
  CHAPTER 1 

INTRODUCTION     

     Applications of estimation theory were limited primarily to astronomy, geodesy, 
and regression analysis up to the fi rst four decades of the twentieth century. 
However, during World War II and in the following decades, there was an explosive 
growth in the number and types of estimation applications. At least four reasons 
were responsible for this growth. First, development of the new radar, sonar, and 
communication technology greatly expanded the interest in signal processing theory. 
Second, development of digital computers provided a means to implement complex 
math - based algorithms. Third, the start of space exploration and associated expan-
sion in military technology provided a critical need for estimation and control, and 
also increased interest in state - space approaches. Finally, papers by Kalman ( 1960 , 
 1961 )  , Kalman and Bucy ( 1961 ), and others provided practical algorithms that were 
suffi ciently general to handle a wide variety of problems, and that could be easily 
implemented on digital computers. 

 Today applications of least - squares estimation and Kalman fi ltering techniques 
can be found everywhere. Nearly every branch of science or engineering uses esti-
mation theory for some purpose. Space and military applications are numerous, 
and implementations are even found in common consumer products such as 
Global Positioning System (GPS) receivers and automotive electronics. In fact, 
the GPS system could not function properly without the Kalman fi lter. Internet 
searches for  “ least squares ”  produce millions of links, and searches for  “ Kalman 
fi lter ”  produce nearly a million at the time of this writing. Kalman fi lters are found 
in applications as diverse as process control, surveying, earthquake prediction, 
communications, economic modeling, groundwater fl ow and contaminant trans-
port modeling, transportation planning, and biomedical research. Least - squares 
estimation and Kalman fi ltering can also be used as the basis for other analysis, 
such as error budgeting and risk assessment. Finally, the Kalman fi lter can be used 
as a unit Jacobian transformation   that enables maximum likelihood system param-
eter identifi cation. 

 With all this interest in estimation, it is hard to believe that a truly new mate-
rial could be written on the subject. This book presents the theory, but sometimes 
limits detailed derivations. It emphasizes the various methods used to support 
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batch and recursive estimation, practical approaches for implementing designs 
that meet requirements, and methods for evaluating performance. It focuses on 
model development, since it is generally the most diffi cult part of estimator 
design. Much of this material has been previously published in various papers and 
books, but it has not all been collected in a form that is particularly helpful to 
engineers, scientists, or mathematicians responsible for implementing practical 
algorithms. 

 Before presenting details, we start with a general explanation of the estimation 
problem and a brief history of estimation theory.  

   1.1    THE FORWARD AND INVERSE MODELING PROBLEM 

 Modeling of physical systems is often referred to as either  forward modeling  or 
 inverse modeling . In forward modeling a set of known parameters and external 
inputs are used to model (predict) the measured output of a system. A forward 
model is one that can be used for simulation purposes. In inverse modeling (a term 
used by Gauss) a set of measured values are used to infer (estimate) the model 
states that best approximate the measured behavior of the true system. Hence 
 “ inverse modeling ”  is a good description of the estimation process. 

 Figure  1.1    shows a generic forward model: a set of  j  constant parameters  p , a 
deterministic time - varying set of  l  input variables  u (  τ  ) defi ned over the time inter-
val  t  0     ≤      τ      ≤     t , and an unknown set of  k  random process inputs  q (  τ  ) — also defi ned 
over the time interval  t  0     ≤      τ      ≤     t  — are operated on by a linear or nonlinear operator 
 f   t  ( p , u , q , t ) to compute the set of  n  states  x ( t ) at each measurement time  t . (Bold 
lower case letters are used to represent vectors, for example,  p     =    [  p  1     p  2     ·  ·  ·     p j  ]  T  . 
Bold upper case letters are used later to denote matrices. The subscript  “  t  ”  on  f  
denotes that it is a  “ truth ”  model.) The states included in vector  x ( t ) are assumed 
to completely defi ne the system at the given time. In control applications  u ( t ) is 
often referred to as a  control  input, while in biological systems it is referred to as 
an  exogenous  input.   

 Noise - free measurements of the system output,  y   t  ( t ), are obtained from a linear 
or nonlinear transformation on the state  x ( t ). Finally it is assumed that the actual 

     FIGURE 1.1:     Generic forward model.  
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measurements are corrupted by additive random noise  r ( t ), although measurement 
noise is often not considered part of the forward model. 

 A polynomial in time is a simple example of a forward model. For example, the 
linear position of an object might be modeled as  x ( t )    =     p  1     +     p  2  t     +     p  3  t  2  where  t  rep-
resents the time difference from a fi xed epoch. A sensor may record the position 
of the object as a function of time and random noise may corrupt the measurements, 
that is,  y(t)      =      x(t)      +      r(t) . This is a one - dimensional example where neither process 
noise ( q ) nor forcing inputs ( u ) affect the measurements. The state will be multidi-
mensional for most real - world problems. 

 The inputs  p ,  u ,  q , and  r  may not exist in all models. If the random inputs rep-
resented by  q ( t ) are present, the model is called  stochastic ; otherwise it is  determin-
istic . In some cases  q ( t ) may not be considered part of the forward model since it 
is unknown to us. Although the model of Figure  1.1  is shown to be a function of 
time, some models are time - invariant or are a function of one, two, or three spatial 
dimensions. These special cases will be discussed in later chapters. It is generally 
assumed in this book that the problem is time - dependent. 

 Figure  1.2  graphically shows the inverse modeling problem for a deterministic 
model. We are given the time series (or possibly a spatially distributed set) of 
 “ noisy ”  measurements  y ( t ), known system inputs  u ( t ), and models (time evolution 
and measurement) of the system. These models,  f   m  ( p , u , t ) and  h   m  ( x ), are unlikely to 
exactly match the true system behavior (represented by  f   t  ( p , u , t ) and  h   t  ( x )), which 
are generally unknown to us. To perform the estimation, actual measurements  y ( t ) 
are differenced with model - based predictions of the measurements  y   m  ( t ) to compute 
measurement residuals. The set of measurement residuals for the entire data span 
is processed by an optimization algorithm to compute a new set of parameter values 
that minimize some function of the measurement residuals. In least - squares estima-
tion the  “ cost ”  or  “ loss ”  function to be minimized is the sum - of - squares, possibly 
weighted, of all residuals. Other optimization criteria will be discussed later. The 
new parameter values are passed to the time evolution and measurement models 

     FIGURE 1.2:     Deterministic inverse modeling.  
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to compute another set of model - based predicted measurements. A new set of 
measurement residuals is computed for the entire data span and a new cost function 
is computed. If the models are linear, only one iteration is normally required to 
converge on parameters that minimize the cost function. If the models are nonlin-
ear, multiple iterations will be required to compute the optimum.   

 The optimization process may update the estimates of  p  after each new measure-
ment is received. This is called recursive estimation and is particularly useful when 
process noise  q ( t ) is present in the system. This topic is discussed in Chapter  8  
(Kalman fi ltering) and later chapters. 

 This inverse modeling summary was intended as a high - level description of 
estimation. It intentionally avoided mathematical rigor so that readers unfamiliar 
with estimation theory could understand the concepts before being swamped with 
mathematics. Those readers with signifi cant estimation experience should not be 
discouraged: the math will quickly follow.  

   1.2    A BRIEF HISTORY OF ESTIMATION 

 Estimation theory started with the least - squares method, and earliest applications 
modeled motion of the moon, planets, and comets. Work by Johannes Kepler  (1619)  
established the geometric laws governing motion of heavenly bodies, and Sir Isaac 
Newton ( 1687 )   demonstrated that universal gravitation caused these bodies to move 
in conic sections. However, determination of orbits using astronomical observations 
required long spans of data and results were not as accurate as desired — particularly 
for comets. In the mid - 1700s it was recognized that measurement errors and hypo-
thetical assumptions about orbits were partly responsible for the problem. Carl 
Friedrich Gauss claims to have fi rst used the least - squares technique in 1795, when 
he was only 18, but he did not initially consider it very important. Gauss achieved 
wide recognition in 1801 when his predicted return of the asteroid Ceres proved to 
be much more accurate than the predictions of others. Several astronomers urged 
him to publish the methods employed in these calculations, but Gauss felt that more 
development was needed. Furthermore, he had  “ other occupations. ”  Although 
Gauss ’ s notes on the Ceres calculations appear contradictory, he probably employed 
an early version of the least - squares method. Adrien - Marie Legendre   indepen-
dently invented the method — also for modeling planetary motion — and published 
the fi rst description of the technique in a book printed in 1806. Gauss continued to 
refi ne the method, and in 1809 published a book ( Theoria Motus ) on orbit deter-
mination that included a detailed description of least squares. He mentioned 
Legendre ’ s work, but also referred to his earlier work. A controversy between 
Gauss and Legendre ensued, but historians eventually found suffi cient evidence to 
substantiate Gauss ’ s claim as the fi rst inventor. 

 Gauss ’ s  (1809)  explanation of least squares showed great insight and may have 
been another reason that he is credited with the discovery. Gauss recognized that 
observation errors could signifi cantly affect the solution, and he devised a method 
for determining the orbit to  “ satisfy all the observations in the most accurate 
manner possible. ”  This was accomplished  “ by a suitable combination of more 
observations than the number absolutely requisite for the determination of the 
unknown quantities. ”  He further recognized that  “  …  the most probable system of 
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values of the quantities  …  will be that in which the sum of the squares of the dif-
ferences between the actually observed and computed values multiplied by numbers 
that measure the degree of precision is a minimum. ”  

 Gauss ’ s work may have been infl uenced by the work of others, but he was the 
fi rst to put all the pieces together to develop a practical method. He recognized the 
need for redundancy of observations to eliminate the infl uence of measurement 
errors, and also recognized that determining the most probable values implied 
minimizing observation residuals. He computed these measurement residuals 
  � � … �y y ym1 2, ,  using equations (models) of planetary motion and measurements that 
were based on an  “ approximate knowledge of the orbit. ”  This approach allowed 
iterative solution of nonlinear problems. Gauss reasoned that measurement errors 
would be independent of each other so that the joint probability density function 
of the measurement residuals would be equal to the product of individual density 
functions. Further he claimed that the normal density function would be
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where  w i   are weighting factors that take into account measurement errors. Gauss 
noted that the maximum of the probability density function is determined by maxi-
mizing the logarithm of the density function. For the assumed conditions, this is 
equivalent to minimizing the measurement residual sum - of - squares. Figure  1.3  
shows the general structure of the least - squares method devised by Gauss, where 
vector  y  includes all measurements accumulated over a fi xed period of time (if time 
is an independent variable of the problem).   

 Improvements in the least - squares computational approach, statistical and prob-
ability foundations, and extensions to other applications were made by Pierre -
 Simon Laplace, Andrey Markov, and Friedrich Helmert after 1809. In the early 
1900s Sir Ronald Fisher ( 1918 ,  1925 ) developed the maximum likelihood and analy-
sis of variance methods for parameter estimation. However, no fundamental exten-
sions of estimation theory were made until the 1940s. Until that time applications 
generally involved parameter estimation using deterministic models. Andrey 
Kolmogorov and Norbert Wiener were concerned with modeling unknown stochas-
tic signals corrupted by additive measurement noise. The presence of random 
dynamic noise made the stochastic problem signifi cantly different from least - squares 

     FIGURE 1.3:     Least - squares solution to inverse modeling.  
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parameter estimation. Kolmogorov ( 1941 ) analyzed transition probabilities for a 
Markov process, and the discrete - time linear least - squares smoothing and predic-
tion problem for stationary random processes. Wiener  (1949)  independently exam-
ined a similar prediction problem for continuous systems. Wiener ’ s work was 
motivated by physical applications in a variety of fi elds, but the need to solve fi re 
control and signal processing problems was a driving factor. This led him to study 
fi ltering and fi xed - lag smoothing. Figure  1.4  shows a simplifi ed version of the general 
problem addressed by Wiener fi ltering for multidimensional  y ( t ) and  s ( t ).   

 Message and measurement error processes are described by correlation functions 
or equivalently  power spectral densities  (PSD), and the minimum mean - squared 
error solution for the optimal weighting matrix  G ( t ) is computed using the Wiener -
 Hopf integral equation in the time domain:

    R G Rsy ss d( ) ( ) ( )τ λ τ λ λ τ= − < < ∞
∞

∫0
0     (1.2-1)     

 where  R   sy  (  τ  )    =     E [ s ( t ) y   T  ( t     −      τ  )],  R   ss  (  τ  )    =     E [ s ( t ) s   T  ( t     −      τ  )],  E [ · ] denotes the expected 
value of random variables and it is assumed that either  s ( t ),  y ( t ), or both are zero 
mean. The correlation functions  R   sy  (  τ  ) and  R   ss  (  τ  ) are empirically obtained from 
sampled data, or computed analytically if the signal characteristics are known. The 
steady - state fi lter gain,  G ( t ), is computed by factorization of the power spectral 
density function — a frequency domain approach. (Details of the method are pre-
sented later in Chapter  8 .) The resulting fi lter can be implemented as either  infi nite 
impulse response  (IIR) — where a recursive implementation gives the fi lter an  “ infi -
nite ”  memory to all past inputs — or as  fi nite impulse response  (FIR) where the fi lter 
operates on a sliding window of data, and data outside the window have no effect 
on the output. Figure  1.5  shows the IIR implementation. Unfortunately the spectral 
factorization approach assumes an infi nite data span, so the solution is not realiz-
able. Wiener avoided this problem by assuming a fi nite delay in the fi lter, where 

     FIGURE 1.4:     Simplifi ed forward system model for Wiener fi ltering.  
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the delay was chosen suffi ciently long to make approximation errors small. Other 
extensions of Wiener ’ s work were made by Bode and Shannon ( 1950 ), and Zadeh 
and Ragazzini ( 1950 ). They both assumed that the dynamic system could be 
modeled as a shaping fi lter excited by white noise, which was a powerful modeling 
concept.   

 While Kolmogorov ’ s and Wiener ’ s works were a signifi cant extension of estima-
tion technology, there were few practical applications of the methods. The assump-
tions of stationary random processes and steady - state solutions limited the usefulness 
of the technique. Various people attempted to extend the theory to nonstationary 
random processes using time - domain methods. Interest in state - space descriptions, 
rather than covariance, changed the focus of research, and led to recursive least -
 squares designs that were closely related to the present Kalman fi lter. Motivated 
by satellite orbit determination problems, Peter Swerling ( 1959 ) developed a 
discrete - time fi lter that was essentially a Kalman fi lter for the special case of noise -
 free dynamics; that is, it still addressed deterministic rather than stochastic pro-
blems. Events having the greatest impact on technology occurred in 1960 and 1961 
when Rudolf Kalman published one paper on discrete fi ltering (1960), another on 
continuous fi ltering (1961), and a joint paper (Kalman and Bucy  1961 ) on continu-
ous fi ltering. The papers used the state - space approach, computed the solution as 
minimum mean - squared error, discussed the duality between control and estima-
tion, discussed observability and controllability issues, and presented the material 
in a form that was easy to understand and implement. The design allowed for non-
stationary stochastic signals and resulted in a solution with time - varying gains. The 
Kalman fi lter was quickly recognized as a very important tool. Stanley Schmidt 
realized that Kalman ’ s approach could be extended to nonlinear problems. This 
led to its use for midcourse navigation on the National Aeronautics and Space 
Administration (NASA) Apollo moon program in 1961 (Schmidt  1981 ; McGee and 
Schmidt  1985 ). 

 Figure  1.6  shows the generic model structure used as the basis of the Kalman 
fi lter design:  q ( t ) and    r ( t ) are white random noise and   Φ  ( Δ  t ) is the state transition 
matrix for the time interval  Δ  t . Notice that the dynamic and measurement models 

     FIGURE 1.6:     Forward model structure assumed by discrete Kalman fi lter.  
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are similar to those used in least - squares estimation, but they allow for the presence 
of random process noise, and the state vector  x  is defi ned using a moving epoch ( t ) 
rather than a fi xed epoch ( t  0 ).   

 More information on Gauss ’ s work and subsequent estimation history can be 
found in Gauss  (1809) , B ü hler  (1981) , Sorenson  (1970) , Meditch  (1973) , Anderson 
and Moore  (1979) ,  Å str ö m  (1980) , Tapley et al.  (2004) , Simon  (2006) , Grewal and 
Andrews  (2001) , Kailath  (1968)   , Bennett  (1993) , and Schmidt  (1981) .  

   1.3    FILTERING, SMOOTHING  ,   AND PREDICTION 

 The estimation problem is further classifi ed as either fi ltering, smoothing, or predic-
tion. Figure  1.7  graphically shows the differences. In the fi ltering problem the goal 
is to continuously provide the  “ best ”  estimate of the system state at the time of the 
last measurement, shown as  t  2 . When a new measurement becomes available, the 
fi lter processes the measurement and provides an improved estimate of the state 
  ˆ ( )x t  at the new measurement time. In many systems — such as target tracking for 
collision avoidance or fi re control — the goal is to provide an estimate of the state 
at some future time  t  3 . This is the prediction problem, and provided that the linear 
fi lter state estimate at  t  2  is optimal, the predicted state is obtained by simply inte-
grating the state vector at  t  2 :

  ˆ ( ) ˆ ( ) ˆ ( ) ,x x xt t d
t

t

3 2
2

3
= + ∫ � λ λ    

 that is, the optimal linear predictor is the integral of the optimal linear fi lter. If the 
dynamic model is deterministic, the same approach can be applied to obtain the 
optimal state at any time prior to  t  2 . That is, integrate   ˆ ( )x t2  backward in time from 
 t  2  to  t  1 . This assumption is implicit when using batch least - squares estimation: the 
 epoch time  at which the state is defi ned is arbitrary as the state at any other time 
may be obtained by analytic or numerical integration. However, when the dynamic 
model is subject to random perturbations — the stochastic case handled by Wiener 
or Kalman fi ltering — the optimal smoothed estimate at times in the past cannot be 
obtained by simple integration. As you may guess, the optimal smoothed estimate 
is obtained by weighting measurements near the desired smoothed time  t  1  more 
than those far from  t  1 . Smoothed estimates must be computed using a time history 
of fi lter estimates, or information that is equivalent. Optimal smoothing is discussed 
in Chapter  9 .  

     FIGURE 1.7:     Filtering, smoothing, and prediction.  
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   1.4    PREREQUISITES 

 Many early books on Kalman fi ltering included introductory chapters on linear 
and matrix algebra, state - space methods, probability, and random (stochastic) 
processes. This was desirable since few engineers at that time had good back-
ground in these areas. That situation has changed somewhat. We assume that the 
reader has been exposed to these topics, but may need a refresher course. Hence, 
the fi rst appendix summarizes matrix algebra and the second summarizes proba-
bility and random process theory. Numerous references provide more background 
for those who want it. Particularly recommended are Papoulis and Pillai  (2002) , 
Kay  (1988) , Marple  (1987) , Cooper and McGillem  (1967) , Jazwinski  (1970) , 
 Å str ö m  (1970) , and Parzen  (1960)  for information on probability, stochastic pro-
cesses, and spectral properties; DeRusso et al.  (1965)  for state - space methods and 
matrix operations; Lawson and Hanson  (1974)   , Bj ö rck  (1996) , and Golub and Van 
Loan  (1996)  for least - squares estimation and matrix theory; and Kay  (1988) , 
Marple  (1987) , Gelb  (1974) , and Simon  (2006)  for material on several of these 
topics. 

 It is more important that the reader be familiar with matrix algebra than prob-
ability theory. Suffi cient background is provided within the text to understand 
discussions involving stochastic processes, but it will be diffi cult to follow the 
material if the reader is not familiar with matrix algebra. Although somewhat less 
important, we also assume that the reader is familiar with Fourier, Laplace, and Z 
transforms. These topics are covered in many texts for various fi elds. Of the books 
previously mentioned, Cooper and McGillem  (1967)  and DeRusso et al.  (1965)  
provide good background on transforms.  

   1.5    NOTATION 

 Unfortunately the notation used in estimation literature is not entirely consistent. 
This is partly due to the limited number of letters in the combined English and 
Greek alphabets, and the application of estimation to fi elds that each have their 
own notation. Even Kalman and Bucy used slightly different notations in different 
publications. 

 We tend to use Kalman ’ s and Bucy ’ s notation, but with modifi cations. Vectors 
are represented as bold lower case letters, and matrices are bold upper case letters. 
Dots above variables denote time derivative (  � ��x dx dt x d x dt= =/ , /2 2), an overbar 
denotes the unconditional mean value of a random variable (  x E x= [ ]), a  “ hat ”  
denotes the mean value conditioned on knowledge of other random variables 
(  ˆ [ | ]x E x y= ), and a tilde denotes the error in a conditional mean (  �x x x= − ˆ ). 

 Variable  x  is generally used to denote the state vector. Unless otherwise stated, 
vectors are assumed to be column vectors. Functional dependence of one 
variable on another is expressed using parentheses [ x ( t )], discrete - time samples 
of a variable are denoted using subscripts [ x i      =     x ( t i  )], and the state estimate at 
one time conditioned on measurement data ( y ) up to another time is denoted 
as   ˆ ( | , , )/x E x t y y yi j i j j= [ ]−1 1… . (Other authors sometimes use ( – ) to denote  a priori  
estimates,   ˆ ( ) ( | , )x E x t y yi i i− = [ ]−1 1… , and ( + ) to denote  a posteriori  estimates, 
  ˆ ( ) ( | , , )x E x t y y yi i i i+ = [ ]−1 1… .) 
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 Use of subscripts for time dependence may occasionally become confusing 
because subscripts are also used to denote elements of a vector or matrix. For 
example,  A jk   usually denotes the (  j,k ) element of matrix  A . If  A  is also a function 
of time  t i  , one might use ( A   i  )  jk  . Another alternative is to list the subscripts in paren-
theses, but this could also be ambiguous in that it implies functional dependence. 
We only show subscripts in parentheses when listing pseudo - code for algorithms. 
We also use the MATLAB/Fortran 90  “ colon ”  notation to denote a range of a 
vector or array, that is,  A (1   :    n , i ) denotes elements 1 to  n  of column  i  of matrix  A , 
and  A (:, i ) denotes the entire column  i . If rows or columns of  A  are treated as vectors 
in algorithms,  a  :   i   denotes column  i  and  a   i   :  denotes row  i . 

 Even more confusing, we occasionally use subscripts separated by an underscore 
to denote a condition under which the variable is defi ned. The text should clarify 
the notation in these cases. Superscripts generally denote exponents of a variable, 
but there are a few exceptions. For example,  s  *  is the complex conjugate of complex 
variable  s . Exponents on matrices have the following meanings for matrix  A :  A   T   is 
the transpose,  A   H   is the Hermitian (complex conjugate transpose),  A   − 1  is the inverse 
and  A  #  is the pseudo - inverse. These terms are defi ned in Appendix  A . 

 Set notation is often used to defi ne variables such as vectors and matrices. For 
example,  A     ∈     R n    ×    m   is sometimes used to denote that  A  is a real - valued matrix 
having  n  rows and  m  columns, or  x     ∈     R n   is a real vector with  n  elements. Another 
example is  x ( t ),  t     ∈    [0,T) to indicate that variable  x  is defi ned over the time 
interval 0    ≤     t     <     T . Set notation is cumbersome for the purpose of this book, and 

  TABLE 1.1 :   Comparison of Least - Squares Estimation and Kalman Filtering 

   Attribute     Least Squares (LS)     Kalman Filter (KF)  

  Batch versus 
recursive solution  

  Batch LS on fi nite data span 
(FIR). 

 Recursive LS (IIR)  

  Recursive (IIR) on 
unlimited data span. 

 Fixed interval smoother can 
provide  “ batch ”  solution 
on fi nite data span.  

  Real - time processing    Batch LS requires periodic 
execution. 

 Recursive LS will eventually 
ignore new data unless 
re - initialized. Can also 
de - weight older data.  

  Ideal for real - time 
processing  

  Dynamic model    Deterministic    Stochastic: may be time -
 varying and nonstationary  

  Solution for 
nonlinear models  

  Iterative Gauss - Newton 
solution uses linear 
expansion at each 
iteration  

  Extended KF linearizes 
about current estimate at 
each measurement. 

 Other approaches are 
available.  

  Inclusion of prior 
information  

  Yes: Bayesian solution 
 No: Maximum likelihood or 

weighted least - squares 
solution  

  Standard KF requires prior 
estimate. 

 Information KF can operate 
without prior.  
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potentially confusing. Hence we describe  A  as an  n     ×     m  matrix, and  x  as an  n  -
 element vector. 

 Also, many probability texts use upper case variables to denote the domain of 
a random variable with lower case variables used to denote realizations of the 
variable, for example,   ˆ [ | ]x E X Y y= = . While mathematically more precise than 
  ˆ [ | ]x E x y= , it is also cumbersome and usage is limited.  

   1.6    SUMMARY 

 We have shown how estimation can be viewed as an inverse modeling problem that 
accounts for the effects of measurement noise. Gauss and Legendre developed the 
least - squares method for deterministic models while Wiener and Kolmorgov devel-
oped a steady - state fi ltering approach for stationary stochastic models. Kalman, 
Bucy, and others extended the method to time - varying nonstationary stochastic 
systems using a state - space model. Table  1.1  compares various attributes of least -
 squares estimation and Kalman fi ltering. This table is partially a summary of Chapter 
 1 , and partly an introduction to later chapters. Some terms have not yet been 
defi ned, but you can probably guess the meaning — details will be provided in later 
chapters. You may want to look at this table again after reading subsequent 
chapters.   

 The most important distinction between the least - squares and Kalman fi ltering 
methods is the allowance for process noise in the Kalman fi lter dynamic model; that 
is, the Kalman fi lter can handle stochastic problems while the least - squares method 
cannot. Other differences, such as batch versus recursive implementation, tend 
to be less important because either method can be made to perform similarly to 
the other.    
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