates of Change

There are two fundamental concepts in calculus, the derivative and the integral.
In this section we review key ideas about the derivative. Derivatives allow
us to calculate how fast certain quantities, such as population, temperature,
and growth, are changing. The derivative is also the slope of the tangent line
to a curve at a point, and it perinits us to approximate the curve near that
point with a straight line. GGoing one step further, we discuss the higher-order
approximations given by Taylor polynomials.

The derivative of a quantity measures how fast the quantity is changing
with respect to another quantity, which is usually time. If ¢ is time and the
quantity y is a function of ¢, we write

¥= f(t)s (1.3)

where f is the name of the function. For definiteness, think of ¥ as being a
population, or numbers of animals in a given region. A word about notation—
when there is no confusion, we sometimes write (1.3) as y = y{t), using the
same letter to denote the quantity, or dependent variable, and the name of the
function. Often, the right side of (1.3} is given by a specific formula.

At a certain fized value of time, t = #3, we can ask how fast the population
¥y is changing at that instant. The answer is given by the derivative, which we
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Figure 1.3 Generic plot of a function y = f{#) and a tangent line at a time
t. The slope of the tangent line at the poiut (¢, f({)) is the derivative, and its
value measures how fast the function is changing at that instant.

denote by f’'(t;). Graphically, the derivative measurcs the slope of the tangent
line to the graph of y = f{ty) at the point (ty, f(to)}, as shown in Fig. 1.3. The
slope measures how fast the quantity, in this case the population y, is changing.
Clearly, we can consider the slope of the tangent line at any arbitrary value
t, which is f’(¢). Thus, we can regard the derivative itself as a function of ¢
If the derivative is large, the slope is steep and ¥ is changing rapidly, and if
the derivative is small, the slope is shallow and y is changing slowly. If the
derivative is positive at a value t = a, f'{a) > 0 and the graph of f must be
rising at that instant; and if the derivative of f is negative at a tine ¢ = ¢,
f'{c) < 0 and the graph is decreasing. or falling, at that time. If f'(b) = 0,
the graph of f is flat at (b, f(b)), possibly signaling a maximum or a minimum
value of the population. See Fig. 1.4.
Another common notation for the derivative f'(t) is

' dy .
fi) = pre (1.4)
This notation is suggestive that the derivative is a ratio of dy and df, where dy is
an infinitesimally sinall change in population and d¢ is an infinitesimally small
change in time. This is clarified below. Thinking in this way, the derivative
has dimensions of population per time. The derivative is called the rate of
change, measuring how fast the quantity y, in this case, population, is changing
instantanecusly at a fixed time ¢. Many of the laws of biclogy are expressed in
terins of rates, or derivatives. These often arise as differential equations, which
are equations that relate an unknown function to its rates.
It is important to understand how the derivative is defined. Let us fix an
instant of time ty and ask how much the population changes from tp to g + A,
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f®)=0

! f1(©)<0

Figure 1.4 A fumction y = f{#) will have a positive derivative at times where
the function is increasing, and a negative derivative at times where the function
is decreasing. At a point were the function has a Jocal maximum (or a local
minimum}, the derivative, or slope, is zero.

where A is a small amount of time. The actual change is f(ty + k) — f{t), so
the average change in the population over this interval is
Flto + 1) — £(to)

average change = P’ . (1.5)

Geometrically, on the graph of y = f{#), this average change is the slope of the
line connecting the two points (%o, (o)) and {#5 + b, f(ty + h)). The derivative
is the limiting value of the average change as the interval of time h approaches
zero. In symbols,

Flto + 1) — flio)

h ' (16)

"to) = Li
fte) = lim
Notice that if h is very small,

flto + h) — flto)

h 1
which means that the derivative is approximated by the average change over a
very small interval of time. Rewriting this cxpression with £ = ¢y + k gives

F6) = ftte) + £ (toh (L7

This important equation states that the actual population f(¢) at time ¢ = f+h
can be approximated by the population ai time #g, provided that we know the
derivative, or how fast the population is changing, at time ¢5. The right side
of expression (1.7) is called the linear approximation or linearization, and
it tmplies that the curve ¥y = f(¢) can be approximated near a fixed time #
by the tangent line through the point (¢4, f{to)). The right side of (1.7), using
h=1t—ty, 8 flto) + f'{t0)(t — ta}, which is the equation of a straight line.

f'{to) =
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If y = N(t) represents a population, we say that N'() is the growth rate.
It measures how fast the population is changing. The relafive growth rate, or
per capita growth rate, is defined by the ratio

N

N (18)

per capita growth rate =
The per capita growth rate, which has units of time~!, measures how fast the
population is changing relative to the current value of the population. To say
that the growth rate of a population is 3% and the per capita growth rate is
3% is to say two very different things. Really, saying that a population grew
3% actually says very little. Is it a large change in the population? Is it a small
change?

1.2.1 Taylor Polynomials

The approximation of f(f) at a value t = @ by its lincarization {a straight line)
can be improved by including higher-order derivatives. The linear approxima-
tion, which we denote by

Pi(t) = fla) + f'(a)(t —a),

agrees with both f(e) and f'{a) at the value t = a, and it approximates f{t)
near t = a. To get more accuracy, we can also require the approximation to
have the same conecavity at ¢ = 4. Recall that the concavity is measured by the
second derivative. Therefore, let us try a parabolic approximation and define

Pa(t) = fla) + f(a){t - a) + calt — a)?,

where ¢g is to be determined so that P'(a) = f”(a). By direct differentiation
we get Py'(a) = 2co. So we choose ¢z = 4 f”{a). Then

Pit) = (@) + @) — )+ 307~ ),

which is a quadratic, or parabolic, approximation. To do even better, we
can try to add a cubic term to make the third derivatives equal also. So, let

Pylt) = $(0) + f/(a)(t = o) + 5. (@)(6 — ) +est — )"

Requiring that P{"{a) = f""(a) forces Pi’(a) = 3 2c3 = f"{a), which means
that e3 = 1/(2-3)f"(a}. Therefore,

s @) - a)

Py(t) = fla) + F/(@)(t o) + 37" (@)(t — 0 + 5
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which is called the cubic approximation. We can continue this process in-
definitely, assuming that f has the required derivatives, to obiain

Pu(t) = f(a) + J/(@)(t ~ a) + 5 "(a)(t ~ a)’ + 5= " (@)t — @)
ot M @) o),

where f™(a) denotes the nth derivative of f at ¢ = a. These approximating
polynomials, Py {t}, Pa(t), Ps(t). ..., Pa(t), are called the Taylor polynomials.
These polynomials approximate f(t} for values ¢ near { = @; generally, the
higher the degree of polynomial, the more accurate the approximation and the
larger the interval over which the approximation is good. As an aside; we define
Fy(t) = f(a), which is a constant function.

Example 1.3

Let f(t}) = Int. Find a cubic approximation to Int at ¢ = 1. We need the
derivatives of fatt=1;

f) =1t f) =1, 1B =~ 7=

+3

Here ¢ = 1, and therefore
f)y=wl=0, fi(1)=1, f"(1)=-1, f"(1)=2

Therefore, the cubic approximation is

Pilt) = (1) + F0(E = 1) + 577000~ 1P + 55 (D)1

:(t—l)—%{t—l)2+%(t*1)3.

We urge the reader to use a caleulator and plot both f(£) = Int and P3(¢) on the
same set of axes. For example, we can approximate In 1.5 by F3(1.5) = 0.4167.
The actual value is ln 1.5 = (1.4055, so we make an error of magnitude 0.0112.
O

One can show {see most calculus texts) that the exact error in the Taylor
approximation P, (t} at £ involves the ncxi-higher derivative of f and is given
by

1
(r 4+ 1)!

error — f{fn—}—l] ((‘)(f _ a)-n+1,
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where the (n + 1)st derivative of f is evaluated at some point ¢ between o and
t; we don't know the value of ¢, but we can use this formula to estimate an
upper bound on the error in an interval [@ — 4, a + 8]. We have

M

(n+ 1)! (20"

lerror|] <

where M is the maximum value of | f[*T!(t)| over [a — §.a + §].

Example 1.4

Returning to Example 1.3, the maximum error in Ps(t) over the interval
[0.5,1.5] {so § = 0.5) is bounded by

M

where M = max |fl4(t)| = max |—6t_4| < 6{0.5)"% = 16. Thercfore, the
absolute error is bounded by 16/24 = 0.667. [J

Example 1.5

The logistic growth law for a population 2 is given by

g(z) = vz (1 — %)

where r is the growth rate and K is the carrving capacity. The populations
x = 0 and » = K have zero growth rate and are therefore ealled equilibrium
populations. We find the lincarization of the growth rate at the carrying
capacity . First, .

glz)=7r— 2%& g(K)=—vr.
Therefore, the linearization is

Pi(e) = g(K) + ¢ (K)(@ — K) = —r(z — K).

Later, we show that we can use this simple linear approximation for g{z} to

examine the behavior of the population at values near the carrying capacity.
O

If a function f has infinitely many continuwous derivatives at £ = a, we can
form the Taylor polynomial P, (t) for arbitrarily large n. In the Hmit as n — o0,
we have the infinite sum

| =~

FMa)(t - a).

=)
k=0

i

!
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Here, to get the first torm, when k = 0 we use 0! = 1 and f{a) = f{a), both
by convention. This series is called the Taylor series for f(#) centered about

= . One can show that it converges either for all real numbers ¢, for only
t = a, or for # in a symmetric interval |t — o < 7 about g; the radius r is called
the radius of convergence. When the scries converges for a value ¢, it converges
o f{t), and we write

Example 1.6
The Taylor series for the functions " and sinat about ¢ = 0 are, respectively,
> 4
ot =3 L) (1.9)
k=0
o {—1)F
inat =Y  ——=—(at)?*1 1.10
sina kgo(%ﬂ)!(a ) (1.10)

Both converge for all values of ¢t. The function f{(t) = 1/(1 — ¢) has & Taylor
series about t = 0 given by
1 o i 2 .3
T =Yt =144+ 4, (L.11)
L=0

which is called the geometrie series. The geometric series converges in the
interval |¢| < 1. Taylor series arc used extensively in mathematical biclogy and
in other sciences to make approximations. O

We end this section with two interesting models that require only calculus
technigues for their analysis.

1.2.2 Foraging Theory

There are different theories about animals’ foraging strategies. For a broad
introduction, the reader should consult Stephens & Krebs (1986), which has
become a standard reference on the topic. Here we investigate which is the best
of two strategies. The idea is that a forager is consuming prey items from a
gingle patch that has two types of prey items, 1 and 2. Each type has a total
energy assoctated with it {Ey and E), a time that it takes for the forager
to handle an item (h; and As), and a rate that the particular type of item is
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encountered (ry and rg), the latter measured in items per unit of timme. The
question is: What is the rate at which energy is gained by a generalist who
consumes each item as it is encountered vs. a specialist who consumes only the
item with the higher-cnergy payofi? Without loss of generality, we assume that
eating item 1 has a higher-encrgy payoff, or £y > Lo,

To compare these strategies, we first calculate the rate R, at which encrgy
is gained by the specialist from consuming enly item 1 over a time period T,
which Is the total time available to the forager. Clearly, the total time T must
be the sum of the time S spent scarching and the time H it takes to handle
the food items encountered. So T = S + H. But during the time searching S,
the forager encounters r1.5 food items and gains total energy F1715; the total
time it takes to handle those items is H = h71.5. Therefore,

T=5+hmS,

ar
T
- 1 + h 17 '
Thus, the rate that energy is gained by selecting only item 1 is
El?“lS o El'-'"l
T - 1+ hl 1 '

s

R, =

For the generalist who consumes both items, the total time T is
T = S + H 1 + H 2.

where Hy and Hs are the total times to handle all items of type’s 1 and 2,
respectively. Then

T =854 hiri S+ hora S,
which gives
T L+ hare
The total energy gained is Eyrm S + EareS. It follows that the rate at which
energy is gained by the generalist in selecting both items is

Eyri S+ EuryS  Evr + Earo
T T 14y + hairg

)

R, =

It is interesting to compare R, and R,. By direct algebra it is easy to show
that R, > R, implies that
B
ro> —
! hoFBy — h B2
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which cecurs when the encounter rate for the most profitable item is sufficiently
high. The right side can be thought of as a cut off value when a forager should
switch from being a generalist to a specialist.

Optimum Time in a Patch

Now let’s look at a different foraging situation. Suppose that there are
geveral patches, all the same, each with the same food items, and the energy
gain G (i) for a forager in a given patch is a function of the residence time ¢ spent
inn that patch, but with diminishing returns. In other words, the energy gain
curve has the form shown in Fig. 1.5 with G(0) = 0 and G{(?) = 0, G'{) > 0,
and G"(t) < 0 for ¢t > 0. Therefore, if the forager remains in the patch too
long. it gets less and less energy gain per unit time. Therefore, when should the
forager leave the patch and go to another patch? To complicate matters, Lot us
impose the condition that it takes T' units of time to move from one patech to
another, so moving is costly because of the time lost in eating.

Again, the forager wants to maximize its rate of energy gain. Qver one cyele
{residing in a patch, then moving) the time is 47" and the energy gain is G(%).
Hence, the rate of energy gain over that cycle is

= G

RO =

See Fig. 1.5 for a typical plot of R. We can maximize K using elementary
calculus. Taking the derivative and setting it to zero gives

_ +TIC(0) - G

Rt =0,
) (t+ T2 '
or the condition on the residence time ¢:
G(t)
G'NE) = —=.
® t+ T

We can determine geometrically the value of £ that solves this equation. Let us
write this condition as

G(t) G{#) -0

gm:t+T:t—&T

The right side is the slope of the straight-line segment from the point (-7, 0)
to (t, G(t}}). So the value of the optirmun residence time £ is given by the value
of ¢ where the straight-line segment is tangent to the graph of G(#). See Fig.
1.5. This eonstruction, adapted by Charnov (1976) from economics, is often
called the marginal value theorem.
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Figure 1.5 Plots of the energy gain and the rate of energy gain vs. residence
time, and the graphical interpretation of the marginal value theorem.

EXERCISES

1. A population y is modeled by the equation y = f(t) = /%, where t is
measured in days and y is measured in bundreds of animals. The derivative

s f{8) = 1/(2v),
{a) Graph f(¢) and f'(t) for t > 0.
(b} What are the units of f/{£)?

(c) What is the slope of the tangent linc to the graph of f{t) when ¢t = 47
Ilnstrate this on the plot of f{¢}, and find the equation of this tangent
line.

(d) Use a calculator to compute the average change of f over the interval
[4,4.2]. Indicate this quantity on the plot of f(t).

{¢) Approximate the average change in the population over the interval
[4,4.2] using the derivative.

(f} Find the growth rate and the per capita growth rate at time ¢ = 4.

2. A descriptive model of population growth is a logistic growth curve, which
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is given by the formula

oK
yo + (K —go)e

y = ft) =

where r, K, and yo are positive parameters, and y is the population.
{a) Use MATLAB to plot the logistic curve when + = 1, K = 10, and
Yo =2.

(b} Use a calculator and estimate the growth rate and the per capita growth
rate when ¢ = 3. (Hint: You will have to approximate the derivative.)

. A population has a constant growth rate of r per day. If the population at

time ¢t = 0 is yg, find a specific formula ¥ = f(¢) for the population as a
function of time. (Hint: What cxpressions have a constant derivative?)

. A population y = f(t) has a per capita growth rate of v per day. Show that

a population law of the form y = Ce™, where ' is any constant, satisfies
the condition of constant per capita growth. If the population at time ¢ =0
is go, what is the formula for the population as a function of time?

. The length L (cm) of an organism is changing according to L{#) = 3(1 —

e~ "), One finds that L'(t) = 0.6e~%%, Plot L and L' vs. # on the same
axes. How fast is the length changing at time £ = 10 days?

. Consider the exponential function f{t) = e, where r is a fixed constant.

Near t = 0, find the Taylor polynomial approximations P (t}, P(t), and
Pi(t). What is F, ()7

The Ricker growth law with mortality, which models some fish popula-
tions, is

glx) = bxe™ —mzx, b>1,
where x is the population, b is the growth rate, mi is the mortality rate, and ¢
is & predation rate. Find the nonzero equilibriuin population and determine
the linearization of g{x) about that equilibrium. Simplify completely.

The Gompertz growth law for some tumors depends on the tumor’s
radius R and is given by

G(R) = aR(lb R, - In R},

where a and H,, are positive constants. Find the equilibrium radius, and
determine the linearization of G(R) about that equilibrium.



1.2 Rates of Change 17

9.

10.
11.

12.

13.

The growth rate of a plant is dependent on the nitrogen concentration N
in the soil, and it is given by Tilman’s law:

alN

Ny= ——,
N =18

where @ and b are positive constants. What is the limiting (or, saturat-
ing) growth rate for very large nitrogen concentrations? Find a quadratic
approximation for f{N) valid near N = 0.

Verify the Taylor series formulas (1.9), (1.10), and (1.11).

Find Taylor series about ¢ = 0 for the following functions: cosat, In{l + ¢),
and 1/(1 +¢9).

The survival of a fish egg through its critical period is a function of its
mass . The larger the egg, the more nutrients are present and the more
likely it is to hatch successfully. This survivorship is often modeled by a
function of the form

s{x)=1-ca™® a>e¢
where ¢ and b are positive parameters. If ¢ is the total gonadal mass of
the female, the number of eggs laid by the female is G/, and the number
of eggs that survive through the critical period is

G
E(z) = (1 - cz?).
Show that the egg size that optimizes the female’s number of eggs is
x* = (c+ be)l/o

Sketch generie plots of 3{x) and E(x).

In the optimwn residence-time problem (Section 1.2.2), take the energy

gain function to be
t
Glt) = ——
® t+3
and the travel time between patches to be T = 3. Use calenlus to find
the optimum residence time and illustrate your result by the Charnov con-

structiomn.
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1.3 Balance Laws

Many maodels in ecology come from a simple bookkeeping or accounting for a
given quantity--where it comes from and where it goes. This bookkeeping, or
balancing, gives a law which ig ofien expressed as a differential equation.

In terms of setting up models, this section may be the most important in
the hook! Tt is based on a very simple idea that is used in all of science and
engineering: that of a balance law. To explain what we mean, let ¢} be any
quantity whatsoever in a fixed, well-defined domain. To list a few examples, @
could be:

— The number of animals in a Axed area

— The number of milligrams of a medicine in a person’s blood

— The mass (kilograms) of a toxic chemical pollutant in a lake
— The amount of heat energy (calories) in a small animal’s body

— The number of individuals in a community infected with a communicable
disease

To determine how fast a quantity () changes in a fixed domain all we have
to do is keep track of where it comes from and where it goes. There are four
possibilities. ¢ can enter the domain from outside; it can leave the domain and
go outside; it can be created inside the domain; or it can be destroved inside.
Figure 1.6 shows how we represent these four notions pictorially in the case
of animals in a fixed region. They can immigrate into the region or emigrate
out of the region. Inside the region they can be born or they can die, which
we represent by appropriate arrows. For the scenario of a toxin in a lake, the
chemical can be pumped into the lake by a factory, and it can fAow out of
the lake through estuaries; while in the lake, the chemical can deerade or be
consutned by reactions.

We can write the balance, or accounting law, in symbols. The rate of change
of the total quantity @ in the domain is, by dofinition, the derivative dQ/dt.
We give each of the four cases a name:

I = rate @ flows into the domain from outside
E = rate ¢ Hows out of the domain

G = rate that () is created inside the domain

D = rate that ¢} is destroyed inside the domain

Notice that I, E, (G, and D are rates, measured in quantity per time. For the
population scenario, 7 is the immigration rate, E is the emigration rate, 7 is
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o~

Figure 1.6 Neot rate of change of @ is I — E + (G — D). The rates are added
or subfracted according to whether they increase or decrease Q.

the birth rate (gain}, and D) is the death rate (loss). For the lake, I is the rate
at which toxins are pumped into the lake, E is the rate at which they flow out
into the estuaries, and D is the degradation rate; in this example, & = 0. The
balance law states that
@:I—E—i—G—D. {1.12)
dt
In other words, all the rates have to balance; the right side of (1.12) accounts
for how fast € can change. This is a fundamental law of science.

Now, here is how this helps us. Once we determine expressions for cach of
the rates on the right side of {1.12}, we will have a specific equation for Q.
Becanse some of these rates may depend on @ itself (e.g., the emigration rate
E of a population may depend on the population @}, the balance law (1.12)
hecomes a differential equation for the unknown function ¢ = Q(t). Often, cur
zoal is to solve the differential equation: that is, to find Q(t) or to understand
qualitatively how Q) behaves.

Example 1.7

If all the rates on the right side of (1.12) are constant, r =7 - E+ G — D is
constant and the balance law is

o _
dt =7

This is a simple differential equation: Tt says that the derivative of { is constant.
So ) must be changing as a linear function of ¢, or Q) = rt 4 ¢, where ¢ is any
constant. In different words, ¢ is the antiderivative of r. If we have an initial
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%

Figure 1.7 The linear function ¢ = rt 4+ Qo with slope » > 0 and intercept
o.

condition on Q, say {0} = Qp, then ¢ = Qg and

Q:?’t‘l‘Qn.

A generic plot is shown in Fig. 1.7. O

Example 1.8

The equation
dy
— =
where r i3 a fixed, constant parameter, is a differential equation for an unknown
function y = y(t); it relates the rate that y is changing to the quantity y itself.
We want to find a ¢y = y{¢) that works to make the equation true; such a y is
called a sofution. It is easily checked that a solution iy

Y,

y(t) = Ce,

where C is any constant, called an arbitrary constant. If y{0) = 4o is imposed,
where 4 is a given, fixed initial value, then C' = yp and the solution is

y(t) = yoe™.

Typically, a differential equation has infinitely many solutions containing an
arbitrary constant (here, C'). But specifying an initial condition at ¢ = 0 picks
out one of these many solutions by fixing a valie of €. Then we get a unique
solution, as we expect in scientific problems. The differential equation in this
example models exponential growth when # > 0 and exponential decay when
r< 0. O
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Example 1.9

Here is a more difficult example. Lot V be the volume of blood in the body and
let ¢ = C(t) be the concentration (milligrams per deciliter) of a cancer-fighting
chemical in the blood. Through chemotherapy, a paticnt is injected with the
chemical at the rate of J milligrams per hour. At the same time, the body
tissues absorh the chemical at a rate proportional to its concentration, or at
rate kC', where k is the constant of proportionality, given in units of hours™?!.
If the initial concentration is zero, or C'(0) = 0, what is the concentration C'(2)
in the biood at any time 7 We set up a differential equation for the mass of
the chemical. (A rule: Masses are always balanced; concentrations never.) Let
M = M(t) be the mass of the chemical in the blood. Mass and concentration
are related by
mass = concentration X volume,

g0 that M = C'V. Then, by the balance law,

aM

dt
We always have to be careful about units; each term must be in mass per time.
The rate at which mass flows in is given to be I; the rate at which mass is
absorbed is kC, which is mass per volume per unit of time. So the rate that
mass is absorbed is AV = &M, which is mass per unit of time. Thus, the
balance law is

= rate mass flows in — rate mass is absorbed.

dM
— =I—-EM,
5 EM,
which is a differential equation for M = M {#). We can writc the balance equa-

tion in terms of concentration (which is what we would measure) as

,
M =T &V,
dt
or, using the fact that d(VC)/dt = V(dC/dt), we have
dC 1
— == — k(. 1
il (1.13)

We know, initially, that C'{0) = 0, whicb is the initial condition. We can now use
a computer software program, for example, to find a formula for the soluticn
C(#) to this equation. But here is how we can do it ourselves. We choose a new
dependent variable y = y{t), defined hy

1 y
Y= ? - kC.
Then dy/dt = —k{dC/dt)}, and (1.13) can be written
ldy

T
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Figure 1.8 Concentration of the medicine in the blood.

or J
Y
— = —ky.
dt v
This is the exponential decay equation, and from the last example we know
that its solution is

b= Ae_kt?
where A is an arbitrary constant. But this means going back to the variable C,
é—kC:A(“.
Solving for C then yields
a4 _,,
=%

We can find the value of the arbitrary constant A using the initial condition.
We have C{0) = I/(kV) — A/k = 0, which gives

I
A == ‘_f'
Therefore, the concentration of the moedicine in the blood is
I I
Cu B = —— — —— ‘—kt
W=7 we

This formula gives the solution to the model (1.13) with initial condition C{0) =
0. We can draw a generic graph of C vs. £. Notice that C{0) = 0, and, from
calculus, the limiting value of the concentration €' as ¢ — oo is £/(&V), which
means that the graph is approaching the line C' = I/(kV). The plot is shown
in Fig. 1.8. 0O
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Remark 1.10

The method we used in Example 1.9 is applicable to any differential equation
of the form
dc)

where @ = Q(#) is the unknown guantity and ¢ and b are fixed parameters.
This equation oceurs very frequently in biological applications. The change of
dependent variable

y=a-+bQ
transforms the differential equation for ¢ into

dy _ b

at
which is solved by y = Ae®, where A is an arbitrary constant. Then a + b =
AeP, which can be solved algebraically for Q. The valuc of A is determined by

an initial condition Q{0) = Qo, where )y is a fixed number. [0

Example 1.11

A population has N individuals, and initially Iy of them are infected with a
communicable iliness, while the remaining Sy are susceptible to the illness. Let
us set up a model that tracks the number I = I{¢) of infective individuals over
time. Let S(#) = N — I(#) be the total number susceptible to the illness. By the
balanece law, the rate of change of the number of infectives, dI /dt, is equal to the
rate that susceptible individuals become infected. We will assume no deaths, no
births, and that no individuals get over the illness. If there are I infectives and
S suspectibles, we can argne that the rate that individuals become infected is
proportional to the number of encounters between susceptibles and infectives,
For example, if there were 200 susceptibles and 8 infectives, there would be
1600 possible encounters; a fraction of those, say a, will result in an infection.
The constant ¢ is the transmission rate. In general, the rate of infection is

infection rate = aST = a{N — I)1.

Therefore the balance law is

1]
é:qN—nL
which is a differential equation for I = I{t). This is called an ST model. The
golution to this equation (which is derived in an exercise) is

N

1) = 1 — Ce—alNt’
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where (' is an arbitrary constant. 1t may determined by the condition I{0) = Iy,
toget C=1—-N/I. O

EXERCISES

1. Find and plot a function ¥ = y{) that solves the problem dy/dt = -2,
y(0) = 5.

2. Find and plot the function y = y{t) that solves the problem dy/dt = —2y,
y(0) = 5.

3. Find and plot the function y = y{t) that solves the problem dy/dt = 20—2y,
y(0) = 5.

4. This exercise leads to the solution I = I(#) of the disease model in Example

1.11: .

if
— =a{N -1)I.
7 = )

{a) Rewrite the cquation in terms of the dependent variable w defined by
w = 1/1, or I = 1/w. You should get

% =a-—aNw.
[Hint: The chain rule for derivatives requires that df /dt = —(1/w?){dw/dt).

Why?]

{b) Next observe that the equation in part (a} has the form of that in
Remark 1.10. Make the appropriate transformation and solve, and then
rewrite the solution in terms of the original variable I,

(¢) Sketch a generic graph of I vs. ¢ for different initial conditions.

5. A nonreactive chemical toxin of concentration ' = C'(#) grams per volume
is dissolved uniformly in a pond of volume V' gallons. Initially, the concen-
tration is Cy. The toxin flows into the pond from a stream at a volumetrie
flow rate of ¢ gallons per day at concentration . It is perfectly mixed and
flows out in another stream at the same rate 4.

{a) Write down a differential equation and an initial condition whose so-
lution would give the concentration in the pond at any time £.

(b} Find a formula for the concentration and show a generic plot. What is
the eventual concentration of the toxin in the pond?

c €L Up the qinererntla (!quatl(]n 0r )1 1€ VOIIINeTric Now rate 18

Set up the differential ion for C{t) if th lumetric fi te i
g; and the flow rate out is ¢y, with ¢ > go. {Note that the volune
changes in this case.)
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1.4 Temperature in the Environment

How does an animal’s body temperature depend on its environment? In this
section we present a medel for calculating an animal’s equilibrium tempera-
ture hased on the environmental temperature, solar radiation, and the heating
characteristics of the animal.

All life forms have to deal with their environment. That is partly what
ecology is about. The environment consists of biotic influences (other organ-
isms, competition, availability of food resources, ete.) and abiotic influences
{weather, temperature, etc.). Here we discuss temperaturc effcets and how we
can model those effects on certain organisms. Questions such as this are crucial
in times of global climate change.

1.4.1 Heat Transfer

For survival, an animal typically has to maintain its body temperainre within a
certain range. Either it generates it own heat, as a mammal does, or it does not,
as in the case of an insect or reptile. Animals that generate their own heat are
called homeothermic, and those that do not are poikilothermic. To fix the
idea, we consider a small reptile, such as a lizard with body temperature 4. (We
always measure temperature in degrees Celsius.) In the interest of formulating a
simple model of how an animal’s temperature may be determined, we consider
only two effects: heat transfer with its microhabitat and radiative heating from
the sun. We let the microhabitat temperature he T, and we assume that the
solar radiation has value g, measured in calories per hour. See Fig. 1.9. We
are avoiding the effects of both convective cooling caused by the wind and
the complex behavior of many poikilotherniic animals, who thermoregulate by
exposing themselves to direct or indirect sunlight, or orient their bodies to
receive more, or less, sunlight,

First we ignore solar heating. If the ambient temperature T is larger than
the body temperature & (e, 8 — T < 0), the body temperature increases,
and if T is smaller than 8 (i.c., 8 — T > 0}, the body temperature decreases.
We arc assumming that heat flows from hotter objects to colder objects, which
is the sccond law of thermodynamics; so the reptile exchanges heat with its
environment. It is a common assumption in scicnce and engineering to assume
that the rase heat flows between two adjacent regions of different temperatures
{here, the body and the air) is proportional to the difference between the two
temperatures, # — 7. Thercfore, the rate at which heat is exchanged is

k(6 —T),



26 1. Intreduction to Ecological Modeling
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Figure 1.9 An animal at temperature 8 receiving solar energy ¢ and exchang-
ing heat energy with its environment at a rate proportional to & — T, where T
is the environmental temperature.

where k is the constant of proportionality. We call & the heat transfer coef-
ficient and its units are calories/{(time-deg}. This constant is characteristic of
the animal, and it measures how fast the animal conducts and transfers heat.

Therefore, the net rate f at which the animal receives heat, in calories per
hour, is

F=q—k(6—T).

The quantity f is called the heat flux; the right side of this equation is the
rate at which heat flows in minus the rate at which heai flows out. To fix the
idea, reasonable values for k and ¢ might be 1000 cal/(hours-deg) and 50 cal/h,
respectively.

The animal’s body temperature is in equilibrium when f =0, or ¢ = £(¢ —
T). Equilibrium occurs when the rate at which heat flows in equals the rate
at which heat flows out. Consequently, the animal’s equilibrium temperature

is given by the formula
q

.
which occurs when the solar radiation balances the heat loss due to conduction.
For example, if the environmental temperature were 20° C, then #, = 40° C,
which may be near a lethal temperature for the animal. In this case the animmal
would have to seek shade or thermoregulate to lower its temperature.

We can plot the equilibrium temperature #. vs. ¢, which is a lincar rela-
tionship, using MATLAB commands in the command window (see Fig. 1.10}):

ﬁe.:T"‘



1.4 Temperature in the Environment 27
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Figure 1.10 MATLAB plot of the equilibrium body temperature as as fune-
tion of solar radiation when &k = 50 and T = 2{.

k=50; T=20:

q=0:1500;

theta=T+q/k;

plot{q,theta)

xiabel('solar radiation {cal/h)"}
ytabel('equilibrium body temperature (deg C)')

1.4.2 Dynamic Temperatures

To understand how changing environmental tomperatures affect the body tem-
perature of an animal, we must develop a dynamic model, or a differential
equation. In this section we develop such models and present two MATLAB
procedures to calculate how an animal heats up.

In the preceding section we considered only steady states (equilibria). All
the quantities were constant, We ignored the fact that the solar radiation ¢ and
the environmental temperature 7 may change during the day. If we include
time-dependent parameters [e.g., ¢ = ¢(t} and T = T{#)], we have a dynamic
problem, and the body temperature ¢ changes with time, or 8 = 8{t). If we knew
formulas for ¢{t) and T(t), how can we find 8{t)? In these cases we cannot use
the equilibrium formulas from Section 1.4.1; they were derived nunder constant
conditions, and now we are considering dynamical conditions.
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Even if the parameters ¢ and T are constant, we can still have a dynam-
ical problem if the animal begins the day at a temperature different from its
equilibrium temperature. For example, if its temperature is lower than the equi-
librium value, we expect its temperature to increase in time up to that value.
The reader should compare this heating problem to the problem of putting a
turkey at room temperature in a hot oven and asking how fast it will heat up;
that is, what is the temperature history?

To create a dynamical model, we first need to determine how time pro-
aresses. Does it progress continuously, or do we want it to tick off in discrete
steps, say howrly? This question arises in every dynamic model. The answer
often depends on when we take data, census a population, and so on. In the
present problem, temperature is changing continuously in time, _

To fix the idea, let us ask how we can obtain an expression for the rate of
change of body temperature, dé/dt. From elementary science we know that the
total amount of heat cnergy F,| in calories, in a object of mass m is E = mch,
where ¢ is the specific heat (cal/{g-deg)} of the object, or the amount of
heat cnergy required to raise the temperature of a 1-g mass exactly 1 degree.!
Therefore, the time rate of change of energy (cal/h) is

% = %(mcﬂ) = mc%. (1.14)
We reason that this rate of change must equal the net energy flux into the
anitnal, ¢ — k(8 — T), because of the balance law. Hence,

a6
me—=g— k(6 —-T
m(’dt g—k( 1

or
de q k
E_Ea_mc(g_T)' {(1.15)
This dynamical equation, which is called Newton’s law of cooling, pro-
vides a velation between the unknown temperature # = 8(t) and its derivative
df/dt, which is also unknown. Equation {1.15) is another example of a dif-
ferential equation. To roview our earlier comments, a differential equation
is an equation that relates an unknown function to some of its derivatives. If
we know the initial temperature 8(0) = 8 of the animal, we fully expect that
there should be a temperature function #(t) that describes its temperature at
any time t > 0. The problem of finding the specific function #(t} that solves
(1.15) with the initial condition #{0) = fy is called in mathematics an initial
value problem. By solve we mean that (1.15) is satisfled identically for ali

! Note that the mass m of an object is Telated to it volume V and its density p by
the formula p = m/V. So E = pVef.
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times £ when the formulas for 4 = 8(t) and its derivative df/dt are substituted
into the equation.

How can we discover the formmla for the temperature function 8 = 6(¢)?
Well, therc are techniques, taught in elementary courses in differential equa-
tions, for determining the unknown function that solves a simple differential
equation. In Section 1.3 we learned a general method to solve this equation.
Software packages (e.g., Maple, Mathematica, and the Symbolic Toolbox in
MATLAR), and even calculators (e.g., the TI-89, or the TI Voyage 200}, can
find solution formulas for simple equations with an initial condition. In the next
exaniple we present a script MATLAB m-file that uses commands from the sym-
bolic toolbox to solve and and plot the solution to (1.15) with #(0) = @5. The
reader should enter this code in MATLAB and run it. The sclution to (1.15)
with 8{0) = ¢y, which is found by the first line of the code below, is

8(t) = % + T — e=kt/me) (o 4 kT k) kL.

Example 1.12

theta=dsolve('Dtheta=q/(m*c)-(k/{m¥*c))*(theta-T)","theta(0)=theta0’);
theta=vectorize(theta);

k=50; q=1000; m=1; ¢=1,T=38; theta0=15;

t=0:.005:0.2;

theta=eval(theta);

plot{t,theta,’r")

ylim([0 60])

title("How an Animal Heats Up’,'FontSize’,14)

xlabel("time {hrs)",’FontSize',14)

ylabel("body temp (deg C}','FontSize’,14) O

Now comes a big caveat! For the most part, differential equations in ecology
cannot be solved with a formula; another type of solution must be determined.
One type is a numerical solution, which is only an approximate sclution. We
explain this next.

A numerical solution is an approximation to the actual solution 8 = 8(t).
A numerical solution leads to approximate values of @ = 6{t} at a set of discrete
times as well as an approximate graph of the actual solution. The idea is to
select a discrete set of equally spaced times ¢ = 0, £ = h, to = 2h, 13 = 3h,...,

where h is the step size. Note that ¢, = &, + h for n = 0,1,2,.... If we
evaluate the differential equation at the discrete time t,,, we have
! q k
Fltn) = — ~ — (B(t,) - T). (1.16)

ma mc
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Now, if & is reasonably small, the derivative on the left side can be approximated
by its difference quotient, or

a(t — Bt k

B(tny1) — O(tn) ~ L E g, = T). (1.17)

h me me

This equation is approximate, but it allows us to solve for #{t,1) in terms of
6(t,). To this end, we have

q k
Bltnp1) = 6(ta)+ h (& - E(Q(t") - T)) . {1.18)}
We can use this approximate equation as a recursive algorithm to obtain ap-
proximate values of #(¢) at the discrete times £, £2, £3, .... We simply take 8(1,),
which is given, and find 8(t;) from the formula. Then we take this computed
value of #8(#1) and vse the formula to compute 8(2), and 80 on, until we cover
the range of titnes that we desire. This is easily accomplished using a recur-
sive for—end loop on a computer. This munerical method is called the Euler
algorithm for solving a differential equation and initial condition.

Example 1.13

Let us fix the parameter values k = 50, T = 35, ¢ = 800, m = 10, and ¢ = 1,
and assume that the initial temperature of the animal is #(0) = 15. Next we
create in MATLAB an m-file titled NewtonHeating.m, and we simmlate time
for 2 hours with 100 time steps, giving A = 0.02. Using a for-end loop we
recursively calculate the temperatures theta, saving them in a list thetahistory,
which we then plot. The program listing is given below and the temperature
history is given in Fig. 1.11.

function NewtonHeating

clear all

theta=15; thetahistory=-15;

k=50; T=35; c=1; q=800; m=10;
Time=2; N=108; h=Time/N;

for n=1:N
theta=theta+(h/(m*c))*(q-k*(theta-T));
thetahistory-=[thetahistory theta];
end

t=0:h:Time;

plot{t,thetahistory)

xlabel{"time"),

ylabel('body temperature’)

axis([0 Time]) O
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Figure 1.11 Temperature vs. time of an animal.

Example 1.14

Next we ask how to include variable environmental temperatures and variable

sunlight. The same initial value problem holds, but now T and g are functions
of ¢. Let us specify

T(t) = 26 — 11 cos{m x t/12)
1000
i) = ——
q(t) = =7
The preceding m-file is modified by including two function definitions {ihe last
four lines) as follows:

(1 — cos(m x £/12})°.

function variabletemp

clear all

theta=15; thetahistory=15; k=50;

T=35; c=1,; q=800; m=10; Time=24; N=10000; h=Time/N;
1=0;

for n=1:N
theta==theta-++(h/{m*c))*(sunlight(t)-k*(theta-ambient{t)));
thetahistory=[thetahistory,theta];

t=t+h;

enc

hrs=0:h: Time;
plot(hrs,thetahistory,hrs,26-11*cos(pi*hrs /12),hrs,35)
xlabel{"time {hours)'), ylabel("temperature (deg C)’)
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axis([0 Time0 75]))

function que=sunlight(t)
que=(1000,/64)*(1-cos(pi*t/12))16;
function tee=ambient(t)
tee=26-11*cos(pi*t/12);
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Figure 1.12 Hourly body temperature of an animal.

Figure 1.12 shows the bady temperature, the air temperature, and an upper
lethal temperature for the animal over the period of a day. We can infer that
the animal is active only when the body temperature is under the lethal value;
during the period of higher body temperatures the animal would seek refuge
in a cooler environment. Activity times are those times when a predator may
he seeking prey, or when prey may be foraging. Changing temperature levels,
such as those associated with global climate change. can affect the interactions
of predators and prey; we discuss this issue in a later section. O

1.4.3 Development Rate

Temperature is a key factor in the rate at which many plants and poikilothermic
animals develop and mature. Development is usually measured in degree-days,
and the development rate is measured in degree-days per day. An organism
accumulates 1 degree-day if its body temperature #(f) is maintained at exactly
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1 degree above some minimal, threshold temperature 8, for one 24-hour period,
1 day. Of course, body temperature fluctuates throughout the day, so the total
degree-days D(t) accumulated from time £ = {} to time ¢ is the integrated value

+
D)= f [B(7) — Bx) T dr.
0
where 6(£) is the body temperature and

[0, B#(t) < B,
B() = 0u]" = { 8(6) — 6, O(2) > o

denotes the positive part of the difference between #{(t} and ). Geometrically,
the number of degree-days accumulated is the area from ¢ = 0 to ¢+ under the
ternperature curve 8(t) and above the constant threshold temperature 8;,. The
development rate + is the derivative of D{t) and is given by
dD

r(6(0) = S = [0(0) — 6al". (119)
Full development, or maturity, occurs at a time I' when the organism accumu-
lates a certain number of degree-days Dg. Thus,

T T
Do = D(T) = /ﬂ 6(7) — 6} dr = /{; r(6(t)) dt.

Therefore, D(t) satisfies the initial value problem

%%3— =r{8(t)), t>0; D(0)=0. {1.20)
The reader should take care going through these definitions and forrmilas, which
are just restatements of the fuindamental theorems of caleulus.

We observe that the body temperature of a poikilothermic animal is typi-
cally a function of its microhabitat temperature, which in turn is related to the
ambient air temperature. However, because poikilothermic animals thermoreg-
ulate, their actual body temperature remains in a fairly narrow range.

Equation (1.19) states that the developient rate is a linear function of tem-
perature. This, however, is just a commonly used approximation that holds for
limited temperature ranges. In fact, most plants and animals have a nonlin-
ear development rate curve that has the shape shown in Fig. 1.13. There is a
minimal temperature below which no development occurs {8y, ), and there is an
optimum temperature value 8, where the maximum rate occurs. Beyond #,,
tempceratures arc often lethal and there is a rapid drop-off in development rate.
Equation (1.20) also holds for any rate function r = r{#).
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Figure 1.13 Nonlinear development rate {degree-days per day) as a fune-
tion of body temperature #. Also shown is a linear approximation that many
researchers use. '

Often, the development is normalized such that full development occurs
when D = 1. We can carry out this normalization by defining a new develop-
ment, variable x by

D
= Do
Then « is dimensionless and
dx
— = R{O(t)), =(0)=10,
= = RO®). 2(0) =0,

where R(6} = (1/D4)r(8) is the normalized development, rate. Then the devel-
opment time 7' i3 defined by (T} = 1.

Example 1.15

A grasshopper beginning its third instar (stage) has a development rate R{8) =
0.004[9 — 15]" during that instar. If its body temperature is a constant 35° C
degrees throughout, how many days will it take the insect to reach the end of
the instar? We have R(#) = 0.004[35 — 15] = 0.08. Then

T
1 :/ 0.08d4t = 0.08T.
0

Therefore, T' = 12.5 days. O



1.4 Temperature in the Environment 35

Example 1.16

Suppose that the body temperature varies periodically over a day from 23° C
to 33° C deg via
&(t) = 28 + b cos 2at,

where t is given in days, and suppose that its development rate R{#) is given
as in Example 1.15. To determine the time of development T, we must solve
the differential equation

dz
i 28 + beos2xt — 15, x(0) =0,
and stop the caleulation when = = 1. Altliough this differential equation can
be solved by direct integration, it is easior to write MATLAB code using the
Euler method to solve the cquation.

function degreeday

clear all

x=0; maxtime=30; numsteps=100000; h=0.01;
for n=1:numsteps

if x<<1
x=x-+h*0.004*(284-5%cos(2*pi*{n-1)*h)-15);
else
break
end
end
X
days=n*h

The output is “days = 19.2." O

EXERCISES

1. Suppose that the nonlethal body temperature range for an animal is 22 <
f. < 38. If the animal’s heat conduction coefficient is & = 50, find and
sketch the region in elimate space, the ¢T' plane, where the animal’s body
temperature is in the nonlethal range.

2. Use the MATLAB program NewtonHeating.m to examine how animals of
different sizes heat up. For example, use m = 5, 10, 25, and 5. Can you
make a general conclusion? Make similar calculations and conclusions for
different values of &.
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[ ]

Suppose that the upper lethal temperature of the animal studied in Exam-
ple 1.13 is 35° C. How long can the animal safely survive hefore having to
seck shade? Draw the plot in Fig. 1.12 with the lethal temperature 8 = 35
superimposed on the graph.

Sketch plots of the air temperature funciion T = Tt} and the solar flux
g = g¢(t) in Example 1.14.

. Referring to Exercise 3 in Section 1.1, state why changes in the number of

species S on an island satisfies the differential equation

ds 5 ES
w=10-5)-F

{a} Find a formula for the solution § = S{t) of the equation if 5(0) = Sj.

{b) Plot the solution to the problem if the paramcters are given by 1 = 8
per year, E = 3 por year, P = 48 species, and Sg = 11 species.

(¢) On your plot in part (b), graph the number of species vs. time when
the island has an equilibrinm number of species.

{d) Referring to part (b}, graph the solution to the differential equation if
the immigration rate is a periodic function given by I{f) = 8 — Hcos 4.

In Exercise 2 in Section 1.1 we assumed that the growth rate of a spherical
marine animal of radius = is the rate at which it consumes nutrients minus
the rate at which it uses the nutrients. These two rates are proportional
to the animal’s surface area (477%) and to its volume ($7r3), respectively.
Therefore, if we use mass m as a measure of growth, we can write the rate
of increase in its mass as

L— @m’a,

dt 3
where o and b are constants of proportionality. But mass can be written as
density times volume, or m = p%fr-r'".

{a) Using the chain rule of caleulus to caleulate dm/dt in terms of dr/dt,
show that the radins of the antmal is governed by the differential equa-
tion J b

T a
_—=———r 1.21
dat p 3”? ( )

{b} Use the MATLAB symbolic toolbox eommands as in Example 1.12 to
find a formula for the solution r(#) to equation (1.21) if »{0) = 0.

(¢} Take a = 200, b = 100, and p = 10, and plot r vs. ¢ from part (b).
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7. An insect with a temperature threshold of 12° C has a linear development
rate function with a maximum development rate occurring at 40° C, If it
develops fully in 8 days at a constant temperature of 40° C, what is its
normalized development rate R{#)? How many days will it take to develop
at a constant body temperaturc of 35° C7 How many days will it take to
develop if its body temperature is

# = 30+ 10cos2mt?

1.5 Dimensionless Variables

When we formulate models involving differential equations, the variables and
the parameters have dimensions (such as time or distance}, and they are given
by specific units (such as minutes and meters). It is a often a good idea to re-
formulate the model in a form where all the variables and parameters have no
dimcusions; that is, they are dimensionless. Usually, there is considerable ccon-
omy associated with the dimensionless form of a problem because the number
of parameters is reduced.
Consider the dynamic temperature model we derived in Section 1.4:

de g k
—_———— — 22
dt me  me 6-1), (1.22)

8(0) = 6o, (1.23)

The variables # and ¢ have dimensions (degrees and time), and all the pa-
rameters have dirensions as well 9 I8 mass, ¢ is energy per ftime, X is
encrgy/{deg-time), and T and 8y are in degrees. Instead of measuring the tem-
perature # of the animal, we can opt to measure the temperature relative to the
ambient air temperature T'. This leads to the introduction of a new dependent
variable y, defined by

y= u (1.24)

T?

which is dimensionless (degrecs + degrecs). We say that y is a dimensionless
temperature. Similarly, we can measure time ¢ relative to the value me/k, which
has units of time, So we introduce a new dimensionless time 7 by defining

_t
- me/k
Now we can rewrite the model (1.22)-(1.23) in terms of the new dimensionless
quantities. First, note that the derivative becomes

a0 dTy) _ Kldy

dt  d{(me/kYr)  medr’

(1.25)
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Then (1.22} and (1.23} become
KT dy q k

=== - —(Ty-1T17,
medr  me mc( y=T),
Ty{0) = bq.
This simplifies to
dy
=0 —(y—1V. 1.26
= =@ Ww-1, (1.26)
¥(0) = B, (1.27)

where ¢} and B are dimensionless constants given by

q to
Q=17 B==% (1.28)

Let us review what we accomplished. By introducing dimensionless depen-
dent and independent variables y and 7, respectively, the dimensioned problem
{1.22)-(1.23) has been replaced by the dimensionless problem (1.26) (1.27}.
The dimensioned problem has six parameters, whercas the dimensionless form.
of the problem has only two! Therefore, if we were going to perform a parameter
study, it would be much simpler to work in a two-dimensional (2. B parameter
space than in a six-dimensional parameter space. Our analysis actually shows
that there are only two independent parameters in this problem.

The value T' against which we measure temperature is called a fempera-
ture scole for the problem; we say that the temperature has been scaled by
T. Similarly, mc/k is a fime scale, and we say that we have scoled time by
me/k. The time scale, which is often not unique, is roughly the order in which
time processes occur in the problem; time scales should be chosen so that the
dimensionless time 7 = ¢/T is ncither large nor small. [A thorough discus-
sion of dimensionless variables and how to select them may be found in Logan
{(2006); it is also shown that every consistent physical law can be reformulated
in terms of dimensionless variables; the latter result is called the Buckingham
Pi Theorem.]

In the last section we showed two ways in which an initial value problem for
a differential equation could be solved using MATLAB: either with the sym-
bolie toolbox, which gives an exact formula for the solution (when it works),
ot approximately, by discretizing time and writing a simple MATLAB m-file
to perform the recursion required (the Euler algorithm). But there is another
method that uses highly accurate, built-in MATLAB routines that solve dif-
ferential equations automatically, with much greater aceuracy than the Euler
algorithm.
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Figure 1.14 Plot of the dimensionless temperature vs. dimensionless time.

Example 1.17

Consider the dirnensionless problem (1.26)—(1.27) with B = (0.4286 and Q) =
0.5714. [The values of B and ¢ are computed from (1.28) with ¢ = 1000,
k = 50, T = 35, and # = 15.] The third line in the code uses the package
ode23, which calls the differential equation newton, defined in the last three
lines.

function heategn

global B Q

B=0.4286; Q=0.5714;
[time,temp]=0de23{@newton,0,2,B);
plot{time,temp)

function yprime=newton(t,y)

global B Q

yprime=Q-(y-1);

A plot of the dimensionless solution is shown in Fig. 1.14. O

EXERCISES

1.

Use the MATLAR routine ode23 to find graphical solutions of the following
initial value problems:

() dy/dt = —0.1y, y(0) = 6.
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{b) dY/dt =1.5Y(1 —Y/20), Y(0)=2.
(c) dS/dt =3(1 - 5/30) — §/15, 5(0) =86.
(d) dy/dt = 0.1y +5e~t, 4(0) =6,

2. In the biogeography model for the number of species on an island,

s 5\ ES
Zor(1-2)- =2,
Z-1(-3)-F

find the dimensions of all the parameters and variables, and nondimension-
alize the equation, scaling time by I~ and specics by P.

3. Nondimensionalize the problem (see Exercise 6 in Section 1.4)

_2, (1.29)

dr a
it p 3p

Use the MATLAB symbolic toolbox to find the solution to the dimension-
less form of the differential equation with the initial condition »{{}) = 0.

4. The logistic law for population growth is the differential equation

E =rP (1 — E) )
dt K
where ¢ is time in days, P is the number of animals, r is the growth rate in
days™!, and K is the carrying capacity in number of animals. Replace P and
t by dimensionless variables and rewrite the logistics law in dimensionless
form. {You will find that all of the parameters disappear!)

1.6 Descriptive Statistics

Researchers in all areas generate and collect data. Elementary techniques used
to organize and understand the data sets are called descriptive statistics. In
Chapter 6 we take a more advanced approach to data analysis.

Feologists collect experimental data of all types. Statistics is the mathemat-
ical seience of analyzing the data. Notwithstanding the classical quotes, “You
can prove anything with statistics” (unknown) and “There are three kinds of
lies: lies, dammned lies, and statistics” (Disraeli), statistics offers well-defined
mathematical methods 1o describe and understand the overall features of data
and how the data might he used to predict future events and develop valid
models. In this module we discuss how data can be described in simple terms
that are familiar to most people.
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There are three common characteristics of a data set that deseribe its na-
ture: its central tendency, its spread, and its shape. The central tendency is
a single value that is representative of the set. The usual measures of central
tendency are the arithmetic mean, geometric mean, median, and mode. Each
has advantages, depending on the intended purpose. (This is where statistics
can lie!) If the data set is x, &2, Z3.....2n, the arithmetic mean is

T trrtast -t Ay

N '
We usually call the arithmetic mean the average, or just the mean. The geo-
metric mean is

T =

Tgeom = (51','].'1’?2.'1'?3 T J:N)UN-

One can show that T > ®gcom. The median is the value M for which half the
values are lower and half the values are higher, and the mode is the value in
the data set that cccurs most often, or the most probable value; there may be
more than one value of the mode.

Now consider the two data sets 2,2,2,2,2,2,2,2and 0,0,0,2,2.4,4,4. Both
have mean T = 2, but they are clearly different. In the first there is no spread;
in the gecond there is spread. To determine the spread of the data, or its
dispersion, we use the variance, which measures how the data spread about the
meain. The sample variance is defined by

2o (m 2+ (z2 -2+ -+ (TN —E)g‘
N -1

The positive square root s of s% is the sample standard deviation. The
numerator is the sum of the squares of the deviations from the mean, There
are other ways to define deviations from the center (mcan) rather than the
squarc of the difference, but we de not consider them in this book. In our
simple illustration, the variance of the first data set is zero, whereas in the
second data set the variance is 24/7. Theve are reasons that we divide by N —1
rather than N.

Consider the two data sets 21, 28, 30, 33, 33, 35 and 881, 888, 890, 893, 393,
895. Most people would say that the first data set has more variability. The
means are 30 and 890, but both have the same variance (5.0596) because the
second data set is just the first data set with 360 added to each datum! Qur
intuitive answer is based on the size of the numbers involved. The coefficient
of variation is defined by

cv =22,
&

For these two data sets, CV = (L0750 and CV = 0.0025. We are comparing the
variation with the size of the numbers— the standard deviation relative to the
mean. The coefficient of variation is a dimensionless quantity that serves our
intuition in measuring variability.
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Figure 1.15 Stem plot of the data.

Example 1.18

During an 8-year period from 1950 through 1957 data were collected on the
number of Canadian lynx furs sold in varicus provinces. Ecologists use this
information to estimate population sizes. The data are given in the vector
furs=[9592 6653 12636 10876 13876 9660 8397 8958]. Then MATLAB can com-
pute the basic statistics as follows:

MATLAD command MATLAB response

length(furs) 8
sum(furs} 80648
mean(furs) 10081
std(furs) 2324.6
max(furs) 13386
min(furs) 6653
median{furs) 9626

If year=[1950 1951 1952 1953 1954 1955 1956 1957, the commands bar(year,furs),
plot(year,furs), and scatter{year,furs) plot a bar graph, a line graph, and a scat-
ter diagram, respectively. The command sort(furs) sorts the data vector. The
z-scores can be computed via z={furs-mean(furs))/std. MATLAB responds z =
[-0.2104 -1.4747 1.0991 0.3420 1.6325 -0.1811 -0.7244 -0.4831]. The coefficient
of variation is CV=std{furs)/mean{furs)=0.2036, or about 20% variability. [

I the data set is large, we are interested in its shape, or distribution. Usually
we draw a picture of the data, either a box plot or a stem-and-leaf plot.
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Figure 1.16 Histogram.

Example 1.19

Figure 1.15 (left) shows a stem plot of 20 scores on a recent examination. The
scores are 98, 92, 90, and so on, down to 8. To obtain a box plot we find the
minimum L and maximum H of the scores: I = 8 and H = 98. The median
score is M = 74. The first quartile, )1, is the median of the numbers below
the median M, and the third quartile, @3, is the median of the numbers above
M. Here J; = 61 and )3 = 81.5. A box plot displays the numbers L, Q1, M,
1. H, as shown in Fig. 1.16 {right). A histogram is a frequency diagram that
displays the number of data values in certain bins. The MATLAB command
hist{scores,10) creates a histogram (Fig. 1.16} of the scores that has 10 bins,
where scores is a vector of the scores, or scores=[98 92 90 84 83 -.. 49
43 8]. In place of the frequency on the vertical axis, we often plot the relative
frequency, or percentage of the whole, 0O

EXERCISE

1. In a medical study, 50 small rodents were infected with a virus, and the
number of days they survived was recorded. The results are as follows:

40 47 53 57 57T 60 68 68 TH 76
80 80 87 82 95 95 87 98 99 101
108 110 120 121 123 123 125 128 129 130
133 135 136 139 140 144 150 154 165 171
190 202 221 251 2380 305 330 362 380 402



44 1. Introduction to Ecological Modeling

{a) Find the mean, sum, product, standard deviation, median, and coeffi-
clent of variation.

(b) Sketch a stem plot with multiples of 10s in the left colummn.
{c) Sketch a box plot.

(d} Plot a histogram with eight bins.

1.7 Regression and Curve Fitting

Fitting a curve to a data set is a good way of extracting the main features
of data and discovering important patterns and trends. This process, called
regression, is carricd out by the method of least squares, and it is fundamental
in developing descriptive models of ecological phencmena.

In this section we show how to set up a descriptive model of a relationship
between two variables for which data have been collected. The process of con-
structing the model is called regression, or curve fitting. We begin with an
example that illustrates the process.

The table shows data collected that relate the photosynthetic rate P of a
certain species of grass 1o the temperature T of the environment.

1=~ 0 25 5 7 10 12 15 17 20 22 25 27 30
P 33 46 55 80 87 93 95 91 &89 77 V2 54 46 34

pholosynthatic rale (&)

5 0 B W 15 @
temparature [deg C)

Figure 1.17 Data with a parabolic trend.
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T is given in degrees Celsius and P is given as a percentage. Figure 1.17 [use
scatter( T,P)] shows a scatter diagram of the data, and it appears that the
shape, or trend, of the data is parabolic, as shown. This suggests a quadratic,
descriptive model of the form

P=P(T)=a+bl'+cT7 (1.30)

for some constants a, b, and ¢ to be selected. In this context, we sometimes call
the independent variable T the explanatory verieble and the dependent variable
P the response variable. We want to find the constanis for which the parabolic
curve best fits the data. So this brings up the issue of what we mean by best
fit. Imagine for a moment that we have values of @, b, and ¢. There are many
ways o measure the crror we would make in approximating the data by {1.30),
but the most successful way is to minimize the sum of squares of the errors at
each data point. This is called the method of least squares. To be precise, at
each temperature T; the error in the approximation is d; = P(T}) — F;. That
is, the error at the tth data point is the computed value P(T;) (found using the
model) minus the observed value P;. Sec Fig. 1.18. Then we define the total

error
N N

S=Y(PT)=PRP = (a+ihi+eI?=P)’,  (131)
i=1 i=1

which is the sum of the squares of the errors over the V = 14 data points. Notice

that S depends on the choice of the constants a, b, and ¢, or § = S(a. b, ). The

method of least squares is, simply:

Find «, b, ¢ such that § = S(a,b, ¢} is minimum.

This is a calculus problem. We recall that to minimize a function we take
the derivative and set it equal to zero. Here there arc three derivatives of 5,
one with respect o each variable. So if the values @, b, and ¢ provide a local
minitnum, then

S.=0, S5=0, 5.=0,

where the subscripts on § mean to take the derivative with respect to that vari-
able while holding the other variables fixed. Using the chain rule, and dropping
the understood indices on the summation, we have

Sa=2% (a+bT;+cT? -~ P) =0,
Sp =23 (a+¥T; + T — PYT; =0,
Se =2 (a+bT;+cT? - BYTZ = 0.
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Figure 1.18 The error at T; is d; = P(T;) — P;. The quantity «? is the square
of the error at that temperature. The total crror is the sum of the df over all
the points.

These equations can be written in the form of three linear equations in three
unknowns, «, b, and ¢. We write

Na+ (Y} T)b+ (3 71%)c
(ZT) a+ (ZT?) b+ (ZT3) c
(1o (Zr)or (1)

where we are using the simplified notation

SNm=Yr1 Y TI=>T,..

The system (1.32) can be solved by elementary methods to obtain a, b, and ¢,
and therefore the quadratic (1.30) that best fits the data.

We can easily set up the system (1.32) in MATLAB by defining vectors T
and P containing the 14 data points, and then compute the sums that give
the coefficients. For example, ST = sum(T), > 72 = sum(T."2),...,.>_ PT =
sum(P.*T}, and so on. In matrix notation, {1.32} has the form

i

(57,
(Cr).
(S,

Ax =1,
where the matrix A and the vector f are given by

N YT Y 7" S P
A=| T 1 ST |, f=| LPT
DIV DN AR DY S PT?
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and x is the vector of unknowns

a
x= b
¢

Once 4 and f are entered into MATLAD as A and f, the vector x of coefficients
can be found from the command A\f.

In practice, we do not always choose to solve the system (1.32}. Rather, we
use MATLAB to minimize (1.31) directly using a search method that is shown
in the following m-file. We make a guess [1 1 1j and use the built-in commanid
frinsearch.

function quadraticfit

global TP T=[-1.502557 10 12 15 17 20 22 25 27 30];
P=[33 4655 80 87 93 95 91 89 77 72 54 46 34);
[x.fval]=fminsearch{quadSQ,[1 1 1])

function S=quadfitQ(x)

global T P

S=sum{{x(1}4x(2)*T+x(3)*T. A2 -P).A2);

MATEAB returns x =46.37056 6.7671 -0.2488, fval =292.1180. So the
quadratic of best fit is

P(T) = 46,3705 4 6.7671T — 0.24887°.

Figure 1.17 is a plot of the data and the parabolic curve of best fit.

This process of least squares can be carried out to fit data with any fune-
tion we choose—a linear function, a polynomial function, exponential functions,
trigonometric functions, and so on. The idea is the same, Let ), .... 2y and
Y1, .-, Yy be two data scts. A seatter plot of all the points (24, y;) usually sug-
gests a function ¢ = f(x, a1, 09, ..., .}, depending on ¢ parameters aj, az, ..., Gp,
that may fit the data. The sum of the errors squared is a function 5 of the r
parameters,

N
S{ar,az, ., ar) = Y (f(zi a1, 02,y 0r) — 9:)°
i=1

The least squares criterion is to determine the values aq, aq, ..., 6, that minimize
S.

If the r parametors a1, o, ..., 2, oceur linearly in the model
¥ = f{x, 01,49, ...,a,), the system of r equations

S, = 0,08, =0
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that we have to solve is a linear system. If the paramecters oceur nonlinearly,
then the model is called a nonlinear regression model and the system of
equations for the paramcters is a nonlinear system. Typical nonlinear models
are

o

¥ = a1 + age {exponcrtial)

aoin

a e o
= — logistics).
4 1+ et (log )
How do we measure the goodness of the fit when we obtain a regression
formula? Let us answer this question for linear regression, where y = f(z) =

@1 + azx. Then the least squares error is

j\l'
Slay,az) = Z(ﬁl +aze; — i),

i=1

We leave it to the reader (Excrcise 1) to show that

_ LYY X PXY O NRXV R XY

NTx2-(TXY 7 NDx-(Tx)

with the obvious notation for the sums. Here o, and as represent the y-intercept
and the slope of the line of best fit, respectively. This straight line is called the
regression line. The reader may be familiar with this idea from elementary
algebra courses. At this point the calculation is strictly formal. What do the
coefficients a; and a2 have to do with the actual goodness of fit? With a little
algebra we can show that

4]

Sy _ _
Qdy = 7r—, {1 =} — a0,
Sz
where T and § are the mean values of the xand y data sets and s, and s, are
their sample standard deviations. The counstant r is given by

R [ I

and it is a measure of how well the x and y data sets correlate; it is called the
correlation coefficient. Note that v is an average of the product of z-scores
for the two data sets. It is a dirnensionless quantity with

—-1<r<1.

(Can you show this?) We say that the data sets are positively correloted if the
a; values above the mean match up with the y; values above the mean, and the
values of ix; below the mean match up with the values of y; below the mean. If
they match up mostly in this way, the product of the z-scores will be positive
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and r will be near its maximum value of 1, and the line of best fit will have
a positive slope. If the x; values above the mean watch up with the y; values
below the mean, and conversely, the products of the z-scores arc mostly negative
and we say that the data sets are negatively correlated. In this case, v is near its
minimum value of —1 and the line of best fit has a negative slope. In the third
case there may be little matching of the z-scores, and some terms in (1.34) will
be positive and some will be negative. Thus, they will add and subtract and
will be near gero; in this case we that say there is no correlation. Figure 1.19
illustrates the three cases. If we find the regression line, we can agk how well it

4
L)

X X X
Figure 1.19 Three sets of data, showing positive, negative, and no correlation.

explains the data. The original variability of the response variable is measured
with respect to the mean value of the y; by 3 (1 — ¥)%. After the regression
line is fit in, there is still unexplained variability measured by how much the
regression line deviates from the data, or > _(y; — Y7)?, where Y; = a; + azx;
is the estimated value on the regression line. The original variation minus the
unexplained variability is the explained variability. See Fig. 1.20. Measured
relative to the original amount of variability, we have

2 -7 - Ny — V)
>y —7)? '

With algebra one can show that this value is equal to the square of the corre-
lation coefficient, B? = »2. Thus, 100 x r? is interpreted as the percentage of
the total variability that s explained by the lincar fit. So a value, for example,
r? = 0.91, would mean that 91% of the data is explained by the linear model.
Despite the high values of »*, we have to be carcful in reinembering that cor-
relation does not imply causation. Although there are other measures of fit,
the value B? is common and it is in the output for most statistical packages.
Moreover, the R? value computed in (1.7) docs not require that the model be
lincar, so it may be extended to nonlinear regression.

explained variability = R? =
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L x > x
total variability unexplained variability

Figure 1.20 Total variability and unexplained variability.

Remark 1.20

There is another MATLAB routine that determines the best least squares poly-
nomiG

plz) =boz™ + b1a™ L4 A by T+ by
that fits the data x, ....xx and y1,..., yn. If the data are typed in as vectors
% and y, then polyfit(x,y,n) returns the coefficients by, b1, ..., b,. (Note the order
of the coefficients.) This routine may be used to find the regression line when
n=1.

Example 1.21

The following m-file plots the data and the regression line. The result is shown
in Fig. 1.21.

function polynomialfit

x=[1234567]; y=[2 612 19 30 26 40];

p=polyfit(x.y,1):

xx=0:.1:8;

plot(x,y,"." xx.polyvai(p.xx),-',"MarkerSize’,25, LineWidth',1.5)
Many calculators alse perform simple regression. O

EXERCISES

1. (Linear regression) For linear regression, derive the formulas (1.33) for the
constants a; and az. [Hint: Multivariable caleulus is required for this prob-
lem; sct the partial derivatives of S(a;, ez} equal to zero and solve for g,
and as.]
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&

Figure 1.21 Regression line and data.

2. The average weights (in kilograms) of female black bears in age classes 1
through 15 years were found to be 35, 55, 68, 70, 71, 75, 79, 82, 81, 80, 78,
99. 99, 82. Fit the data with a straight line and determine the goodness of
the fit.

3. In Exercise 2 fit the data with a logistics curve. Compute the R? value and
compare to the linear fit.

4, The population of insccts in a hostile environment over days ¢t = 0.1,3,4
was found to be y = 200,129, 58, and 33, respectively. Find the curve of
the form y = ae ™Y that best fits the data in the least squares sense.

5. The pesticide DDT was one reason for the decline of the bald eagle popula-
tion. In 1972 the pesticide was banned and eagle populations began to rise.
From 1973 to 1979 the number of young eagles per unit area were connted
to be 0.78, 0.86, 0.96, 0,82, 0.98, 1.12, and 0.82. Find the regression line
and the B? value, and then use the regression line to predict the number
of young eagles for 1982 through 1985.

1.8 Reference Notes

There is an extensive list of broadly based textbooks below, all covering aspects
of mathematical ecology and biology. These are the texts on our shelves, and
all of them have something to offer a reader; some are clementary, some are
advanced, and some are more mathernatically than biologically oriented. We
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recoghize the omission of many other excellent books, but we wanted to list
the books with which we are extremely familiar. We have found success using
several of these in courses in mathematical biology (in both mathematics and
biology departments) over the last scven yvears. We have not listed specialty
books, which is an even longer list.

Three books are listed that focus on modeling issues. Mooney & Smith
{1999) is an excellent clementary introduction. The classic text in applied math-
ematics is Lin & Segel (1974). and Logan (2006) has a beginning chapter de-
voted to modeling issues. An outstanding instruction manual for MATLAR,
with examples, is Higharn & Higham (2005).

Some of the texts fall into the elementary class in that they require limited
mathematics skills at the beginning. Allman & Rhodes (2004), Vandermeer &
Goldberg (2003), Gotelli (2008), Berryman (1999), Hastings (1997), and Otto
& Day (2007) fit into this category, and are all excellent. Each requires grasping
at the mathematics as the exposition procecds. Neuhauser's beginning (2004)
calculus text for biology students is an outstanding resource and it includes
material on linear algebra, matrices, differential equations, and probability.

The remaining books on the list fit into the category of mathematical mod-
eling in biology, and they introduce a substantial amount of mathematical ideas
and symbolism. Some are penned by biologists, and some by mathematicians,
but both lie in that intersection that brings the ideas of mathematical modeling
and formalism to some of the central questions in biology.

A notable book is that of Roughgarden (1998), who incorporates MATLAB
programs and techniques thoroughly into an cxposition of ecological principles.
Two excellent mathematical resources for optinal control in biology scttings
are Clark (2005) and Lenhart & Workman (2007}, Wodarz (2007) is a very
readable introduction to mathematical modeling of the virus—immune system
dynarmics and it shows the close similarities to ecosystem models.
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