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CHAPTER 1

VALUATION ALGEBRAS

The valuation algebra framework provides the algebraic foundation for the application
of all generic inference mechanisms introduced in this book and therefore marks the
beginning of our studies. Comparable to the total order that is required for the
application of sorting procedures, all formalisms must satisfy the structure of a
valuation algebra in order to be processed by these generic inference tools. Further,
this framework mirrors all the essential properties we naturally associate with the
rather imprecise notions of knowledge and information. Let us engross ourselves
in this thought and put cur daily perception of information into words: information
exists in pieces and comes from different sources. A piece of information refers to
some specific questions that we later call the domain of an information piece. Also,
there are two principal operations to manipulate information: we may combine or
aggregate pieces of information to a new information piece and we may project a
piece of information to some specific question which corresponds to information
extraction. Depending on the operation, we either get a broader or more focused
information. In the following section, we give a formal definition of the valuation
algebra framework consisting of its operations and axioms. Along the way, we further
bear on our idea of valuations as pieces of knowledge or informatien to clarify the
rather abstract and formal structures.

Generic Inference: A Unifying Theory for Automated Reasoning
First Edition. By Marc Pouly and Jiirg Kohlas
Capyright (€ 2011 John Wiley & Sons, [ne. 3



4 VALUATION ALGEBRAS

1.1 OPERATIONS AND AXIOMS

The basic elements of a valuation algebra are so-called valuations that we subse-
quently denote by lower-case Greek letters ¢, %, . .. Intuitively, a valuation can be
regarded as a representation of information about the possible values of a finite set
of variables. We use Roman capitals X, Y, ... to refer to variables and lower-case
letters s, 1, . . . for sets of variables. Thus, we assume that each valvation ¢ refers to a
finite set of variables d(¢), called its domain. For an arbitrary, finite set of variables
s, @, denotes the set of all valuations ¢ with d(¢} = s. With this notation, the set of
all possible valuations for a countable set of variables r can be defined as

b = U@S.

5Ty

Let D = P(r) be the powerset (the set of all subsets) of r and P the set of valuations
with their domains in ). We assume the following operations defined in (®, D}:

i. Labeling: & — D; ¢ — d{¢);
2. Combination: @ x © = @, (¢, ¥) = ¢ R ¢
3. Projection: ® x D — ®; (¢,z) — ¢** forz € d().

These are the three basic operations of a valuation algebra. If we readopt our idea of
valuations as pieces of information, the labeling operation tells us to which questions
(variables) such a piece refers. Combination can be understood as aggregation of
information and projection as the extraction of the part we are interested in. Semetimes
this operation is also called focusing or marginalization. We now impose the following
set of axioms on ¢ and D

(A1) Commutative Semigroup: ® is associative and commutative under ®.

(A2) Labeling: For ¢, ¢ € P,

d¢®y) = dé)Ud(y). (1.1}

(A3} Projection: For ¢ € @, 2 € D and & C d(4),

d{¢**) = =z (1.2)

(A4 Transitivity: For¢ € ®and x C y C d{¢).

(pl)yt® = o' (1.3)
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(A5) Combination: For ¢, € © with d(¢) = z, d{yf}) = y and z € D such that
rCzCxUy,

PRy} = ¢y (1.4)

{A6) Domain: For ¢ € ® with d(¢} = =,
¥ = 9 (1.5)

These axioms require natural properties regarding knowledge or information.
The first axiom indicates that P is a commutative semigroup under combination. Tf
information comes in pieces, the sequence of their aggregation does not influence
the overall result. The labeling axiom tells us that the combination of valuations
yields knowledge about the union of the involved domains. Variables do not vanish,
nor do new ones appear. The projection axiom expresses the natural functioning of
focusing. Transitivity says that prejection can be performed in several steps. For the
combination axiom, let us assume that we have some information about a domain
in order to answer a certain question. Then, the combination axiom states how the
answer is affected if a new information piece arrives. We can either combine the new
piece to the given information and project afterwards to the specified domain, or first
remove the uninteresting parts of the new information and combine it afterwards.
Both approaches lead to the same result. In fact, we are going to see in Section 5.3
that this axiom correlates with some generalized distributive law. Finally, the domain
axiom ensures that information is not influenced by projection to its own domain,
which expresses some kind of stability with respect to trivial projection,

Definition 1.1 A system (@, D) together with the operations of labeling, projection
and combination satisfving these axioms is called a valuation algebra.

In the first appearance of the valuation algebra axioms (Shafer & Shenoy, 1988;
Shenoy & Shafer, 1990) only Axioms (A1), (A4d) and a simpler version of (AS) were
listed. Axiom (A2) was simply assumed in the definition of combination. {Shafer,
1991) mentioned Property (A3) for the first time and also remarked that Axiom (A6)
cannot be derived from the others. (Kohlas, 2003) then assembled these early results
to a complete and sufficient axiomatic system for generic inference and local compu-
tation. But in addition to the above system, all former approaches contained so-called
neutral valuations that express vacuous information with respect to a certain domain.
Here, we will introduce valuation algebras with neutral elements in Section 3.3 as a
special case of the definition given here.

Before we turn towards the first concrete examples of valuation algebras, we list
a few elementary properties that are derived directly from the above set of axioms.
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Lemma 1.1
1L Ifé, v € ® with d(¢) = x and d(y7) = y. then

2. Ifg, € dwithd(¢) =z, d(¥) = yand z C =, then

(@@ Yy = (g™ )= (1.7)
Proof :

1. By the transitivity and combination axiom:

(¢®.¢)¢my — ((qb@w)m)ixﬁy — (¢,®wimy)¢my . ¢¢my @quﬁy_
2. By the transitivity and combination axiom:

(BRP) = (BRI = (pRypPV)e,

1.2 FIRST EXAMPLES

Our first encounter with the valuation algebra framework took place on a very abstract
level. To reward the reader for this formal effort, we now comsider a first catalogue
of concrete formalisms that satisfy the valuation algebra structure. Such formalisms
are subsequently called valuation algebra instances. For the moment, we content
ourselves with the observation of how these formalisms fit in the valuation algebra
framework. Later sections then inform about their exact purpose and semantics.
However, these instances are all based on the important concepts of configurations,
tuples or vectors that shall first be introduced separately.

Frames, Tuples, Configurations and Vectors:

Consider a countable set r of variables where each variable X; € risreferenced by its
index £ € N. Conversely, every index ¢ € N refers to a unique variable X; € . This
one-to-one correspondence between variables and indexes allows us subsequently to
identify the two concepts. Further, we assume for every variable X € r a set {2y of
possible values, called its frume. Such variable frames are sometimes assumed to be
finite or countable, but this is not a general requirement. If a frame contains exactly
two elements, the corresponding variable is said to be binary. Moreover, if the two
elements represent the states frue and faise, the variable is called propositional or
Boolean. A wuple or configuration with finite domain s C r is a function

x:53 =+ 0, = HQX

Xes
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that associates a value x(X) € 2x with each variable X € s. By convention,
the single tuple with empty domain is identified by the diamond symbol o, and we
use bold-face, lower-case letters x, y, . .. to refer to tuples. Subsequently, we write
x € §1, to mark x as a tuple with domain s, for which we also use the shorthand term
s-tuple or s-configuration.

It is often convenient to decompose tuples according to some variable partition.
This eperation is alse called projection, although it is not directly related to valuation
algebras. Given an s-tuple x and ¢ C s, the projection of x to ¢ is defined by a t-tuple
¥ such that y(X) = x(X) forall X € t. We subsequently write x*! for the projection
of x to ¢, Note that ¢ denotes the projection of any tuple to the empty set. Further,
this notation allows us to write x = {x}t, x}*~t) for the decomposition of x with
respect to ¢ and s — ¢, Observe also that (x, 0} = (o, x) = x. Similar to frames of
single variables, the set £}, represents all possible s-tuples and is therefore called the
frame of the variable or index set s. In particular, g = {¢}. Then, a tuple set with
domain s is simply a subset § C €. If a tuple set consists of only one element, then
it is also called a singleton.

Example 1.1 To describe the attributes color, speed and prize of a car, we assume
the set of variables r = {C, S, P} with variable frames: Q¢ = {red, blue, black},
Qs = {slow, fast} and Qp = N. Two possible r-tuples are x = (blue, fast, 30°000)
and y = (black,slow, 10000). The tuple x can for example be decomposed into
xHCFP} = (blue, 30°000) and x5} = (fast). Further, the variable ser {C, S} pos-
sesses the frame Q¢ gy = {(red,slow), (blue, slow),. .., (black, fast)}. Observe
also that the frame L, contains infinitely many tuples.

If X € ris a variable that takes real numbers, we have £1x = R, and for a set
& C r of real variables the linear space R® corresponds to the frame of all s-tuples.
In this case, s-tuples are also called s-vectors. It is possible to introduce an extension
operator that lifts an s-vector x to some larger domain ¢ C s by assigming zeros to
all variables in ¢ — 5. We thus have x™(X) = x{(X) if X € s and x"™{X) = 0
otherwise. Clearly, the introduction of this operation is not only possible for real
number but for all algebraic structures that contain a zero element. These definitions
of frames, tuples and tuple sets allow for a uniform notation in the following tour
through a first collection of valuation algebra instances.

H 1.1 Indicator Functions - Baolean Functions - Crisp Constraints

An indicator function with domain s C r ideatifies a subset § C {2, by
specifying for each tuple x € 2, whether x belongs to S or not. If we adopt
the usual interpretation of O for x not being an element of S and 1 for x being
in 5, an indicaior function ¢ is defined by

i) = 0 ftxgéS,
1 ifxe b
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Thus, an indicator ¢ with domain d{i} = s is a function that maps every
tuple x € €, onto a value é(x) € {0,1}, ie. i : 2, — {0,1}. These are
the valuations in the valuation algebra of indicator functions. As introduced
in Section 1.1, we usually write &, for the set of all indicator functions with
domain s and ® for the set of all possible indicator functions over subsets of r.
Combination of indicator functions is defined by multiplication. If ¢, and i3 are
indicator functions with domain s and ¢ respectively, we define for x € €,

R ZIQ(X) = 3.1(3(']'3) . ig(xit).
Alternatively, we may also define combination in terms of minimization:
i ®i2(x) = min{i;(x*®),ia(x)}.

Projection, on the other hand, corresponds to maximization. For an indicator i
with domain s and ¢ C s we define forall x € {3,

1t N i
T X = mas b4 .
( ) yemr, 1( ay)

If we consider only variables with finite frames, an indicator function with
domain s can be represented by an ]s|-dimensional table with |€2,} zero-one
entries. Below, we simply use a relational or rabular representation, but em-
phasize that indicator functions are not limited to this inefficient representation.
In order to prove that indicator functions form a valuation algebra, the reader
may verify that all axioms are satisfied. However, in Section 3.3 this proof
will be made for a whole family of formalisms that also includes indicator
functions. Otherwise, a direct proof can be found in (Kohlas, 2003). Depend-
ing on its application field, the formalism of indicator functions has different
names. In the context of constraint reasoning, they are usually called crisp
constraints. Otherwise, indicater functions for prepositional variables are also
called Boolean functions.

For a concrete example of computing with indicator functions, consider a
set of variables r = {4, B, C'} with frames Q4 = {a,@}, Q5 = {b,} and
Qe = {c.t}. Then, assume two indicator functions i, and ¢; with domains
d(i1} = {A, B} and d(i») = {B,C}:

1 =

=R A n |
oo oo oo | [
oo o | W
ol oooal oo |0

i = ]
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We combine 7, and i, and project the result to {A4}:

A B C
a b c O
a b c©flo
a b [ 1 A
i3 =L ®ixp=|a b © 1 %‘é{A} =|a 1
a b c {0 a || 0
a b ¢f o0
a b c 0
a b zlo

B 1.2 Relational Algebra

The second instance we are going to study is closely related to the first one. It is
a subset of the relational algebra (Maier, 1983; Ullman, 1988), which tradition-
ally belongs to the most fundamental formalisms for representing knowledge
and information. In its usual extent, at least six operations are provided te ma-
nipulate knowledge represented as sets of tuples. Respecting the language of
relational database theory, variables are called attributes and sets of tuples are
called relations. A relation over s C + is therefore simply a mple set B C £,.
It is important to note that variable frames do not need to be finite and conse-
quently, relations can also be infinite sets. Combination is defined by natural
Jjoin: If R, and R are relations with domain ¢ and ¢ respectively, we define

RivaRy = {x€Qu:x"€Ry, xMe R} (1.8)
Projection is defined for a relation K with domain s and £ € s as
R = Ix":xeR}

Alternatively, the notation m,{ R) = R*! is also used in the context of relational
algebras. If we consider only finite variables in r, then the relational algebra
over r is isomorphic to the valuation algebra of indicator functions over r.
In fact, relations are just another representation of indicators, We obtain the
relation B associated to the indicator function ¢ with domain d(¢) = s by

Ry = {xeQ :¢(x)=1} (1.9

Conversely, we derive the indicator function ¢ associated to a relation R with
domain s C r by ¢(x) = Lif x € R, and ¢{x) = ( otherwise, for all x € Q,.
Hence, we directly conclude that relations form a valuation algebra in the case
of finite variables. This statement also holds for the general case as is will be
shown in Chapter 7.3. Let us write the combination axiom for z = z in the
notation of relational algebra: For Ry, R € ®withd(R;}) = xand d(Rz) = ¥,

TT$(Rl [ Rz) = Rl =] ﬂ';.,ﬁy{R'z).
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The right-hand side is called semi-join in database theory (Maier, 1983).

To give an example of computing in the relational algebra, we consider
two relations R; and Ry with domain d(R;} = {continent, country} and
d(Ry) = {country, city}:

continent | country country city
Africa Kenya France Paris
Asia China France Lyon
R = . Ry = .
Asia Japan Germany | Berlin
Europe Germany Italy Rome
Europe France Kenya Nairobi
Combining R; and R- gives
continent | country city
Africa Kenya Nairobi
R = RiaRy = Europe Germany | Berlin
Europe France Paris
Europe France Lyvon
and we obtain for the projection of Ry to {continent }:
continent
tinent ;
T continent} (R3) = Ré{m snent} = Africa
Europe

B 1.3 Arithmetic Potentials - Probability Potentials

Probability potentials are perhaps the most cited example of a valuation algebra,
and their common algebraic structure with belief functions was originally the
guiding theme for the abstraction process that lead to the valuation algebra
framework (Shafer & Shenoy, 1988). However, at this point we yet ignore
their usual interpretation as discrete probability mass functions and refer to this
formalisms as arithmetic potentiuls. These are simple mappings that associate
a non-negative real value with each tuple, i.e. p : 2, — Ryo. Also, we consider
from the outset only variables with finite frames and identify d(p} = s C r to
be the domain of the potential p. The tabular representation can again be used
for arithmetic potentials. Combination of two potentials p; and po with domain
s and t is defined by

PLOpx) = pi(x*) pa(x") (1.10)

for x € Q... Projection consists in summing up all variables to be eliminated.
If arithmetic potentials are used to express discrete probability mass functions,
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then this corresponds to the operation of marginalization in probability theory,
For a potential p with domain s, + C s and x &€ £2;, we define

px) = ) plxy). (L1

yegs—t

Arithmetic potentials belong to the same family of instances as indicator fune-
tions. Section 5.3 provides a generic proof that all formalisms of this family
satisfy the valuation algebra axioms. Moreover, we will also conclude from
this result that other sets (such as integers, rational or complex numbers) may
be used instead of real numbers to define arithmetic potentials.

We pointed out in the introduction of this book that the distributive law
from arithmetics is used to make the computational process of inference more
efficient. Also, we said that this property is contained in the valuation algebra
axioms. This becomes evident by writing the combination axiom in the notation
of arithmetic potentials: For py,p2 € ® withd{p;) = s, d(p2) = tand x (X,

3 ) pEYy) = plx)e > pa(x™y)

yeszt—s yEths

For an example of how to compute with arithinetic potentials, consider a set
r = {A, B, C'} of three variables with finite frames 24 = {a,a}, Qp = {b,b}
and Q¢ = {¢,z}. We define two arithmetic potentials p, and po with domain
d(p1) = {A, B} and d(p2) = {B,C}:

A B B C

a b 0.6 b ¢ 0.2
pPi=|a b 04 pe=|b |08

a b {03 b ¢ |09

a b | o7 b e | o1

We combine p; and p2 and project the result to {4, C'}:

A B C

a b c 0.12

a b @ [loas A C

a b e | 038 a ¢ | 048
pr=pm®p =|a 5 zlooa{ =14 2| 052

a b ¢ il 006 @ c | 069

a b ¢ || 024 @ ¢l on

g b e | 063

@ b | 007
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B 1.4 Set Potentials - Belief Functions

As we already mentioned, belief functions (Shafer, 1976; Kohlas & Momney,
1995) rank among the few instances that originally initiated the abstraction
process culminating in the valuation algebra framework (Shafer & Shenoy,
1988). Belief functions are special cases of set potentials. Therefore, we first
focus on this slightly more general formalism and refer to Instance D.9 and
D.6 for a discussion of belief functions and its alternative representations.
The theory is again restricted to variables with finite frames. A set potential
m : P(£s) — R with domain d{m) = s C r is a function that assigns non-
negative real numbers to all subsets of the variable set frame €2,. Combination
of two set potentials m; and mz with domains s and ¢ is defined for all tuple
sets A C Qg by

m ® ma(4) = > my(B) - ma(C). (1.12)
BaC=A,BCN,,CC0,

This is a simplified version of Dempsier’s rule of combination (Dempster, 1968,
Shafer, 1991). Projection of a set potential m with domain s to £ C s is given
for A C Q, by

m¥4) = > m(B). (1.13)

A (B}=A,BCS,

Observe that these definitions use the language from the relational algebra to
deal with tuple sets. This particular notation will later be helpful. Since re-
lations satisfy the valuation algebra axioms, we may call in its properties to
derive important results about set potentials. Note also that the formalism of set
potentials essentially differs from the other instances introduced beforehand
that map single tuples to some value. Indeed, it belongs to a second family of
valuation algebras that will be introduced in Section 5.7 where we also provide
a generic proof that all formalisms of this family satisfy the valvation algebra
axioms. Before presenting a concrete example, it is important to remark that
although all variable frames are finite, a simple enumeration of ali assignments
as proposed for indicator functions or arithmetic potentials is beyond question
since set potentials assign values to all elements of the powerset of §2,. Instead,
only those entries are listed whose values differ from zero. These tuple sets are
usually called fecal sets.

Consider a set of two variables r = {4, B} with finite frames Q4 = {a,@}
and 2p = {b,b}. We define two set potentials m; and my with domains
d{m) = {A, B} and d{m.) = {A}:

{(a, )} 0.7 _
my = {(E,b),(a,_é)} 0.1 my = EEZ;% gi
{(a, ), (@,b)} || 0.2 :
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The task of computing the combination of m,; and m is simplified by construct-
ing the following table as an intermediate step. The first column contains 12, and
the top row mg, both extended to the union domain d{m, ) U d(m2) = {4, B}.
Then, every internal cell contains the intersection between the two correspond-
ing tuple sets and the product of the corresponding values. This corresponds to
the natural join in equation (1.12).

{(@,b), (@)}, 06 | {(a,b),(a,b)},04
{{a,8)},0.7 0. 0.42 {(a,b)},0.28
{(@,b),{e,b)},0.1 {(8,b)}, 0.06 {{a,b}}, 0.04
{{a,b),(@,b)}. 0.2 {(@,b)}.0.12 {(e,b)},0.08

To complete the combination, it is then sufficient to add the values of all internal
cells with equal tuple set. The result of the combination is projected afterwards
to { A} using equation (1.13)

9 0.42
(@)} || 0.36 7 04z
ms = m®my =] {(a,B)} || 004 mi* =1 1@} | 01s
(@} | 006 (@} || 0.40

(@n || 012

M 1.5 Density Functions

All instances discussed so far are based on variables with finite (or at least
countable) frames. Although such a setting is typical for a large number of
formalisms used in computer science, it is in no way mandatory. Thus, we next
introduce the valuation algebra of density functions which are defined over
variables taking values from the set of real numbers. For a set of variables
s C r, a density fonction f : R* — Ry with domain s is a continuous,
non-negative valued function with finite Riemann integral,

/ flx)dx < oo (1.14)

Note that x denotes a vector in the linear space 0, = R®. The combination
[ @ g of two density functions f and g with domain s and t is defined for
x € R*Y* by simple multiplication

faglx) = F(x**).gx'). (1.15)

The projection f** of adensity f with d(f) = stot C sis given by the integral

g = /_mf(x,y)dy (1.16)
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where x € R® and y € R*™%, Density functions together with the above
definitions of combination and projection form a valuation algebra. The proof
of this statement even for the more general case of Lebesque measurable density
functions can be found in (Kohlas, 2003). The perhaps most interesting example
of a density function in the context of valuation algebras is the Gaussian
density. In fact, Instance 1.6 below shows that Gaussian densities are closed
under combination and projection and therefore establish a subalgebra of the
valuation algebra of density functions.

Labeled Matrices

These first examples were all based on tuples and tuple sets. Next, we are going
to introduce two further valuation algebra instances based on labeled matrices. For
finite sets s, < r a labeled, real-valued matrix is a mapping M : s x ¢t — R such
that for X € sand Y € ¢ we have M(X, V) € B. We write M(R, s x ¢) for the set
of matrices of this kind. The sum of M;, Ms € M(R, s x ¢} is defined by

(M, + Mo)(X,Y) = Mi(X,Y)+My(X,Y) (1.17)

for X € sand Y € t. I M; € M(R, 5 x £) and My € M(R,t x u) fors,t,u T r,
X € sand Y € u we define the product M, - Ms by

(M1 -Mg)(X,Y) = > Mi(X,Z)-M(Z,Y). (1.18)

ZEt

A special element of the set M(R, s x t} is the zero matrix defined for X € s and
Y € tby O{X,Y) = 0. The projection of a labeled matrix M € M(R,s x ¢) to
u C sand v C £ is defined by M¥*?(X,Y) = M(X,Y)if X cuvand Y € v,
which simply corresponds to dropping the unrequested rows and columns. Similarly
to the extension of vectors, we exrend a labeled matrices M € M(R,s xtjtou I s
andv D twithX e vand Y € vby

M(X,Y) ifXcsandV €1,

. (1L.I9)
0, otherwise.

MT%,‘U (X Y) = {

Of special interest are often square matrices M € AM(R, s x 5). We then say that
the domain of M is d(M) = s and use the abbreviation M(R, s) for the set of all
matrices with domain s. Also, the projection of a matrix M with domain stot C s
is abbreviated by M*® and accordingly, we write M™ for its extension to the larger
domain u 2 s. Finally, we define the identity matrix for the domain sby I{ X, Y} = 1
if X =Y and I{X,Y) = 0 otherwise. In later chapters, we will also consider labeled
matrices with values from other algebraic structures than real numbers. But for the
introduction of the following instances, the limitation to real numbers is sufficient.
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B 1.6 Gaussian Densities - Gaussian Potentials

An important family of density functions is provided by Gaussian distributions.
For a set of real variables s C r and x € R® a Gaussian density is defined by

B | det(K)|  _ 1x— ) TK(x—10)
flx) = o ¢ : ' (120

where 1 € R? denotes the mean vector and K : 5 x 5 = R the symmetric
and positive definite concentration matrix. The matrix K™ is the variance-
covariance matrix of the Gaussian density. Looking at this definition, we remark
that a Gaussian density is completely determined by its mean vector and con-
centration matrix. Such pairs (1, K} with 1 € R® and K € M(R, s} being
symmetric and positive definite are called Gaussian potentials. The square root
in front of the exponential function in equation (1.20) is merely a normalization
factor guaranteeing that the integral over the density function equals one.

Let f and g be two Gaussian densities with domain d(f} = sand d(g) = ¢,
represented by the Gaussian potentials (uq, K1) and (2, Ko). When combin-
ing these two densities by equation (1.15) we can neglect the normalization
constants and simply multiply the exponential functions. This in turn means
adding their exponents. Doing so, we may alse neglect additive terms without
variables, since these terms simply go into the normalization factor. In the
following, equality must always be taken up to such terms. We then get for the
exponent of the combined density function and x € RS

(2 — 1) TKG (¢ — ) + (¥ — ) Ko (%Y — ) =

(x — N‘Isut)TK‘Iaut (x — #Isut) +(x— ugsut)TK‘grsut (x — #gsut) _
XTKTsutx _ XTKISUt,u?Ut _ #TTSU:KISUEX T
xTKgsutX _ XTKLT)sut”;su: _ “;’“TSU-‘.K;sutx _

XT(KIsUt + K;’Ut)x _ XT(K}suf.!LIsut + K;sut’ugsu:)
(MTTsUtK‘{sUi + pgTsutKgsut)x_
Define now

11
K = K™+ K™Y

Note that K is still symmetric and positive definite. Then, we rewrite the
last expression using K, add a constant, additive term to the last expression



16 VALLATION ALGEBRAS

completing it to a quadratic form:
XTKX - XT(KISUtﬂ-ISUt + K‘;sutﬂgsut) _
(K‘{sutul‘sut +K£5Ut#;‘sut)’1‘x 4
(KISUtﬂ¥8Ut +Kg.sutugsut)TK—l(KIsUtuISUt +K£3Utﬂ.£SUt) —
(X — K—] (KISUt,UfIHUt + Kgsu:“gsut))TK
(x -K! (KIsUtN‘lrsut + Kgsu:“gsut))

This finally means that the multiplication of two Gaussian densities results
again in a Gaussian density with concentration matrix

K = K™ 4+ K™ (1.21)
and mean vector
g = K-} (KPUt”IBUt i Kgsutpgsut)‘ (1.22)

Motivated by this result, we may define the combination of two Gaussian
potentials {1, K1) and (ug, Kg) with d(ge;, K1) = s and d{pa, Ks) = £ by

(1, K1) ® (ue, K2} = (g, K),

where g is defined by (1.22) and K by (1.21). We found this combination rle
by a purely formal derivation. Its reason and meaning will be given in Section
10.1. The projection of a Gaussian density f with domain d(f) = s, mean
vector ¢ and concentration matrix K to a subset ¢ C s is again a Gavssian
density, as it will be shown in Appendix I.2. Its mean vector is simply z** and
{{K~1)3¥)~1 is its concentration matrix. Consequently, Gaussian densities are
closed under combination and projection and form an important subalgebra of
the valuation algebra of density functions. The operations of combination and
projection can both be expressed in terms of the Gaussian potentials associated
with the densities. Gaussian densities and Gaussian potentials will be studied in
detail in Chapter 10, which will also clanify the interest in this valuation algebra.

Many further valuation algebra instances will be introduced throughout the subse-
quent chapters, At this point we interrupt the study of formalisms for the time being
and focus on the computational interest in valuation algebras. The following chapter
phrases an abstract computational task called inference problem using the language
of valuation algebras and also gives a first impression of the different semantics of
this problem under different valuation algebra instances. But first, we propose a more
far-reaching discussion of the valuation algebra axiomatics in the appendix of this
chapter, The valuation algebra framework presented in Section 1.1 is more general
than most of its antecessors. Nevertheless, there is still potential for further gener-
alizations. Two_such systems will be presented in the following appendix: the first
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introduces valuation algebras that are no more necessarily based on variable systems.
Instead, valuations take their domains from a more general lattice structure. The sec-
ond framework focuses on a generalization of the projection operator. Here, it is no
longer the case that projections on arbitrary subsets are possible, but there is a fourth
operator that tells us to which domain a valuation is allowed to be projected. For the
understanding of the subsequent chapters, these systems are of minor importance.
But it is nevertheless interesting to see that further instances can be covered by a
more general and abstract definition of the valuation algebra framework, which still
provides enough structure for the application of local computation.

1.3 CONCLUSION

This first chapter introduced the valuation algebra framework upon which all fol-
lowing chapters are based. Valuations can be imagined as pieces of information that
refer to a question called the domain of the valuation. This domain is returned by the
labeling operation, Two further operations called combination and projection are used
to manipulate valuations. Combination corresponds to aggregation, and projection to
focussing or extraction of knowledge. In addition, the valuation algebra framework
consists of a set of six axioms that determine the behaviour of the three operations.
Formalisms that satisfy the structure of a valuation algebra are called instances and
occur numerously in very different fields of mathematics and computer science. This
chapter gave a first selection of instances including crisp constraints, arithmetic and
probability potentials, Dempster-Shafer belief functions, density functions and the
important family of Gaussian distributions.

Appendix: Generalizations of the Valuation Algebra Framework

We first give a formal definition of lattices with their main variations and refer to
(Davey & Priestley, 1990) for an extensive discussion of these an related concepts.

A.1 ORDERED SETS AND LATTICES
Definition A.2 A preorder is a binary relation < over a set P which is reflexive and
transitive. We have for a,b,c € P:
o o < a (reflexivity);
o ¢ < bandb < cimplies that a < c (transitivity).
A preorder is called partial order if it is antisymmetric, i.e. if
e a < bandb < a implies that a = b (antisymmetry).

A set with a partial order is also called a parrially ordered set or simply an ordered
set. Chapter 5 starts with an introduction to semiring theory that naturally offers a
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large number of examples for preorders and partial orders. We therefore refer to the
numerous examples of semirings in Chapter 5 for concrete sets providing preorders
and partial orders.

Definition A.3 Ler P be an ordered set.

e P has a bottom element if there exists an element L € P such that | < z for
allz € P.

s P has a top element if there exists an element T € P such that x < T for all
e P

Definition A.4 Let P be a ordered set and 5 C P. An element u € P is called
supremum, least upper bound or join af S if

e x<uyforallzesS;
e forany v € P such thar x < v forall x € S it holds that v < v.

Likewise, an element w € P is called infimum, greatest lower bound or meet of S if
e u<zjforallz e S;

e foranyv € P suchthatv < x forall x € 5 it holds that v < u.

If join or meet of a subset & C P exist, then they are always unique, and we write
\/ S for join and A S for meet. Moreover, if S = {z,y} consists of two elements,
we generally write = V y or sup{z, y} for join and = A y or inf{xz, y} for meet.

Definition A.5 Let P be a non-empty, ordered set.
o Ifovyandx Ayexistforall ¥,y € P, then P is called a lattice.
e If\/ S and A S exist for all subsets 5 C P, then P is called a complete lattice.
Lattices may satisfy further identities:
Definition A.6 Let L be a lattice.
o L is said 1o be bounded, if it has a bottom and a top element.
o L is said to be distributive, if foralla,b,c € L

a(bVc)
aVv(bAc)

{anb)vianc),
{favbaiave)

This definition lists both statements of distributivity, although they are in fact equiv-
alent. The proof is given in (Davey & Priestley, 1990). Note also that every complete
lattice is bounded.
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Example A.2 (Powerset or Subset Lattice) Forany set A we consider the set of all
subsets called its powerset or subset lattice P({A)}. This set is partially ordered via set
inclusion and forms a lattice with set intersection as meet a /b = aN b and set union
as join a vV b = a U b, The powerset lattice is distributive, complete and bounded by
A itself and the empty set |.

Example A.3 (Division Lattice) The set of NU {0} also forms a distributive lattice
with the least common multiple as join lcm{a, b) = a V b and the greatest common
divisor as meet ged(a, by = a A b The order is defined by divisibility, i.e. a < bhifa
divides b. This lattice is also bounded with 1 as bottom and 0 as top element.

An impertant source of non-distributive lattices are partitions:

A.1.1 Partitions and Partition Lattices

Partition lattices take a universal position among all lattices. (Gritzer, 1978) shows
that every lattice is isomorph to some partition lattice.

Definition A.7 A partition 7 = {B; : 1 < { < n} of a set U called universe consists
of a collection of subsets B; C U called blocks such that

e B; #0:
¢ BNB; =0 fori#jand1 <ij<m
. U?:]BT:U

Let Part(U/) denote the set of all possible partitions of a universe U. It is then
possible to introduce a partial order between its elements. For mq, 72 € Part(U) we
write m < w2 if every block of m; is contained in some block of m». This is the
case if, and only if, every block of 72 is a union of blocks from 71. We then also say
that the partition m( is finer than 7y, or conversely that 72 is coarser than m;. The
blocks of the infimum or meet of an arbitrary collection of partitions P C Parf{l/}
corresponds (o the non-empty intersections of all blocks contained in the partitions
of P. The definition of the supremum or join especially for the case of universes
with an infinite number of elements is more involved. We refer to {Griitzer, 1978) for
a discussion of this aspect. Here, we directly conclude that the set Part(U) of all
partitions of the universe I/ forms a complete lattice. The partition {{u} : u € U}
consisting of all one-element subsets of U is the lower bound, and the partition {I/}
is the upper bound. A lattice whose elements are partitions of a universe U is called
partition lattice. They are sublattices of Part(U) and generally not distributive, The
above refinement relation is the natural way of introducing an order relation between
partitions. However, in the context of algebraic information theory (Kohlas, 2003} it
is often useful to consider the inverse of the natural order, i.e. mo <. m if, and only
if, my < @3 or equivalently, if w2 is coarser than 4. The motivation is that a finer
partition expresses more information than a coarser partition.
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Example A.4 (Interval Partitions) Lef UV = [a,b) be a semi-closed interval of real
numbers. A sequence xy < iy < ... < Ip with zg = a and T, = b establishes a
partition n = {|z;,2441) : 0 < ¢ < n — 1Y. If an interval partition m, contains all
elements of the sequence defining the partition o, then every bloc of 11 is contained
in some bloc of wo. In other words, w1 is a refinement of mo. The meer of two interval
partitions is obtained from the union sequence, and the join from the intersection.
If for example U = [0,1) the partition for 0 < 0.2 < 04 < 06 < 08 < lisa
refinement of the partition for 0 < (0.4 < 0.8 < 1. If furthermore 7, is given by the
sequence 0 < 0.3 < 0.8 < land 2 by 0 < 0.2 < 0.8 < 1, their meet is obtained
from the sequence 0 < (0.2 < 0.5 < 0.8 < 1 and their join from 0 < 0.8 < 1.

A2 VALUATION ALGEBRAS ON GENERAL LATTICES

The definition of a valuation algebra given at the beginning of this chapter is based
on a particular lattice, namely on the powerset lattice of variables (see Example A.2),
This lattice is distributive. However, it turns out that the valuation algebra framework
can even be generalized to arbitrary lattices (Shafer, 1991; Kohlas, 2003). Thus, let
D be a lattice with a partial order < and the two operations meet A and join V. We
denote by ® the set of valuations with domains in D and suppose the following three
operations defined on ® and D.

1. Labeling: ® — D; ¢ — d(¢),
2. Combination: © x ® — ®; (¢,9) = o @,
3. Projection: & x D — &; (¢, z) v ¢'° for z < d(¢).
We impose the following set of axioms on ® and D:
(A1) Commutasive Semigroup: ® is associative and commutative under &.

(A2") Labeling: For ¢, ¢ € @,
dlo®y) = d(¢)Vd(P). (A1)

(A3') Projection: Forp € ®, 2z € Dand z < d{¢),

') = . (A2)

(A4"} Transitivity: For ¢ € ® and x < y < d(g),

(pH¥)e = b= (A.3)
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(A5"y Combination: For ¢, iy € ® with d(¢) = z, d(3) = y and z € D such that
r<z<axVy,

(B9 = pouhv. (A.4)

(A6") Domain: For ¢ € ® with d(¢®) = =z,

P = ¢ (A.5)

Clearly, this definition of a valuation algebra is more general than the framework
introduced beforehand. It is indeed surprising that no further properties of the lattice
are required to enable the application of local computation (Kohlas & Monney, 1995}
We must, however, accept that not all properties of the more restricted concept of
a valuation algebra are maintained. Although the subsequent chapters of this book
are entirely based on variable systems, we nevertheless present an example from
diagnostics that is based on a valuation algebra with domains from a more general
lattice, i.e. from a lattice of partitions (Kohlas & Monney, 1995, Shafer ez al., 1987).

P

Ity hattery Tranamession Foma oAFer Tault In
(mm-:wum ( poakii ) ( dniechve svich ) ( ot i piek ) ( Startiiy systom
1 ['] h

dhaective kgratlan dedacha clartar dalegt in some
swinch nelay o Badich
] i h

Figure A.1 A tree of diagnoses for stubbormn cars.

Example A.5 Suppose that your car does not start anvmore and vou want to deter-
mine the cause of its failure. The tree of diagnoses shown in Figure A.1 provides a
structural approach for the identification of the cause of failure. At the beginning,
the list of possible diagnoses is fairly coarse and only contains the failure possi-
bilities 1y = {a,b, ¢, d}. Note, however, that these options are mutuaily exclusive
and collectively exhaustive. More precise statements are obtained by partitioning
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coarse diagnoses. Doing so, we replace diagnosis a by {e, f} and diagnosis ¢ by
{!, g, R} which leads to the new set of failure possibilities Qs = {e, f.b,1, ¢, h,d}.
After a third specialization step we finally obtain Qs = {e, f,b,1, 5, k, g, h, d}. These
step-wise refined sets of diagnoses are called frames of discernment. When a frame
§; is replaced by a finer frame $1;., the substinution of a diagrnosis by a set of more
precise diagnoses is described by a mapping

T Q,; —* p(Q@—}—l) (Aﬁ)

called refinement mapping or simply refinement (Shafer, 1976). Refinement mappings
must satisfy the following requirements:

L (@) #Bforallf e Qy;
2. 7(6)) O 7(f2) = O whenever 8) # 6s;
3 {(8) 8 e} =0
For example, the passage from (4 to §1y is expressed by the mapping
{e} ifz € {b,d},

T(;B) = {Ea f} IflI.‘ =,
{l,g,h} ife=c

From an alternative but equivalent point of view, this family of related frames can be
seen as a collection of partitions of the universe 3. These partitions are:

e = {{e,f.b, i, 5.k g h,d}}s

o m = {{e, f}.{b}. {4, 5, k, 9, h}, {d}}

o m = {{c}, {f}. {6}, (i, 5.k}, {g}, {R}. {d}};

o 73 = {{e}, {f}. {6}, {i}. {5} {k}. {g}, {R}, {d}}.

Note that m,4 < m;, i.e. every block of w1 is contained in some block of m;. Because
each frame §}; corresponds to a partition w;, we may replace the frames in equation
(A.6) by their corresponding partitions. The mapping

d: my  —> 'P(Trt-+1)

assigns 1o each block B € «; the set of blocks in m;, |, whose union is B. The passage
Jrom m, to wa is thus expressed by the mapping
{{=}} fz={bd},
o) = ek {F}} fz={e f},
{{i,j, k},{g},{h}} ifer= {i,j,k,g, h}'

This mapping is referred to as decomposition mapping,
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Although many valuation algebras with domains from variable lattices could be
adapted to partition and other lattices, the modified valuation algebra of set potentials
from Dempster-Shafer theory is probably the most important example for practical
applications. In fact, the derivation of partitions from a tree of diagnoses takes center
stage in the applications of medical diagnostics in (Gordon & Shortliffe, 1985). Other
authors studied Dempster-Shafer theory on unspecified lattices (Grabisch, 2009,
Shafer, 1991). Here, we follow the algebraic approach from (Kohlas & Monney,
1995) and first extract the necessary requirements from the above example that later
enables the definition of set potentials with domains from partition lattices.

Definition A.8 A collection of frames F together with a collection of refinements K.
forms a family of compatible frames if the following conditions hold:

1. For each pair (0,0 € F of frames, there is at most one refinement T . {1; —+
P(f) in R.

2. There exists a set U and a mapping @ : F — Part{U) such that for all frames
Q1,Q2 € F we have ¢(1) # ©(§l2) whenever 2 # Qa, and such that
e(F) = {p(82) : & € F} forms a bounded sublattice of Part(U).

3. For each frame §} € F there is a bijective mapping b : @ — (). This
mapping identifies for each frame element the corresponding block in the
partition that contains this element,

4. There is a refinement 7 : Oy — P{Q2) in R exactly if p{§2z) < ().

Condition 2 means that every frame corresponds to a partition and that the cor-
responding mapping is an embedding of F into Part(U). Since the least partition
of I/ is in w({F), there is exactly one frame £ whose partition ¢(£2) corresponds
to the least partition. By the mapping of Condition 3, the elements of the frame Q
are in one-to-one correspondence with the blocks of the least partition that are the
singletons of the universe I/. From a mathematical point of view, the two sets I/ and
1 are thus isomorphic. Finally, as a consequence of Cendition 4, we can introduce a
decomposition mapping for each refinement. Indeed, if 7 : £; — P({2;), we have
©{€a} < (1) which means that every block in (£22) is contained in some block
of (021 ). We may therefore assume a decomposition mapping

5:p() - Ple) (AT)

that assigns to each block B € (€2 the set of blocks in ¢({}3} whose union is B.
This mapping can further be extended to sets of blocks & : P(w;} = P{m 1) by

54y = | J{s(B): B e A}. (A.8)

for A C w;. Such families of compatible frames provide sufficient structure for the
definition of set potentials over partition lattices (Kohlas & Monney, 1995).
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A.7 Set Potentials on Partition Lattices

Let {F, R} be a family of compatible frames with universe I/ and partition
lattice Part(I7). A set potential m : P{m} — R with domain d{m) =
T € @(F) C Part(U) is defined by a mapping that assigns non-negative real
numbers to all subsets of the parntition 7. Let us again consider the inverse
natural order between partitions. According to the labeling axtom, the domain
of the combination of m, and m; with domains 7, and w2 must be 7 V 7,
which corresponds to the coarsest partition that is finer than m; and 7. We
then conclude from Condition 2 that frames 21,2 and £ exist such that
T = (,D(Ql), e = () and m vV mp = ©(Q). Since m, e < M Vg in
the natural order, it follows from Condition 4 that the iwo refinement mappings
7 2= P{Yy) and 7 - @ — P(f:) exist in R. We thus obtain the
corresponding decomposition functions 4, : P(m V wp) — P(m) and 8 :
Pm V ma) = Plms). Altogether, this allows us to define the combination
rule: For A C 7, V wp we define

my®@my(d) = > my(8i(B)) ma(6:(C)) (A.9)
A=EnC

For the projection operator, we assume a set potential m with domain 7,
and 72 < ;. By the same justification we find the decomposition mapping
4 : P(m1) — P{mz) and define for A C my the projection rule as follows:

m*m(A) = > m(B). (A.10)
BCr1:ANS(BY#0

The proof that set potentials over partition lattices satisfy the axioms of a
valuation algebra on general lattices can be found in (Kohlas & Monney, 1995).

A.3 VALUATION ALGEBRAS WITH PARTIAL PROJECTION

The valuation algebra definition given at the beginning of this chapter allows every
valuation ¢ € ® to be projected to any subset of d{¢). Hence, we may say that ¢
can be projected to all domains in the marginal set M(¢} = P(d(¢}). Valuation
algebras with partial projection are more general in the sense that not all projections
are necessarily defined. In this view, M (¢) may be a strict subset of P(d{(¢)). Tt is
therefore sensible that a fourth operation is needed which produces M {d(¢)) for all
¢ € . Additionally, all axioms that bear somehow on projection must be generalized
to take the corresponding marginal sets into account. Thus, let ® be a set of valuations
over domains s C v and D = P{r). We assume the following operations in {®, D}:

l. Labeling: ® — D; ¢ — d(¢),
2. Combination: ® x & — O, (o, ¢") — ¢ @ ¢,
3. Domain: © — P(DY); ¢ = M(¢),
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4. Partial Projection: ® x D — ®; (¢,z) — ¢*® defined for £ € M().

The set AM(4) contains therefore all domains x € D such that the marginal of ¢
relative to = is defined. We impose now the following set of axioms on & and D,
pointing out that the two Axioms (A1”) and {A2") remain identical to the traditional
definition of a valuation algebra.

(A1) Commutative Semigroup: ¥ is associative and commutative under @,

(A2") Labeling: For ¢, 3 € &,

déoy) = dé)udy). A1)

(A3 Prajection: For ¢ € @ and x € M(¢),

d(¢p*™) = =z (A.12)

(A4") Transitivity: If ¢ € ®and z C y C d(9), then

& € M{¢) = & € M(¢%),y € M($) and ($¥)¥ = ¢*=.  (A.13)

(A5"y Combination: If ¢,7 € ® with d{¢d) = =, d(¢¢) = y and z € D such that
zCz¢ xUy, then

2Ny EM(WP) = z6 Mp®y)and (¢RI = d@ Y. (A14)

(A6") Domain: For ¢ € ® with d(¢) = z, we have 2 € M(¢) and

o = ¢, (A.15)

Definition A.9 A system {®, D} together with the operations of labeling, combi-
nation, partial projection and domain satisfving these axioms is called a valuation
algebra with partial projection.

It is easy to see that this system is indeed a generalization of the traditional
valuation algebra, because if M(¢) = P(d(¢)) holds for all ¢ € ¥, the axioms
reduce to the system given at the beginning of this chapter. Therefore, the latter is
also called valuation algebra with full projection.
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B A.8 Quotients of Denslty Functions

Let us reconsider the valuation algebra of density functions introduced in
Instance 1.5 and assume that f is a positive density function over variables in
5 C r, ie for x € R® we always have f(x) > 0. We consider the quotient

f
0 = iy

with ¢t C s. For any £ C s these quotients represent the family of condi-
tional distributions of x*+*~* given x% associated with the density f. However,
prejection is only partially defined for such quotients since

g (x) = ( f(x) )“ I i €300

)T
This is a constant function with an infinite integral and therefore not a density
anymore. Nevertheless, conditional density functions are part of a valuation
algebra with partial projection. A formal verification of the corresponding
axtomatic system can be found in {Kohlas, 2003).

PROBLEM SETS AND EXERCISES

A *  Verify the valuation algebra axioms for the relational algebra of Instance 1.2
without restriction to variables with finite frames.

A2* Reconsider the valuation algebra of arithmetic potentials from Instance 1.3,
This time, however, we restrict curselves to the unit interval and replace the operation
of addition in the definition of projection in equation {1.11) by maximization, This
leads to the formalism of possibility potentials or probabilistic constraints that will
later be discussed in Instance 3.2, Prove that the valuation algebra axioms still hold
in this new formalism.

A3 Again, reconsider the valuation algebra of arithmetic potentials from Instance
1.3. This time, we replace the operation of multiplication in the definition of combi-
nation in equation (1.10) by addition and the operation of addition in the definition of
projection in equation (1.11) by minimization. This leads to the formalism of Spohn
potentials or weighted constraints which will later be discussed in Instance 5.1. Prove
that the valuation algebra axioms still hold in this new formalism. Alternatively, we
could also take maximization for the projection rule.

A4 * Cancellativity is an important property in semigroup theory and will be used
frequently in later parts of this book. A valuation algebra {®, D} is called cancellative,



EXERCISES 27

if its semigroup under combination is cancellative, i.e. if for all ¢ € ®
P@Y = ¢y

implies that 4% = 4. Prove that cancellativity holds in the valuation algebras of
arithmetic potentials from Instance 1.3, Gaussian potentials from Instance 1.6 and
Spohn potentials from Exercise A.3.

A5 * The domain axiom (A6) expresses that valuations are not affected by trivial
projection. Prove that this axiom is not a consequence of the remaining axioms (A1)
to (A5), i.e, construct a formalism that satisfies the axioms (A1) to (A5) but not the
domain axiom (A6). The basic idea is given in (Shafer, 1991): take any valuation
algebra and double the number of elements by distinguishing two versions of each
element, one marked and one unmarked. We further define that the result of a pro-
jection is always marked and that a combination produces a marked element if, and
only if, one of its factors is marked. Prove that all valuation algebra axioms except
the domain axiom (A6) still held in this algebra.

A6 ** Study the approximation of probability density functions by discrete prob-
ability distributions and provide suitable definitions of combination and projection.

A7 *¥** Tt was shown in Instance 1.6 that Gaussian potentials form a subalgebra
of the valuation algebra of density functions. Look for other parametric classes
of densities that establish subalgebras, for example uniform distributions, or more
general classes like densities with finite or infinife support. The support of a density
corresponds to the part of its range where it adopts a non-zero value.






