
Chapter 1

The Basics of Quantum Physics: 
Introducing State Vectors

In This Chapter
▶ Creating state vectors

▶ Using quantum physics operators

▶ Finding expectation values for operators

▶ Simplifying operations with eigenvalues and eigenvectors

If you want to hang out with the cool quantum physics crowd, you have to speak the 

lingo. And in this field, that’s the language of mathematics. Quantum physics often 

involves representing probabilities in matrices, but when the matrix math becomes 

unwieldy, you can translate those matrices into the bra and ket notation and perform a 

whole slew of operations.

This chapter gets you started with the basic ideas behind quantum physics, such as the 

state vector, which is what you use to describe a multistate system. I also cover using 

operators, making predictions, understanding properties such as commutation, and simpli-

fying problems by using eigenvectors. Here you can also find several problems to help you 

become more acquainted with these concepts.

Describing the States of a System
The beginnings of quantum physics include explaining what a system’s states can be (such 

as whether a particle’s spin is up or down, or what orbital a hydrogen atom’s electron is in). 

The word quantum refers to the fact that the states are discrete — that is, no state is a mix 

of any other states. A quantum number or a set of quantum numbers specifies a particular 

state. If you want to break quantum physics down to its most basic form, you can say that 

it’s all about working with multistate systems.

Don’t let the terminology scare you (which can be a constant struggle in quantum physics). 

A multistate system is just a system that can exist in multiple states; in other words, it has 

different energy levels. For example, a pair of dice is a multistate system. When you roll a 

pair of dice, you can get a sum of 2, 3, 5, all the way up to 12. Each one of those values rep-

resents a different state of the pair of dice.
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8 Part I: Getting Started with Quantum Physics 

 Quantum physics likes to spell everything out, so it approaches the two dice by asking how 

many ways they could be in the various states. For example, you have only one way to roll a 

2 with two dice, but you have six ways to roll a total of 7. So if the relative probability of roll-

ing a 2 is one, the relative probability of rolling a 7 is six.

With a little thought, you can add up all the ways to get a 2, a 3, and so on like this:

Sum of the Dice Relative Probability of Getting That Sum

2 1

3 2

4 3

5 4

6 5

7 6

8 5

9 4

10 3

11 2

12 1

In this case, you can say that the total of the two dice is the quantum number and that each 

quantum number represents a different state. Each system can be represented by a state 
vector — a one-dimensional matrix — that indicates the relative probability amplitude of 

being in each state. Here’s how to set one up:

 1. Write down the relative probability of each state and put it in vector form.

  You now have a one-column matrix listing the probabilities (though you can instead 

use a one-row matrix).

 2. Take the square root of each number to get the probability amplitude.

  State vectors record not the actual probabilities but rather the probability amplitude, 
which is the square root of the probability. That’s because when you find probabilities 

using quantum physics, you multiply two state vectors together (sometimes with an 

operator — a mathematical construct that returns a value when you apply it to a state 

vector).

 3. Normalize the state vector.

  Because the total probability that the system is in one of the allowed states is 1, the 

square of a state vector has to add up to 1. To square a state vector, you multiply 

every element by itself and then add all the squared terms (it’s just like matrix multipli-

cation). However, at this point, squaring each term in the state vector and adding them 

all usually doesn’t give you 1, so you have to normalize the state vector by dividing 

each term by the square root of the sum of the squares.

 4. Set the vector equal to .

  Because you may be dealing with a system that has thousands of states, you  usually 

abbreviate the state vector as a Greek letter, using notation like this:  (or  if you 

used a row vector). You see why this notation is useful in the next section.

Check out the following example problem and practice problems, which can help clarify any 

other questions you may have.
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9 Chapter 1: The Basics of Quantum Physics: Introducing State Vectors

 Q. What’s the state vector for the various 

possible states of a pair of dice?

 A. 

  Start by creating a vector that holds the 

relative probability of each state — that 

is, the first value holds the relative prob-

ability (the number of states) that the 

total of the two dice is 2, the next item 

down holds the relative probability that 

the total of the two dice is 3, and so on. 

That looks like this:

 

  Convert this vector to probability ampli-

tudes by taking the square root of each 

entry like this:
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10 Part I: Getting Started with Quantum Physics 

  When you square the state vector, the 

square has to add up to 1; that is, the dice 

must show a 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12. 

However, squaring each term in this state 

vector and adding them all up gives you 36, 

not 1, so you have to normalize the state 

vector by dividing each term by the square 

root of 36, or 6, to make sure that you get 1 

when you square the state vector. That 

means the state vector looks like this:

 

  Now use the Greek letter notation to repre-

sent the state vector. So that’s it; your 

state vector is
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11 Chapter 1: The Basics of Quantum Physics: Introducing State Vectors

 1. Assume you have two four-sided dice (in 

the shape of tetrahedrons — that is, mini 

pyramids). What are the relative probabili-

ties of each state of the two dice? (Note: 

Four-sided dice are odd to work with — 

the value of each die is represented by the 

number on the bottom face, because the 

dice can’t come to rest on the top of a 

pyramid!)

 Solve It

 2. Put the relative probabilities of the various 

states of the four-sided dice into vector 

form.

 Solve It

 3. Convert the vector of relative probabilities 

in question 2 to probability amplitudes.

 Solve It

 4. Convert the relative probability amplitude 

vector you found for the four-sided dice in 

question 3 to a normalized state vector.

 Solve It
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12 Part I: Getting Started with Quantum Physics 

Becoming a Notation Meister with Bras and Kets
Instead of writing out an entire vector each time, quantum physics usually uses a notation 

developed by physicist Paul Dirac — the Dirac or bra-ket notation. The two terms spell bra-

ket, as in bracket, because when an operator appears between them, they bracket, or sand-

wich, that operator. Here’s how write the two forms of state vectors:

 ✓ Bras: 

 ✓ Kets: 

 When you multiply the same state vector expressed as a bra and a ket together — the prod-

uct is represented as  — you get 1. In other words, . You get 1 because the sum 

of all the probabilities of being in the allowed states must equal 1.

If you have a bra, the corresponding ket is the Hermitian conjugate (which you get by taking 

the transpose and changing the sign of any imaginary values) of that bra —  equals  

(where the † means the Hermitian conjugate). What does that mean in vector terms? Check 

out the following example.

 Q. What’s the bra for the state vector of a 

pair of dice? Verify that .

 A. 

  Start with the ket:
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13 Chapter 1: The Basics of Quantum Physics: Introducing State Vectors

  Now find the complex conjugate of the ket. To do so in matrix terms, you take the transpose of the ket and 

then take the complex conjugate of each term (which does nothing in this case because all terms are real 

numbers). Finding the transpose just involves writing the columns of the ket as the rows of the bra, which 

gives you the following for the bra:

 

  To verify that , multiply the bra and ket together using matrix multiplication like this:

 

  Complete the matrix multiplication to give you
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14 Part I: Getting Started with Quantum Physics 

 5. Find the bra for the state vector of a pair of 

four-sided dice.

 Solve It

 6. Confirm that  for the bra and ket for 

the four-sided dice equals 1.

 Solve It

Getting into the Big Leagues with Operators
What are bras and kets useful for? They represent a system in a stateless way — that is, you 

don’t have to know which state every element in a general ket or bra corresponds to; you 

don’t have to spell out each vector. Therefore, you can use kets and bras in a general way 

to work with systems. In other words, you can do a lot of math on kets and bras that would 

be unwieldy if you had to spell out all the elements of a state vector every time. Operators 

can assist you. This section takes a closer look at how you can use operators to make your 

calculations.

Introducing operators and getting into a healthy, 
orthonormal relationship
Kets and bras describe the state of a system. But what if you want to measure some quan-

tity of the system (such as its momentum) or change the system (such as by raiding a 

hydrogen atom to an excited state)? That’s where operators come in. You apply an operator 
to a bra or ket to extract a value and/or change the bra or ket to a different state. In general, 

an operator gives you a new bra or ket when you use that operator: .
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15 Chapter 1: The Basics of Quantum Physics: Introducing State Vectors

 Some of the most important operators you need to know include the following:

 ✓ Hamiltonian operator: Designated as H, this operator is the most important in quan-

tum physics. When applied to a bra or ket, it gives you the energy of the state that the 

bra or ket represents (as a constant) multiplied by that bra or ket again:

  

  E is the energy of the particle represented by the ket .

 ✓ Unity or identity operator: Designated as I, this operator leaves kets unchanged:

  

 ✓ Gradient operator: Designated as ∇, this operator takes the derivative. It works like 

this:

  

 ✓ Linear momentum operator: Designated as P, this operator finds the momentum of a 

state. It looks like this:

  

 ✓ Laplacian operator: Designated as ∆, or , this operator is much like a second-order 

gradient, which means it takes the second derivative. It looks like this:

  

 In general, multiplying operators together is not the same independent of order, so for the 

operators A and B,

AB ≠ BA

You can find the complex conjugate of an operator A, denoted , like this:

 When working with kets and bras, keep the following in mind:

 ✓ Two kets,  and , are said to be orthogonal if

  

 ✓ Two kets are said to be orthonormal if all three of the following apply:

 • 

 • 

 • 
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16 Part I: Getting Started with Quantum Physics 

 Q. Find an orthonormal ket to the bra 

  
.

 A. 

  You know that to be orthonormal, the 

following relations must be true:

• 

• 

  So you need to construct a ket made up 

of elements A, B, C, D such that

 

  Do the matrix multiplication to get

 

  So therefore, A = –D (and you can leave B 

and C at 0; their value is arbitrary because 

you multiply them by the zeroes in the 

bra, giving you a product of 0).

  You’re not free to choose just any values 

for A and D because  must equal 1.

  So you can choose , 

  giving you the following ket:
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 7. Find an orthonormal ket to the bra 

  

 Solve It

 8. Find the identity operator for bras and kets 

with six elements.

 Solve It
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18 Part I: Getting Started with Quantum Physics 

Grasping Hermitian operators and adjoints
Operators that are equal to their Hermitian adjoints are called Hermitian operators. In other 

words, an operator is Hermitian if

Here’s how you find the Hermitian adjoint of an operator, A:

 1. Find the transpose by interchanging the rows and columns, AT.

 2. Take the complex conjugate.

  

In addition, finding the inverse is often useful because applying the inverse of an operator 

undoes the work the operator did: A–1A = AA–1 = I. For instance, when you have equations 

like Ax = y, solving for x is easy if you can find the inverse of A: x = A–1y. But finding the 

inverse of a large matrix usually isn’t easy, so quantum physics calculations are sometimes 

limited to working with unitary operators, U, where the operator’s inverse is equal to its 

Hermitian adjoint:

Getting Physical Measurements 
with Expectation Values

Everything in quantum physics is done in terms of probabilities, so making predictions 

becomes very important. The biggest such prediction is the expectation value. The expecta-
tion value of an operator is the average value the operator will give you when you apply it to 

a particular system many times.

The expectation value is a weighted mean of the probable values of an operator. Here’s how 

you’d find the expectation value of an operator A:

Because you can express  as a row vector and  as a column vector, you can express 

the operator A as a square matrix.

 Finding the expectation value is so common that you often find  abbreviated as .

The expression  is actually a linear operator. To see that, apply  to a ket, :

which is .

The expression  is always a complex number (which could be purely real), so this 

breaks down to , where c is a complex number, so  is indeed a linear operator.
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19 Chapter 1: The Basics of Quantum Physics: Introducing State Vectors

 Q. What is the expectation value of rolling two dice?

 A. Seven. For two dice, the expectation value is a sum of terms, and each term is a value that 

the dice can display multiplied by the probability that that value will appear. The bra and 

ket handle the probabilities, so the operator you create for this problem, which I call the A 

operator for this example, needs to store the dice values (2 through 12) for each probabil-

ity. Therefore, the operator A looks like this:

 

  To find the expectation value of A, you need to calculate . Spelling that out in terms 

of components gives you the following:
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20 Part I: Getting Started with Quantum Physics 

  Doing the matrix multiplication gives you

 

  So the expectation value of a roll of the dice is 7.

 9. Find the expectation value of two 

four-sided dice.

 Solve It

 10. Find the expectation value of the identity 

operator for a pair of normal, six-sided dice 

(see the earlier section “Introducing opera-

tors and getting into a healthy, orthonor-

mal relationship” for more on the identity 

operator).

 Solve It
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21 Chapter 1: The Basics of Quantum Physics: Introducing State Vectors

Commutators: Checking How Different 
Operators Really Are

In quantum physics, the measure of the difference between applying operator A and then B, 

versus B and then A, is called the operators’ commutator. If two operators have a commuta-

tor that’s 0, they commute, and the order in which you apply them doesn’t make any differ-

ence. In other words, operators that commute don’t interfere with each other, and that’s 

useful to know when you’re working with multiple operators. You can independently use 

commuting operators, whereas you can’t independently use noncommuting ones.

Here’s how you define the commutator of operators A and B:

[A, B] = AB – BA

 Two operators commute with each other if their commutator is equal to 0:

[A, B] = 0

The Hermitian adjoint of a commutator works this way:

Check out the following example, which illustrates the concept of commuting.

 Q. Show that any operator commutes with 

itself.

 A. [A, A] = 0. The definition of a commuta-

tor is [A, B] = AB – BA. And if both opera-

tors are A, you get

 [A, A] = AA – AA

  But AA – AA = 0, so you get

 [A, A] = AA – AA = 0
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22 Part I: Getting Started with Quantum Physics 

 11. What is [A, B] in terms of [B, A]?

 Solve It

 12. What is the Hermitian adjoint of a 

  commutator  if A and B are 

Hermitian operators?

 Solve It
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Simplifying Matters by Finding Eigenvectors 
and Eigenvalues

When you apply an operator to a ket, you generally get a new ket. For instance, . 

However, sometimes you can make matters a little simpler by casting your problem in 

terms of eigenvectors and eigenvalues (eigen is German for “innate” or “natural”). Instead of 

giving you an entirely new ket, applying an operator to its eigenvector (a ket) merely gives 

you the same eigenvector back again, multiplied by its eigenvalue (a constant). In other 

words,  is an eigenvector of the operator A if the number a is a complex constant and 

.

So applying A to one of its eigenvectors, , gives you  back, multiplied by that eigen-

vector’s eigenvalue, a. An eigenvalue can be complex, but note that if the operators are 

Hermitian, the values of a are real and their eigenvectors are orthogonal (see the earlier 

section “Grasping Hermitian operators and adjoints” for more on Hermitian operators).

 To find an operator’s eigenvalues, you want to find a, such that

You can rewrite the equation this way, where I is the identity matrix (that is, it contains all 0s 

except for the 1s running along the diagonal from upper left to lower right):

For this equation to have a solution, the matrix determinant of (A – aI) must equal 0:

det(A – aI) = 0

Solving this relation gives you an equation for a — and the roots of the equation are the 

eigenvalues. You then plug the eigenvalues, one by one, into the equation  to 

find the eigenvectors.

 If two or more of the eigenvalues are the same, that eigenvalue is said to be degenerate.

Know that many systems, like free particles, don’t have a number of set discrete energy 

states; their states are continuous. In such circumstances, you move from a state vector 

like   to a continuous wave function, ψ(r). How does ψ(r) relate to ? You have to 

relate the stateless vector  to normal spatial dimensions, which you do with a state vector 

where the states correspond to possible positions,  (see my book Quantum Physics For 

Dummies [Wiley] for all the details). In that case, .
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 Q. What are the eigenvectors and eigenval-

ues of the following operator, which 

presents the operator for two six-sided 

dice?

 

 A. The eigenvalues are 2, 3, 4, 5, ..., 12, 

and the eigenvectors are

 

  Here’s the operator you want to find the 

eigenvalues and eigenvectors of:

 

  This operator operates in 11-dimensional 

space, so you need to find 11 eigenvec-

tors and 11 corresponding eigenvalues.

  This operator is already diagonal, so this 

problem is easy — just take unit vectors in 

the 11 different directions of the eigenvec-

tors. Here’s what the first eigenvector is:
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25 Chapter 1: The Basics of Quantum Physics: Introducing State Vectors

  And here’s the second eigenvector:

 

  And so on, up to the 11th eigenvector

 

  What about the eigenvalues? The eigenval-

ues are the values you get when you apply 

the operator to an eigenvector, and because 

the eigenvectors are just unit vectors in all 

11 dimensions, the eigenvalues are the num-

bers on the diagonal of the operator — that 

is, 2, 3, 4, and so on, up to 12.
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 13. What are the eigenvalues and eigenvectors 

of this operator?

 A = 

 Solve It

 14. What are the eigenvalues and eigenvectors 

of this operator?

 A = 

 Solve It
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Answers to Problems on State Vectors
The following are the answers to the practice questions presented earlier in this chapter. 

I first repeat the problems and give the answers in bold. Then you can see the answers 

worked out, step by step.

a  Assume you have two four-sided dice (in the shape of tetrahedons — that is, mini pyramids). 

What are the relative probabilities of each state of the two dice? Here’s the answer:

1 = Relative probability of getting a 2

2 = Relative probability of getting a 3

3 = Relative probability of getting a 4

4 = Relative probability of getting a 5

3 = Relative probability of getting a 6

2 = Relative probability of getting a 7

1 = Relative probability of getting a 8

  Adding up the various totals of the two four-sided dice gives you the number of ways each total 

can appear, and that’s the relative probability of each state.

b  Put the relative probabilities of the various states of the four-sided dice into vector form.

  Just assemble the relative probabilities of each state into vector format.

c  Convert the vector of relative probabilities in question 2 to probability amplitudes.

  To find the probability amplitudes, just take the square root of the relative probabilities.
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28 Part I: Getting Started with Quantum Physics 

d  Convert the relative probability amplitude vector you found for the four-sided dice in ques-

tion 3 to a normalized state vector.

  To normalize the state vector, divide each term by the square root of the sum of the 

squares of each term: 12 + (21/2)2 + (31/2)2 + 22 + (31/2)2 + (21/2)2 + 12 = 1 + 2 + 3 + 4 +3 + 2 + 1 = 

16, and 161/2 = 4, so divide each term by 4. Doing so ensures that the square of the state 

vector gives you a total value of 1.

e  Find the bra for the state vector of a pair of four-sided dice. The answer is

  To find the bra, start with the ket that you already found in problem 4:
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  Take the transpose of the ket and the complex conjugate of each term (which does nothing, 

because each term is real) to get

f  Confirm that  for the bra and ket for the four-sided dice equals 1. Here’s the answer:

  To find , perform this multiplication:

  To find , perform this multiplication, giving you 1:

g  Find an orthonormal ket to the bra .

  You know that to be orthonormal, the following relations must be true:

 ✓ 

 ✓ 

  So you need to construct a ket made up of elements A and B such that
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30 Part I: Getting Started with Quantum Physics 

  Do the matrix multiplication to get

  So therefore, A = –D. You’re not free to choose just any values for A and D because  

  must equal 1. So you can choose A =  and D =  to make the math come out right 

here, giving you the following ket:

h  Find the identity operator for bras and kets with six elements.

  You need a matrix I such that

  In this problem, you’re working with bras and kets with six elements:

  Therefore, you need a matrix that looks like this:

i  Find the expectation value of two four-sided dice. The answer is 5.

  For two four-sided dice, the expectation value is a sum of terms, and each term is a value 

that the dice can display, multiplied by the probability that that value will appear.

05_525890-ch01.indd   3005_525890-ch01.indd   30 12/10/09   12:01 PM12/10/09   12:01 PM



31 Chapter 1: The Basics of Quantum Physics: Introducing State Vectors

  The bra and ket will handle the probabilities, so it’s up to the operator you create for this — 

call it the A operator — to store the dice values (2 through 8) for each probability, which 

means that the operator A looks like this:

  To find the expectation value of A, you need to calculate . Spelling that out in terms 

of components gives you the following:

  Doing the matrix multiplication gives you

  So the expectation value of a roll of the pair of four-sided dice is 5.

j  Find the expectation value of the identity operator for a pair of normal, six-sided dice. The 

answer is 1.

  For two dice, the expectation value is a sum of terms, and each term is a value that the dice 

can display, multiplied by the probability that that value will appear. The bra and ket will 

handle the probabilities. The operator A is the identity operator, so it looks like this:

05_525890-ch01.indd   3105_525890-ch01.indd   31 12/15/09   9:34 AM12/15/09   9:34 AM



32 Part I: Getting Started with Quantum Physics 

  To find the expectation value of I, you need to calculate . Spelling that out in terms 

of components gives you the following:
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  Doing the matrix multiplication gives you

  So the expectation value of the identity operator is 1.

k  What is [A, B] in terms of [B, A]? The answer is [A, B] = –[B, A].

  The definition of a commutator [A, B] is [A, B] = AB – BA. And [B, A] = BA – AB, or 

[B, A] = –AB + BA. You can write this as

[B, A] = –(AB – BA)

  But AB – BA = [A, B], so [B, A] = –[A, B], or

[A, B] = –[B, A]

l  What is the Hermitian adjoint of a commutator  if A and B are Hermitian operators? 

The answer is .

  You want to figure out what the following expression is:

  Expanding gives you

  And expanding this gives you

  For Hermitian operators, 

  And BA – AB is just –[A, B], so you get

  where A and B are Hermitian operators.

 Note that when you take the Hermitian adjoint of an expression and get the same thing back 

with a negative sign in front of it, the expression is called anti-Hermitian, so the commutator of 

two Hermitian operators is anti-Hermitian.

m  What are the eigenvalues and eigenvectors of this operator?

A = 

  The eigenvalues of A are a
1
 = 1 and a

2
 = 3. The eigenvectors are

 and 
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34 Part I: Getting Started with Quantum Physics 

  First find A – aI:

  Now find the determinant:

 det(A – aI) = (2 – a)(2 – a) – 1 

 = a2 – 4a + 3

  Factor this into

det(A – aI) = a2 – 4a + 3 = (a – 1)(a – 3)

  So the eigenvalues of A are a
1
 = 1 and a

2
 = 3.

  To find the eigenvector corresponding to a
1
, substitute a

1
 into A – aI:

  Because (A – aI)x = 0, you have

  Because every row of this matrix equation must be true, you know that x
1
 = –x

2
. And that 

means that up to an arbitrary constant, the eigenvector corresponding to a
1
 is

  Drop the arbitrary constant, and just write this as

  How about the eigenvector corresponding to a
2
? Plugging a

2
 in gives you

  Then you have

  So x
1
 = 0, and that means that up to an arbitrary constant, the eigenvector corresponding to 

a
2
 is

  Drop the arbitrary constant and just write this as
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n  What are the eigenvalues and eigenvectors of this operator?

A = 

  The eigenvalues of A are a
1
 = 2 and a

2
 = –1. The eigenvectors are

 and 

  First, find A – aI:

  Now find the determinant:

 det(A – aI) = (3 – a)(–2 – a) + 4

  = a2 – a – 2

  Factor this into

det(A – aI) = a2 – a – 2 = (a + 1)(a – 2)

  So the eigenvalues of A are a
1
 = 2 and a

2
 = –1.

  To find the eigenvector corresponding to a
1
, substitute a

1
 into A – aI:

  Because (A – aI)x = 0, you have

  Because every row of this matrix equation must be true, you know that x
1
 = x

2
. And that 

means that up to an arbitrary constant, the eigenvector corresponding to a
1
 is

  Drop the arbitrary constant and just write this as

  How about the eigenvector corresponding to a
2
? Plugging a

2
 in gives you
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  Then you have

  So 4x
1
 = x

2
, and that means that up to an arbitrary constant, the eigenvector corresponding 

to a
2
 is

  Drop the arbitrary constant and just write this as
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