
Part 1

Visual Basic:
The Language
◆ Chapter 1: Getting Started with Visual Basic 2010

◆ Chapter 2: Handling Data

◆ Chapter 3: Visual Basic Programming Essentials

CO
PYRIG

HTED
 M

ATERIA
L





Chapter 1

Getting Started with
Visual Basic 2010

I’m assuming that you have installed one of the several versions of Visual Studio 2010. For this
book, I used the Professional edition of Visual Studio, but just about everything discussed in
this book applies to the Standard edition as well. Some of the Professional edition features that
are not supported by the Standard edition include the database tools, which are discussed in
Chapter 15 through Chapter 18 of this book.

You may have already explored the new environment on your own, but I’m going to start
with an overview of Visual Studio and its basic tools for the benefit of readers who aren’t famil-
iar with them. I will not assume any prior knowledge of Visual Basic 6 or Visual Basic .NET,
just some familiarity with programming at large.

As you already know, Visual Basic 2010 is just one of the languages you can use to build
applications with Visual Studio 2010. I happen to be convinced that it is also the simplest, most
convenient language, but this isn’t really the issue; I’m assuming you have your reasons to code
in VB or you wouldn’t be reading this book. What you should keep in mind is that Visual Stu-
dio 2010 is an integrated environment for building, testing, debugging, and deploying a vari-
ety of applications: Windows applications, web applications, classes and custom controls, and
even console applications. It provides numerous tools for automating the development process,
visual tools for performing many common design and programming tasks, and more features
than any author could hope to cover.

In this chapter, you’ll learn how to do the following:

◆ Navigate the integrated development environment of Visual Studio

◆ Understand the basics of a Windows application

Exploring the Integrated Development Environment
Visual Basic 2010 is just one of the languages you can use to program your applications. The
language is only one aspect of a Windows application. The visual interface of the application
isn’t tied to a specific language, and the same tools you’ll use to develop your application’s
interface will also be used by all programmers, regardless of the language they’ll use to code
the application.



4 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

To simplify the process of application development, Visual Studio provides an environment
that’s common to all languages, known as an integrated development environment (IDE). The pur-
pose of the IDE is to enable the developer to do as much as possible with visual tools before
writing code. Even as you write code, the IDE will help you in many ways. For example, it
underlines errors, it suggests the keywords that may appear at the current place in your code in
a list, and it even provides tools for locating and fixing errors (a process known as debugging).

The IDE provides tools for designing, executing, and debugging your applications. It will be
a while before you explore all the elements of the IDE, and I will explain the various items as
needed in the course of the book. In the following sections, you’ll look at the basic components
of the IDE you’ll be using to build simple Windows applications. You’ll learn how its tools
allow you to quickly design the user interface of your application as well as how to program
the application.

The IDE is your second desktop, and you’ll be spending most of your productive hours in
this environment.

The Start Page
When you run Visual Studio 2010 for the first time, you will be prompted to select the type
of projects you plan to build so that the environment can be optimized for that specific type
of development. I’m assuming that you have initially selected the Visual Basic Development
settings, which will optimize your copy of Visual Studio for building Windows and web appli-
cations with Visual Basic 2010. You can always change these settings, as explained at the end of
this section.

After the initial configuration, you will see a window similar to the one shown in Figure 1.1.
The Recent Projects tab will be empty, of course, unless you have already created some test
projects. Visual Studio 2010 will detect the settings of a previous installation, so if you’re
upgrading from an earlier version of Visual Studio, the initial screen will not be identical to the
one shown in Figure 1.1.

Figure 1.1

This is what you’ll see
when you start Visual
Studio for the first time.



EXPLORING THE INTEGRATED DEVELOPMENT ENVIRONMENT 5

On the Start Page window of Visual Studio, you will see the following panes under the Get
Started heading:

Welcome Click the Welcome tab to see a series of links that provide developer assistance for
using Visual Studio. These links include What’s New In Visual Studio 2010, Creating Applica-
tions With Visual Studio, and Extending Visual Studio, among others. Other related links may
be added as this book goes to the printer.

Windows Here you’ll find a list of topics related to Windows application development. Win-
dows applications, frequently referred to as desktop applications, are the applications you
install on a local computer and execute locally.

Web Here you’ll find a list of topics related to web application development. Web applica-
tions are executed on a remote computer, the web server, and you interact with them through
a browser.

Cloud, Office, SharePoint In addition to Windows and web applications, Visual Studio can
be used to develop applications for Office and SharePoint as well as applications that use a new
Microsoft platform for building distributed applications, the Azure platform. These three types
of projects aren’t discussed in this book.

Data Here you’ll find a list of topics related to data-driven programming. All applications
that interact with a database are data driven; they can be Windows or web applications. The
principles of interacting with a database (retrieve, display, and update database data) are the
same regardless of whether you use them to build Windows or web applications.

Recent Projects Here you see a list of the projects you opened most recently with Visual Stu-
dio, and you can select the one you want to open again — chances are you will continue work-
ing on the same project as the last time. Each project name is a hyperlink, and you can open a
project by clicking its name. Above the list of recent projects there are two hyperlinks — one for
creating a new project and another one for opening a new solution. You will find more infor-
mation on solutions and projects later in this chapter.

Most developers will skip the Start Page. To do so, open the Tools menu and choose the
Import And Export Settings command to start a configuration wizard. In the first dialog box
of the wizard, select the Reset All Settings check box and then click the Next button. The next
screen of the wizard prompts you for a location in which to save the new settings so that
Visual Studio can read them every time it starts. Leave the default location as is and click
Next again to see the last screen of the wizard, in which you’re prompted to select a default
collection of settings. This collection depends on the options you’ve installed on your system.
I installed Visual Studio 2010 with Visual Basic only on my system, and I was offered the
following options (among others): General Development Settings, Visual Basic Development
Settings, and Web Development. For the default configuration of my copy of Visual Studio,
and for the purpose of this book, I chose Visual Basic Development Settings so that Visual
Studio could optimize the environment for a typical VB developer. Click the Finish button to
see a summary of the process and then close the wizard.

Starting a New Project
At this point, you can create a new project and start working with Visual Studio. To best
explain the various items of the IDE, let’s build a simple form. The form is the window of your
application — it’s what users will see on their Desktop when they run your application.



6 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

The basic work item with Visual Studio is the solution, which is a container for one or more
projects. When you create a set of related projects, they should belong to the same solution. (In
this book, you’ll learn how to build individual, unrelated projects.) Even when you create an
individual new project, though, Visual Studio automatically creates a solution for it. You can
add a new or existing project to the solution at any time.

Open the File menu and choose New Project, or click the New Project link on the Start
Page. In the New Project dialog box that pops up (see Figure 1.2), you’ll see a list of project
types you can create with Visual Studio. The most important ones are Windows Forms Appli-
cations, which are typical Windows applications with one or more forms (windows); Console
Applications, which are simple applications that interact with the user through a text window
(the console); Windows Forms Control Libraries, which are collections of custom controls; and
Class Libraries, which are collections of classes. These are the project types I’ll cover in depth
in this book.

Figure 1.2

The New Project
dialog box

If you have Visual Basic 2010 Express edition installed, you will see fewer project types in
the New Project dialog box, but all of the projects discussed in this book are included.

Notice the Create Directory For Solution check box in the dialog box shown in Figure 1.2.
If this box is checked, Visual Studio will create a new folder for the solution under the folder
you specify in the Location box. You also have the option to create a new solution or add the
project to the current solution, if you have one open at the time. While following along with the
projects of this book, you should create a new solution for each project and store it in its own
folder.

You may discover at some point that you have created too many projects and you
don’t really need all of them. You can remove unwanted projects from your system by
deleting the corresponding folders — no special action is required. You’ll know it’s time
to remove unneeded project folders when Visual Studio suggests project names such as
WindowsApplication9 or WindowsApplication49.

For this project, select the Windows Forms Application template; Visual Studio suggests the
name WindowsApplication1 as the project name. Change it to MyTestApplication, select the
Create Directory For Solution check box, and then click the OK button to create the new project.



EXPLORING THE INTEGRATED DEVELOPMENT ENVIRONMENT 7

What you see now is the Visual Studio IDE displaying the Form Designer for a new project,
as shown in Figure 1.3. The main window of your copy of Visual Studio may be slightly dif-
ferent, but don’t worry about it. I’ll go through all the components you need to access in the
process of designing, coding, and testing a Windows application.

Figure 1.3

The integrated develop-
ment environment of
Visual Studio 2010 for a
new project

Output

Click to access
the Toolbox.

Form Designer
Default new form component

Pushpin icons
lock and unlock
window positions.

Solution Explorer

Click AZ to display
the properties in
alphabetical order.

The Properties window
is also known as the
Properties Browser.

Click a property
name to edit.

The new project contains a form already: the Form1 component in the Solution Explorer. The
main window of the IDE is the Form Designer, and the gray surface on it is the window of
your new application in design mode. Using the Form Designer, you’ll be able to design the
visible interface of the application (place various components of the Windows interface on the
form and set their properties) and then program the application.

The default environment is rather crowded, so let’s hide a few of the toolbars that we won’t
use in the projects of the first few chapters. You can always show any of the toolbars at any
time. Open the View menu and choose Toolbars. You’ll see a submenu with 28 commands that
are toggles. Each command corresponds to a toolbar, and you can turn the corresponding tool-
bar on or off by clicking one of the commands in the Toolbars submenu. For now, turn off all
the toolbars except the Layout and Standard toolbars. These are the toolbars shown by default
and you shouldn’t hide them; if you do (perhaps to make more room for the designer), this is
the place where you go to make them visible again.

The last item in the Toolbars submenu is the Customize command; Customize leads to a dia-
log box in which you can specify which of the toolbars and which of the commands you want
to see. After you have established a work pattern, use this menu to customize the environment
for the way you work with Visual Studio. You can hide just about any component of the IDE,
except for the main menu — after all, you have to be able to undo the changes!

Using the Windows Form Designer
To design the form, you must place on it all the controls you want to display to the user at
runtime. The controls are the components of the Windows interface (buttons, text boxes, radio
buttons, lists, and so on). Open the Toolbox by moving the pointer over the Toolbox tab at the



8 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

far left; the Toolbox, shown in Figure 1.4, pulls out. This Toolbox contains an icon for each con-
trol you can use on your form.

Figure 1.4

Windows Forms Toolbox
of the Visual Studio IDE

The controls are organized into groups according to function on the interface. In the first
part of the book, you’ll create simple Windows applications and you’ll use the controls on the
Common Controls tab. When you develop web applications, you will see a different set of icons
in the Toolbox.

To place a control on the form, you can double-click the icon for the control. A new instance
with a default size will be placed on the form. Then you can position and resize it with the
mouse. Or you can select the control from the Toolbox with the mouse and then click and drag
the mouse over the form and draw the outline of the control. A new instance of the control
will be placed on the form, and it will fill the rectangle you specified with the mouse. Start by
placing a TextBox control on the form.

The control properties will be displayed in the Properties window. Figure 1.5 shows the
properties of a TextBox control. This window, at the far right edge of the IDE and below the
Solution Explorer, displays the properties of the selected control on the form. If the Properties
window is not visible, open the View menu and choose Properties Window, or press F4. If no
control is selected, the properties of the selected item in the Solution Explorer are
displayed.

In the Properties window, also known as the Properties Browser, you see the properties
that determine the appearance of the control and (in some cases) its function. The properties
are organized in categories according to their role. The properties that determine the appear-
ance of the control are listed alphabetically under the header Appearance, the properties that
determine the control’s behavior are listed alphabetically under the header Behavior, and so on.



EXPLORING THE INTEGRATED DEVELOPMENT ENVIRONMENT 9

You can click the AZ button on the window’s title bar to display all properties in alphabetical
order. After you familiarize yourself with the basic properties, you will most likely switch to
the alphabetical list.

Figure 1.5

Properties of a TextBox
control

Rearranging the IDE Windows

As soon as you place a control on the form, the Toolbox retracts to the left edge of the
Designer. You can fix this window on the screen by clicking the pushpin icon on the Toolbox’s
toolbar. (It’s the icon next to the Close icon at the upper-right corner of the Toolbox window,
and it appears when the Toolbox window is docked but not while it’s floating.)

You can easily rearrange the various windows that make up the IDE by moving them around
with the mouse. Move the pointer to a window’s title bar, press the left mouse button, and
drag the window around. If you can’t move a window with the mouse, it’s because the win-
dow’s position is locked. In this case, click the pushpin icon to unlock the window’s position
and then move it around with the mouse.

As you move the window, eight semitransparent buttons with arrows appear on the screen,
indicating the areas where the window can be docked, as shown in the following screen shot.
Keep moving the window until the pointer hovers over one of these buttons and the docking
area appears in semitransparent blue color. Find a position you like and release the mouse
button to dock it. If you release the mouse button while the pointer is not on top of an arrow,
the window is not docked. Instead, it remains where you dropped it as a floating window, and
you can move it around with your mouse at will.



10 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

Most developers would rather work with docked windows, and the default positions of the
IDE windows are quite convenient. If you want to open even more windows and arrange
them differently on the screen, use the docking feature of the IDE to dock the additional
windows.

Locate the TextBox control’s Text property and set it to My TextBox Control by entering
the string into the box next to the property name. The control’s Text property is the string that
appears in the control (the caption), and most controls have a Text property.

Next locate its BackColor property and select it with the mouse. A button with an arrow
appears next to the current setting of the property. Click this button and you’ll see a dialog
box with three tabs (Custom, Web, and System), as shown in Figure 1.6. In this dialog box, you
can select the color that will fill the control’s background. Set the control’s background color to
yellow and notice that the control’s appearance changes on the form.

One of the settings you’ll want to change is the font of the various controls. While the
TextBox control is still selected on the form, locate the Font property in the Properties window.
You can click the plus sign in front of the property name and set the individual properties of
the font, or you can click the ellipsis button to invoke the Font dialog box. Here you can set
the control’s font and its attributes and then click OK to close the dialog box. Set the TextBox
control’s Font property to Verdana, 14 points, bold. As soon as you close the Font dialog box,
the control on the form is adjusted to the new setting.

There’s a good chance that the string you assigned to the control’s Text property won’t fit
in the control’s width when rendered in the new font. Select the control on the form with the
mouse and you will see eight handles along its perimeter. Rest the pointer over any of these
handles and it will assume a shape indicating the direction in which you can resize the control.



EXPLORING THE INTEGRATED DEVELOPMENT ENVIRONMENT 11

Make the control long enough to fit the entire string. If you have to, resize the form as well.
Click somewhere on the form, and when the handles appear along its perimeter, resize it with
the mouse.

Figure 1.6

Setting a color prop-
erty in the Properties
window

Some controls, such as the Label, Button, and CheckBox controls, support the AutoSize
property; AutoSize determines whether the control is resized automatically to accommodate
the caption. The TextBox control, as well as many others, doesn’t support the AutoSize prop-
erty. If you attempt to make the control tall enough to accommodate a few lines of text, you’ll
realize that you can’t change the control’s height. By default, the TextBox control accepts a sin-
gle line of text, and you must set its MultiLine property to True before you can resize the
TextBox control vertically.

The Font Is a Design Element

Like documents, forms should be designed carefully and follow the rules of a printed page
design. At the very least, you shouldn’t use multiple fonts on your forms, just as you shouldn’t
mix different fonts on a printed page. You could use two font families on rare occasions, but
you shouldn’t overload your form. You also shouldn’t use the bold style in excess.

To avoid adjusting the Font property for multiple controls on the form, set the font for the
form first because each control you place on a form inherits the form’s font. If you change the
form’s font, the controls will be adjusted accordingly, but this may throw off the alignment
of the controls on the form. Experiment with a few Label controls, select a font that you like
that’s appropriate for your interface (you shouldn’t use a handwritten style with a business
application, for example), and then set the form’s Font property to the desired font. Every



12 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

time you add a new form to the application, you should start by setting its Font property to
that same font so that the entire application will have a consistent look.

The font is the most basic design element, whether you’re designing forms or a document.
Various components of the form may have a different font size, even a different style (like
bold or italics), but there must be a dominant font family that determines the look of the
form. The Verdana family was designed for viewing documents on computer monitors and is a
popular choice. Another great choice is Segoe UI, a new font family introduced with Windows
Vista. The Segoe Print font has a distinguished handwritten style, and you can use it with
graphics applications.

The second most important design element is color, but don’t get too creative with colors
unless you’re a designer. I recommend that you stay with the default colors and use similar
shades to differentiate a few elements of the interface.

The design of a modern interface has become a new discipline in application develop-
ment, and there are tools for designing interfaces. One of them is Microsoft’s Expression
Blend, which enables designers to design the interface and developers to write code with-
out breaking each other’s work. You can download a trial version of Expression Blend from
www.microsoft.com/expression.

So far, you’ve manipulated properties that determine the appearance of the control. Now
you’ll change a property that determines not only the appearance, but also the function of the
control. Locate the Multiline property. Its current setting is False. Expand the list of available
settings and change it to True. (You can also change it by double-clicking the name of the prop-
erty. This action toggles the True/False settings.) Switch to the form, select the TextBox control,
and make it as tall as you wish.

The Multiline property determines whether the TextBox control can accept one (if
Multiline = False) or more (if Multiline = True) lines of text. Set this property to True, go
back to the Text property, set it to a long string, and press Enter. The control breaks the long
text into multiple lines. If you resize the control, the lines will change, but the entire string will
fit in the control because the control’s WordWrap property is True. Set it to False to see how the
string will be rendered on the control.

Multiline TextBox controls usually have a vertical scroll bar so users can quickly locate the
section of text that they’re interested in. Locate the control’s ScrollBars property and expand
the list of possible settings by clicking the button with the arrow. This property’s settings are
None, Vertical, Horizontal, and Both. Set it to Vertical, assign a very long string to its Text
property, and watch how the control handles the text. At design time, you can’t scroll the text
on the control; if you attempt to move the scroll bar, the entire control will be scrolled. The
scroll bar will work as expected at runtime. (It will scroll the text vertically.)

You can also make the control fill the entire form. Start by deleting any other controls you
may have placed on the form and then select the multiline TextBox. Locate the Dock property
in the Properties window and keep double-clicking the name of the property until its setting
changes to Fill. (You’ll learn a lot more about docking controls in Chapter 6, ‘‘Working with
Forms.’’) The TextBox control fills the form and is resized as you resize the form, both at design
time and runtime.

To examine the control’s behavior at runtime, press F5. The application will be compiled,
and a few moments later, a window filled with a TextBox control (like the one shown in



CREATING YOUR FIRST VB APPLICATION 13

Figure 1.7) will appear on the Desktop. This is what the users of your application would see (if
this were an application worth distributing, of course).

Figure 1.7

A TextBox control dis-
playing multiple text
lines

Enter some text on the control, select part of the text, and copy it to the Clipboard by press-
ing Ctrl+C. You can also copy text from any other Windows application and paste it on the
TextBox control. Right-click the text on the control and you will see the same context menu you
get with Notepad; you can even change the reading order of the text — not that you’d want
to do that with a Western language. When you’re finished, open the Debug menu and choose
Stop Debugging. This will terminate your application’s execution, and you’ll be returned to the
IDE. The Stop Debugging command is also available as a button with a blue square icon on
the toolbar. Finally, you can stop the running application by clicking the Close button in the
application’s window.

The design of a new application starts with the design of the application’s form, which is the
application’s user interface, or UI. The design of the form determines to a large extent the func-
tionality of the application. In effect, the controls on the form determine how the application
will interact with the user. The form itself could serve as a prototype, and you could demon-
strate it to a customer before even adding a single line of code. By placing controls on the
form and setting their properties, you’re implementing a lot of functionality before coding the
application. The TextBox control with the settings discussed in this section is a functional text
editor.

Creating Your First VB Application
In this section, I will walk you through the development of a simple application to demon-
strate not only the design of the interface, but also the code behind the interface. You’ll build
an application that allows users to enter the name of their favorite programming language, and
the application will evaluate the choice. Objectively, VB is a step ahead of all other languages,
and it will receive the best evaluation. All other languages get the same grade — good — but
not VB.



14 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

The project is called WindowsApplication1. You can download the project from
www.sybex.com/go/masteringvb2010 and examine it, but I suggest you follow the steps
outlined in this section to build the project from scratch. Start a new project, use the default
name, WindowsApplication1, and place a TextBox and a Button control on the form. Use the
mouse to position and resize the controls on the form, as shown in Figure 1.8.

Figure 1.8

A simple applica-
tion that processes a
user-supplied string

Start by setting the form’s Font property to Segoe UI, 9 pt. Arrange and size the controls
as shown in Figure 1.8. Then, place a Label control on the form and set its Text property to
Enter your favorite programming language. The Label will be resized according to its cap-
tion because the control’s AutoSize property is True by default. To be sure that a Label control
will not grow too long and cover other controls on the form, set its AutoSize property to False
and size it manually. As you move the controls around on the form, you’ll see some blue lines
connecting the edges of the controls when they’re aligned. These lines are called snap lines, and
they allow you to align controls on the form.

Now you must insert some code to evaluate the user’s favorite language. Windows applica-
tions are made up of small code segments, called event handlers, which react to specific actions
such as the click of a button, the selection of a menu command, the click of a check box, and
so on. For this example, you want to program the action of clicking the button. When the user
clicks the button, you want to execute some code that will display a message.

The Windows programming model is known as event-driven programming, as it’s based
on programming events. A Windows form contains controls, such as Buttons, CheckBoxes,
TextBoxes, and so on. These controls react to certain events, which are usually initiated by the
user. A button click, checking or clearing a check box, a drag and a drop operation — all are
examples of user-initiated events. You decide the events to which your application should react
and then program the desired actions by inserting some code into the event’s handler. Event
handlers are independent of one another, and you can focus on one event at a time.

To insert some code behind the Button control, double-click the control. You’ll see the form’s
code window, which is shown in Figure 1.9. You will see only the definition of the procedure,
not the code that is shown between the two statements in the figure. The statement beginning
with Private… is too long to fit on the printed page, so I had to break it into two lines. When
a line is too long, you can break it into two (or more) lines by pressing Enter. In previous ver-
sions, you had to insert a space followed by an underscore to indicate that the statement con-
tinues on the following line. Alternatively, you can turn on the word wrap feature of the editor
(you’ll see shortly how to adjust the editor’s properties). Notice that I also inserted quite a bit



CREATING YOUR FIRST VB APPLICATION 15

of space before the second half of the first code line. It’s customary to indent continued lines so
they can be easily distinguished from the other lines.

Figure 1.9

Outline of a subrou-
tine that handles the
Click event of a Button
control

The editor opens a subroutine, which is delimited by the following statements:

Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click

End Sub

At the top of the main pane of the Designer, you will see two tabs named after the form: the
Form1.vb [Design] tab and the Form1.vb tab. The first tab is the Windows Form Designer (in
which you build the interface of the application with visual tools), and the second is the code
editor (in which you insert the code behind the interface). At the top of the code editor, which
is what you see in Figure 1.9, are two ComboBoxes. The one on the left contains the names
of the controls on the form. The one on the right contains the names of events each control
recognizes. When you select a control (or an object, in general) in the left list, the other list’s
contents are adjusted accordingly. To program a specific event of a specific control, select the
name of the control in the left list (the Objects list) and the name of the event in the right list
(the Events list). While Button1 is selected in the Objects list, open the Events list to see the
events to which the button can react.

The Click event happens to be the default event of the Button control. To program the But-
ton’s Click event, double-click the Button on the form and the editor will open a window with
the Button1_Click subroutine. This subroutine is an event handler, which is invoked automati-
cally every time an event takes place. The event of interest in our example is the Click event of
the Button1 control. Every time the Button1 control on the form is clicked, the Button1_Click
subroutine is activated. To react to the Click event of the button, you must insert the appropri-
ate code in this subroutine.

There are more than two dozen events for the Button control, and it is among the simpler
controls. (After all, what can you do to a button besides click it?) Most of the controls recognize
a very large number of events, which we rarely code. I’ve never seen a button that reacts
to a double-click, even though you can program this event, or coding for the KeyPress



16 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

event, which is fired when the user presses a key when the button has the focus. When
programming a TextBox control, however, the KeyPress event is one of the most common
events to code.

The definition of the event handler can’t be modified; this is the event handler’s signature
(the arguments it passes to the application). All event handlers in VB 2010 pass two arguments
to the application: the sender argument, which is an object that represents the control that fired
the event, and the e argument, which provides additional information about the event.

The name of the subroutine is made up of the name of the control, followed by an
underscore and the name of the event (Button1_Click). This is just the default name, and
you can change it to anything you like (such as EvaluateLanguage, for this example, or
StartCalculations). What makes this subroutine an event handler is the keyword Handles at
the end of the statement. The Handles keyword tells the compiler which event this subroutine
is supposed to handle. Button1.Click is the Click event of the Button1 control. If there were
another button on the form, the Button2 control, you’d have to write code for a subroutine
that would handle the Button2.Click event. Each control recognizes many events, and you
can provide a different event handler for each control and event combination. Of course, we
never program every possible event for every control.

The controls have a default behavior and handle the basic events on their own. The TextBox
control knows how to handle keystrokes. The CheckBox control (a small square with a check
mark) changes state by hiding or displaying the check mark every time it’s clicked. The Scroll-
Bar control moves its indicator (the button in the middle of the control) every time you click
one of the arrows at the two ends. Because of this default behavior of the controls, you need
not supply any code for the events of most controls on the form.

If you change the name of the control after you have inserted some code in an event han-
dler, the name of the event handled by the subroutine will be automatically changed. The name
of the subroutine, however, won’t change. If you change the name of the Button1 control to
bttnEvaluate, the subroutine’s header will become

Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles bttnEvaluate.Click

End Sub

Rename the Button1_Click subroutine to EvaluateLanguage. You must edit the code to
change the name of the event handler. I try to name the controls before adding any code to
the application so that their event handlers will be named correctly. Alternatively, you can use
your own name for each event handler. The default names of the controls you place on a form
are quite generic, and you should change them to something more meaningful. I usually prefix
the control names with a few characters that indicate the control’s type (such as txt, lbl, bttn,
and so on), followed by a name that reflects the function of the control on the form. Names
such as txtLanguage and bttnEvaluate make your code far more readable. It’s a good prac-
tice to change the default names of the controls as soon as you add the controls to the form.
Names such as Button1, Button2, Button3, and so on, don’t promote the readability of your
code. With the exception of this first sample project, I’m using descriptive names for the con-
trols used in this book’s projects.

Let’s add some code to the Click event handler of the Button1 control. When this but-
ton is clicked, I want to examine the text the user entered in the text box. If it’s Visual Basic,



CREATING YOUR FIRST VB APPLICATION 17

I want to display one message; if not, I want to display a different message. Insert the lines of
Listing 1.1 between the Private Sub and End Sub statements. (I’m showing the entire listing
here, but there’s no reason to retype the first and last statements.)

Listing 1.1: Processing a user-supplied string

Private Sub EvaluateLanguage(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click

Dim language As String
language = TextBox1.Text
If language = "Visual Basic" Then

MsgBox("We have a winner!")
Else

MsgBox(language & " is not a bad language.")
End If

End Sub

Here’s what this code does. First, it assigns the text of the TextBox control to the variable
language. A variable is a named location in memory where a value is stored. Variables
are where you store the intermediate results of your calculations when you write code. All
variables are declared with a Dim statement and have a name and a type. The first statement
declares a new variable, the language variable, with the Dim statement and sets its type to
String (it’s a variable that will store text).

You could also declare and assign a value to the language variable in a single step:

Dim language = TextBox1.Text

The compiler will create a String variable, because the statement assigns a string to the vari-
able. We’ll come back to the topic of declaring and initializing variables in Chapter 2, ‘‘Han-
dling Data.’’

Then the program compares the value of the language variable to the string Visual Basic,
and depending on the outcome of the comparison, it displays one of two messages. The
MsgBox() function displays the message that you passed as an argument by placing it between
the parentheses in a small window with an OK button, as shown in Figure 1.8. The argument
for a MsgBox() function must be a string. Users can view the message and then click the OK
button to close the message box.

Even if you’re not familiar with the syntax of the language, you should be able to under-
stand what this code does. Visual Basic is the simplest of the languages supported by Visual
Studio 2010, and I will discuss the various aspects of the language in detail in the following
chapters. In the meantime, focus on understanding the process of developing a Windows appli-
cation: how to build the visible interface of the application and how to program the events to
which you want your application to react.

The code of this first application isn’t very robust. If the user doesn’t enter the string with
the exact spelling shown in the listing, the comparison will fail. You can convert the string to
uppercase and then compare it with VISUAL BASIC to eliminate differences in case. To convert



18 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

a string to uppercase, use the ToUpper method of the String class. The following expression
returns the string stored in the language variable, converted to uppercase:

language.ToUpper

You should also take into consideration the fact that the user might enter VB or VB2010, or
something similar. You never know what users may throw at your application, so whenever
possible you should try to limit their responses to the number of available choices. In this case,
you could display the names of certain languages (the ones you’re interested in) and force the
user to select one of them.

One way to display a limited number of choices is to use a ComboBox control. In the next
section, you’ll revise your sample application so that users won’t have to enter the name of the
language. You’ll force them to select their favorite language from a list so that you won’t have
to validate the string supplied by the user.

Making the Application More User Friendly
Start a new project: the WindowsApplication2 project. Do not select the Create Directory For
Solution check box; save the project from within the IDE. As soon as the project is created,
open the File menu and choose Save All to save the project. When the Save Project dialog box
appears, click the Browse button to select the folder where the project will be saved. In the
Project Location dialog box that appears, select an existing folder or create a new folder such
as MyProjects or VB.NET Samples.

Open the Toolbox and double-click the ComboBox tool icon. A ComboBox control will be
placed on your form. Now, place a Button control on the form and position it so that your form
looks like the one shown in Figure 1.10. Then set the Text property for the button to Evaluate
My Choice.

Figure 1.10

Displaying options in a
ComboBox control

You must now populate the ComboBox control with the valid choices. Select the ComboBox
control on the form by clicking it with the mouse and locate its Items property in the Proper-
ties window. The setting of this property is Collection, which means that the Items property



CREATING YOUR FIRST VB APPLICATION 19

doesn’t have a single value; it’s a collection of items (strings, in this case). Click the ellipsis but-
ton and you’ll see the String Collection Editor dialog box, as shown in Figure 1.11.

Figure 1.11

Click the ellipsis button
next to the Items prop-
erty of a ComboBox to
see the String Collection
Editor dialog box.

The main pane in the String Collection Editor dialog box is a TextBox, in which you can
enter the items you want to appear in the ComboBox control at runtime. Enter the following
strings, one per row and in the order shown here:

C++
C#

Visual Basic

Java

Cobol

Click the OK button to close the dialog box. The items you just entered will not appear on
the control at design time, but you will see them when you run the project. Before running
the project, set one more property. Locate the ComboBox control’s Text property and set it to
Select your favorite programming language. This is not an item of the list; it’s the string that
will initially appear on the control.

You can run the project now and see how the ComboBox control behaves. Press F5 and
wait a few seconds. The project will be compiled, and you’ll see the form displayed on your
Desktop, on top of the Visual Studio window. I’m sure you know how the ComboBox control
behaves in a typical Windows application, and your sample application is no exception. You
can select an item on the control, either with the mouse or with the keyboard. Click the button
with the arrow to expand the list and then select an item with the mouse. Or press the down or
up arrow keys to scroll through the list of items. The control isn’t expanded, but each time you
click an arrow button, the next or previous item in the list appears on the control. Press the Tab
key to move the focus to the Button control and press the spacebar to emulate a Click event
(or simply click the Button control).

You haven’t told the application what to do when the button is clicked yet, so let’s go back
and add some code to the project. Stop the application by clicking the Stop button on the tool-
bar (the solid black square) or by choosing Debug � Stop Debugging from the main menu.
When the form appears in design mode, double-click the button and the code window will



20 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

open, displaying an empty Click event handler. Insert the statements shown in Listing 1.2
between the Private Sub and End Sub statements.

Listing 1.2: The revised Click event handler

Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click

Dim language As String
language = ComboBox1.Text
If language = "Visual Basic" Then

MsgBox("We have a winner!")
Else

MsgBox(language & "is not a bad language.")
End If

End Sub

When the form is first displayed, a string that doesn’t correspond to a language is displayed
in the ComboBox control. This is the string that prompts the user to select a language; it isn’t a
valid selection because it’s not included in the list of items.

You can also preselect one of the items from within your code when the form is first loaded.
When a form is loaded, the Load event of the Form object is raised. Double-click somewhere on
the form and the editor will open the form’s Load event handler:

Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

End Sub

Enter the following code to select the Visual Basic item when the form is loaded:

Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

ComboBox1.SelectedIndex = 2
End Sub

SelectedIndex is a property of the ComboBox control that returns the index of the selected
item in the Items collection. You can set it to an integer value from within your code to select
an item on the control, and you can also use it to retrieve the index of the selected item in the
list. Instead of comparing strings, you can compare the SelectedIndex property to the value
that corresponds to the index of the item Visual Basic, with a statement such as the following:

If ComboBox1.SelectedIndex = 2 Then
MsgBox("We have a winner!")

Else
MsgBox(ComboBox1.Text & " is not a bad language.")

End If



UNDERSTANDING THE IDE COMPONENTS 21

The Text property of the ComboBox control returns the text on the control, and it’s used
to print the selected language’s name. The & symbol is an operator, similar to the arithmetic
operators, that concatenates two strings. The first string is the Text property of the ComboBox
control and the second string is a literal enclosed in double quotes. To combine the two, use the
concatenation operator.

Of course, if you insert or remove items from the list, you must edit the code accordingly.
If you run the application and test it thoroughly, you’ll realize that there’s a problem with the
ComboBox control. Users can type in the control a new string, which will be interpreted as a
language. By default, the ComboBox control allows users to type in something in addition to
selecting an item from the list. To change the control’s behavior, select it on the form and locate
its DisplayStyle property in the Properties window. Expand the list of possible settings for
the control and change the property’s value from DropDown to DropDownList. Run the applica-
tion again and test it; your sample application has become bulletproof. It’s a simple application,
but you’ll see more techniques for building robust applications in Chapter 4, ‘‘GUI Design and
Event-Driven Programming.’’

The controls on the Toolbox are more than nice pictures you can place on your forms. They
encapsulate a lot of functionality and expose properties that allow you to adjust their appear-
ance and their functionality. Most properties are usually set at design time, but quite frequently
you change the properties of various controls from within your code. And it should be obvious
by now that the changes take place from within the code that resides in the handlers for the
events to which the application should react.

Now that you’re somewhat familiar with the process of building Windows applications, and
before you look into any additional examples, I will quickly present the components of the
Visual Studio IDE.

Understanding the IDE Components
The IDE of Visual Studio 2010 contains numerous components, and it will take you a while to
explore them. It’s practically impossible to explain in a single chapter what each tool, window,
and menu command does. I’ll discuss specific tools as we go along and as the topics become
more and more advanced. In the following sections, I will go through the basic items of the
IDE — the ones you’ll use in the following few chapters to build simple Windows applications.

The IDE Menus
The IDE menus provide access to a variety of commands; some lead to submenus. Notice that
most menus can be displayed as toolbars. Also, not all options are available at all times. The
options that cannot possibly apply to the current state of the IDE are either invisible or dis-
abled. The Edit menu is a typical example. It’s quite short when you’re designing the form and
quite lengthy when you edit code. The Data menu disappears altogether when you switch to
the code editor — you can’t use these menu options while editing code. If you open an XML
document in the IDE, the XML item will be added to the menu bar of Visual Studio. Yes, Visual
Studio can handle XML files too. Not only that, but Visual Basic provides built-in support for
XML files, which I’ll help you explore in Chapter 13, ‘‘XML in Modern Programming.’’

File Menu

The File menu contains commands for opening and saving projects or project items as well as
commands for adding new or existing items to the current project. For the time being, use the



22 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

New � Project command to create a new project, Open � Project/Solution to open an existing
project or solution, Save All to save all components of the current project, and the Recent
Projects submenu to open one of the recent projects.

Edit Menu

The Edit menu contains the usual editing commands. Among these commands are the
Advanced command and the IntelliSense command. Both commands lead to submenus, which
are discussed next. Note that these two items are visible only when you’re editing your code
and are invisible while you’re designing a form.

Edit � Advanced Submenu

The following options are the more-interesting ones available through the Edit � Advanced
submenu:

View White Space Space characters (necessary to indent lines of code and make it easy to
read) are replaced by periods.

Word Wrap When a code line’s length exceeds the length of the code window, the line is
automatically wrapped.

Comment Selection/Uncomment Selection Comments are lines you insert between your
code statements to document your application. Every line that begins with a single quote is
a comment; it is part of the code, but the compiler ignores it. Sometimes, you want to disable a
few lines from your code but not delete them (because you want to be able to restore them later,
should you change your mind). A simple technique to disable a line of code is to comment
it out (insert the comment symbol in front of the line). The Comment Selection/Uncomment
Selection command allows you to comment (or uncomment) large segments of code in a single
move.

Edit � IntelliSense Submenu

Edit � IntelliSense leads to a submenu with five options, which are described next. IntelliSense
is a feature of the editor (and other Microsoft applications) that displays as much informa-
tion as possible, whenever possible. When you type the name of a control and the following
period, IntelliSense displays a list of the control’s properties and methods so that you can select
the desired one — no more guessing at names. When you type the name of a function and an
opening parenthesis, IntelliSense will display the syntax of the function — its arguments. The
IntelliSense submenu includes the following options:

List Members When this option is on, the editor lists all the members (properties, methods,
events, and argument list) in a drop-down list. This list appears when you enter the name
of an object or control followed by a period. Then, you can select the desired member from
the list using either the mouse or the keyboard. Let’s say your form contains a control named
TextBox1 and you’re writing code for this form. When you enter the name of the control fol-
lowed by a period (TextBox1.), a list with the members of the TextBox control will appear (as
shown in Figure 1.12).

In addition, a description of the selected member is displayed in a ToolTip box, as you can
see in the same figure. Select the Text property and then enter the equal sign, followed by a
string in quotes, as follows:

TextBox1.Text = "Your User Name"



UNDERSTANDING THE IDE COMPONENTS 23

Figure 1.12

Viewing the members of
a control in the Intelli-
Sense drop-down list

If you select a property that can accept a limited number of settings, you will see the names of
the appropriate constants in a drop-down list. If you enter the following statement, you will
see the constants you can assign to the property (see Figure 1.13):

TextBox1.TextAlign =

Figure 1.13

Viewing the possible
settings of a prop-
erty in the IntelliSense
drop-down list

Again, you can use your mouse to select the desired value. The drop-down list with the mem-
bers of a control or object (the Members list) remains open until you type a terminator key (the
Esc or End key) or select a member by pressing the spacebar or the Enter key.

Parameter Info While editing code, you can move the pointer over a variable, method, or
property and see its declaration in a pop-up box. You can also jump to the variable’s definition
or the body of a procedure by choosing Go To Definition from the context menu that appears if
you right-click the variable or method name in the code window.

Quick Info Quick Info is another IntelliSense feature that displays information about com-
mands and functions. When you type an opening parenthesis following the name of a function,
for example, the function’s arguments will be displayed in a ToolTip box. The first argument
appears in bold font; after a value for this argument is entered, the next one is shown in bold.
If an argument accepts a fixed number of settings, these values will appear in a drop-down list,
as explained previously.

Complete Word The Complete Word feature enables you to complete the current word by
pressing Ctrl+spacebar. For example, if you type TextB and then press Ctrl+spacebar, you
will see a list of words that you’re most likely to type (TextBox, TextBox1, and so on).

Insert Snippet This command opens the Insert Snippet window at the current location in the
code editor window. Code snippets, which are an interesting feature of Visual Studio 2010, are
discussed in the section ‘‘Using Code Snippets’’ later in this chapter.



24 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

Edit � Outlining Submenu

A practical application contains a substantial amount of code in a large number of event han-
dlers and custom procedures (subroutines and functions). To simplify the management of the
code window, the Outlining submenu contains commands that collapse and expand the various
procedures.

Let’s say you’re finished editing the Click event handlers of several buttons on the form.
You can reduce these event handlers to a single line that shows the names of the procedures
with a plus sign in front of them. You can expand a procedure’s listing at any time by clicking
the plus sign. When you do so, a minus sign appears in front of the procedure’s name, and
you can click it to collapse the body of the procedure again. The Outlining submenu contains
commands to handle the outlining of the various procedures or to turn off outlining and view
the complete listings of all procedures. You will use these commands as you write applications
with substantial amounts of code:

Hide Selection This option lets you hide the selected code segment. You can select part of
a routine or multiple routines, which are hidden as a whole with this command. To display
the hidden code, click the plus icon on the left margin, or use the Stop Hiding Selection
command.

Toggle Outlining Expansion This option lets you change the outline mode of the current
procedure. If the procedure’s definition is collapsed, the code is expanded, and vice versa.

Toggle All Outlining This option is similar to the Toggle Outlining Expansion option, but it
toggles the outline mode of the current document. A form is reduced to a single statement. A
file with multiple classes is reduced to one line per class.

Stop Outlining This option turns off outlining and adds a new command to the Outlining
submenu, Start Automatic Outlining, which you can select to turn on automatic outlining
again.

Stop Hiding Current This option stops hiding the currently hidden selection.

Collapse To Definitions This option reduces the listing to a list of procedure headers.

View Menu

This menu contains commands that allow you to display any toolbar or window of the IDE.
The Other Windows command leads to a submenu with the names of some standard windows,
including the Output and Command windows. The Output window is the console of the appli-
cation. The compiler’s messages, for example, are displayed in the Output window. The Com-
mand window allows you to enter and execute statements. When you debug an application,
you can stop it and enter VB statements in the Command window. Another related window is
the Immediate window, which is very similar to the Command window, and it has the advan-
tage of displaying the IntelliSense box as you type. You’ll see how to use these windows later
in this book (they’re used mostly for debugging).

Project Menu

This menu contains commands for adding items to the current solution (an item can be a form,
a file, a component, or another project). The last option in this menu is the Project Properties
command, which opens the project’s properties pages. The Add Reference and Add Web
Reference commands allow you to add references to .NET components and web components,



UNDERSTANDING THE IDE COMPONENTS 25

respectively. These two commands are also available in the project’s shortcut menu (to open
this menu, right-click the name of the project in the Solution Explorer).

Build Menu

The Build menu contains commands for building (compiling) your project. The two basic
commands in this menu are Build and Rebuild All. The Build command compiles (builds
the executable for) the entire solution, but it doesn’t compile any components of the project
that haven’t changed since the last build. The Rebuild All command clears any existing files
and builds the solution from scratch. Every time you start your application, Visual Studio
recompiles it as needed so you don’t usually have to build your application to execute it. There
are situations (when you add custom classes and controls to your application) when you must
build the project. These topics are discussed later in this book.

Debug Menu

This menu contains commands to start or end an application as well as the basic debugging
tools. The basic commands of this menu are discussed briefly in Chapter 4.

Data Menu

This menu contains commands you will use with projects that access data. You’ll see how to
use this short menu’s commands in the discussion of the visual database tools in Chapter 16
through Chapter 18.

Format Menu

The Format menu, which is visible only while you design a Windows or web form, contains
commands for aligning the controls on the form. The commands accessible from this menu are
discussed in Chapter 4. The Format menu is invisible when you work in the code editor — the
commands apply to the visible elements of the interface.

Tools Menu

This menu contains a list of useful tools, such as the Macros command, which leads to a sub-
menu with commands for creating macros. Just as you can create macros in a Microsoft Office
application to simplify many tasks, you can create macros to automate many of the repetitive
tasks you perform in the IDE. The last command in this menu, the Options command, leads to
the Options dialog box, in which you can fully customize the environment. The Choose Tool-
box Items command opens a dialog box that enables you to add more controls to the Toolbox.
In Chapter 9, ‘‘Building Custom Windows Controls,’’ you’ll learn how to design custom con-
trols and add them to the Toolbox.

Window Menu

This is the typical Window menu of any Windows application. In addition to the list of
open windows, it contains the Hide command, which hides all toolboxes, leaving the entire
window of the IDE devoted to the code editor or the Form Designer. The toolboxes don’t
disappear completely; they’re all retracted, and you’ll be able see the tabs on the left and
right edges of the IDE window. To expand a toolbox, just hover the mouse pointer over the
corresponding tab.



26 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

Help Menu

This menu contains the various help options. The Dynamic Help command opens the Dynamic
Help window, which is populated with topics that apply to the current operation. The Index
command opens the Index window, in which you can enter and get help on a specific topic.

The Toolbox Window
The Toolbox window contains all the controls you can use to build your application interface.
This window is usually retracted, and you must move the pointer over it to view the Toolbox.
The controls in the Toolbox are organized in various tabs, so take a look at them to become
familiar with their functions.

In the first few chapters, we’ll work with the controls in the Common Controls and Menus
& Toolbars tabs. The Common Controls tab contains the icons for the most common Windows
controls, while the All Windows Controls tab contains all the controls you can place on
your form. The Data tab contains the icons for the objects you will use to build data-driven
applications (they’re explored later in this book). The Menus & Toolbars tab contains the Menu
and ContextMenu controls (they’re discussed in Chapter 4) among others. On the Printing tab
you will find all the controls you’ll need to create printouts, and they’re discussed briefly in
Chapter 11 and in more detail in the tutorial ‘‘Printing with Visual Basic.’’ The Dialogs tab
contains controls for implementing the common dialog controls, which are so common in
Windows interfaces; they’re discussed in Chapter 7, ‘‘More Windows Controls.’’

The Solution Explorer Window
The Solution Explorer window contains a list of the items in the current solution. A solution
can contain multiple projects, and each project can contain multiple items. The Solution
Explorer displays a hierarchical list of all the components, organized by project. You can
right-click any component of the project and choose Properties in the context menu to see the
selected component’s properties in the Properties window. If you select a project, you will see
the Project Properties dialog box. You will find more information on project properties in the
following chapter.

If the solution contains multiple projects, you can right-click the project you want to become
the startup form and select Set As StartUp Project. (The Startup project is the one that starts
executing when you press F5 in the IDE.) You can also add items to a project with the Add
Item command from the context menu or remove a component from the project with the
Exclude From Project command. This command removes the selected component from the
project but doesn’t affect the component’s file on the disk. The Delete command removes the
selected component from the project and also deletes the component’s file from the disk.

If a project contains many items, you can organize them into folders. Right-click the project
name and select Add from the context menu. From the shortcut menu that appears, select New
Folder. To move an existing item into a folder, just drag it and drop it on one of the project
folders.

The Properties Window
This window (also known as the Properties Browser) displays all the properties of the selected
component and their settings. Every time you place a control on a form, you switch to this
window to adjust the appearance of the control. You have already seen how to manipulate
the basic properties of a control through the Properties window, and you will find many more
examples in this and the following chapter.



UNDERSTANDING THE IDE COMPONENTS 27

Many properties are set to a single value, such as a number or a string. If the possible
settings of a property are relatively few, they’re displayed as meaningful constants in a
drop-down list. Other properties are set through a more elaborate interface. Color properties,
for example, are set on a Color dialog box that’s displayed right in the Properties window.
Font properties are set through the usual Font dialog box. Collections are set in a Collection
Editor dialog box, in which you can enter one string for each item of the collection, as you did
for the items of the ComboBox control earlier in this chapter.

If the Properties window is hidden, or if you have closed it, you can choose View � Prop-
erties Window or right-click a control on the form and choose Properties, or you can simply
press F4 to bring up this window. There will be times when one control might totally overlap
another control, and you won’t be able to select the hidden control and view its properties. In
this case, you can select the desired control in the ComboBox at the top of the Properties win-
dow. This box contains the names of all the controls on the form, and you can select a control
on the form by selecting its name from this box.

The Output Window
The Output window is where many of the tools, including the compiler, send their output.
Every time you start an application, a series of messages is displayed in the Output window.
These messages are generated by the compiler, and you need not understand them at
this point. If the Output window is not visible, choose View � Other Windows � Output
from the menu.

The Command and Immediate Windows
While testing a program, you can interrupt its execution by inserting a breakpoint. When
the breakpoint is reached, the program’s execution is suspended and you can execute a state-
ment in the Immediate window. Any statement that can appear in your VB code can also
be executed in the Immediate window. To evaluate an expression, enter a question mark
followed by the expression you want to evaluate, as in the following samples, where result is
a variable in the program you interrupted:

? Math.Log(35)
? "The answer is " & result.ToString

You can also send output to this window from within your code with the Debug.Write and
Debug.WriteLine methods. Actually, this is a widely used debugging technique — to print
the values of certain variables before entering a problematic area of the code. There are more
elaborate tools to help you debug your application, but printing a few values to the Immediate
window is a time-honored practice in programming with VB.

In many of the examples of this book, especially in the first few chapters, I use the
Debug.WriteLine statement to print something to the Immediate window. To demonstrate the
use of the DateDiff() function, for example, I’ll use a statement like the following:

Debug.WriteLine(DateDiff(DateInterval.Day, #3/9/2007#, #5/15/2008#))

When this statement is executed, the value 433 (which is the number of days between the
two dates) will appear in the Immediate window. This statement demonstrates the syntax of
the DateDiff() function, which returns the difference between the two dates in days. Sending



28 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

some output to the Immediate window to test a function or display the results of intermediate
calculations is a common practice.

To get an idea of the functionality of the Immediate window, switch back to your first
sample application and insert the Stop statement after the End If statement in the button’s
Click event handler. Run the application, select a language, and click the button on the form.
After displaying a message box, the application will reach the Stop statement and its execution
will be suspended. You’ll see the Immediate window at the bottom of the IDE. If it’s not
visible, open the Debug menu and choose Windows � Immediate. In the Immediate window,
enter the following statement:

? ComboBox1.Items.Count

Then, press Enter to execute it. Notice that IntelliSense is present while you’re typing in
the Immediate window. The expression prints the number of items in the ComboBox control.
(Don’t worry about the numerous properties of the control and the way I present them here;
they’re discussed in detail in Chapter 5, ‘‘Basic Windows Controls.’’) As soon as you press
Enter, the value 5 will be printed on the following line.

You can also manipulate the controls on the form from within the Immediate window. Enter
the following statement and press Enter to execute it:

ComboBox1.SelectedIndex = 4

The fifth item on the control will be selected (the indexing of the items begins with 0). How-
ever, you can’t see the effects of your changes because the application isn’t running. Press F5 to
resume the execution of the application and you will see that the item Cobol is now selected in
the ComboBox control.

The Immediate window is available only while the application’s execution is suspended. To
continue experimenting with it, click the button on the form to evaluate your choice. When the
Stop statement is executed again, you’ll be switched to the Immediate window.

Unlike the Immediate window, the Command window is available at design time. The Com-
mand window allows you to access all the commands of Visual Studio by typing their names
in this window. If you enter the string Edit followed by a period, you will see a list of all
commands of the Edit menu, including the ones that are not visible at the time, and you
can invoke any of these commands and pass arguments to them. For example, if you enter
Edit.Find ‘‘Margin’’ in the Command window and then press Enter, the first instance of
the string Margin will be located in the open code window. To start the application, you
can type Debug.Start. You can add a new project to the current solution with the AddProj
command, and so on. Most developers hardly ever use this window in designing or debugging
applications.

The Error List Window
This window is populated by the compiler with error messages if the code can’t be success-
fully compiled. You can double-click an error message in this window and the IDE will take
you to the line with the statement in error — which you should fix. Change the MsgBox() func-
tion name to MssgBox(). As soon as you leave the line with the error, the name of the function
will be underlined with a wiggly red line and the following error description will appear in the
Error List window:

Name ‘MssgBox’ is not declared



SETTING ENVIRONMENT OPTIONS 29

Correct the function name (it should be MsgBox with one s) and the error number will disap-
pear from the Error List window. The Error List window has two more tabs, the Warnings tab
and the Messages tab, which display various warnings.

Setting Environment Options
The Visual Studio IDE is highly customizable. I will not discuss all the customization options
here, but I will show you how to change the default settings of the IDE. Open the Tools menu
and select Options (the last item in the menu). The Options dialog box appears, in which you
can set all the options regarding the environment. Figure 1.14 shows the options for the fonts of
the various items of the IDE. Here you can set the font for the Text Editor, dialog boxes, tool-
boxes, and so on. Select an item in the tree in the left pane list and then set the font for this
item in the box below.

Figure 1.14

The Fonts And Colors
options

Figure 1.15 shows the Projects And Solutions options. The top box indicates the default loca-
tion for new projects. The Save New Projects When Created check box determines whether
the editor will create a new folder for the project when it’s created. If you uncheck this box,
then Visual Studio will create a folder in the Temp folder. Projects in the Temp folder will be
removed when you run the Disk Cleanup utility to claim more space on your hard drives.

By default, Visual Studio saves the changes to the current project every time you press F5.
You can change this behavior by setting the Before Building option in the Build And Run page,
under the Project And Solutions branch. If you change this setting, you must save your project
from time to time with the File � Save All command.

Most of the tabs in the Options dialog box are straightforward, and you should take a look
at them. If you don’t like some of the default aspects of the IDE, this is the place to change
them. If you switch to the Basic item under the Text Editor branch of the tree in the left pane of
the Options dialog box, you will find the Line Numbers option. Select this check box to display
numbers in front of each line in the code window. The Options dialog box contains a lot of
options for customizing your work environment, and it’s worth exploring on your own. Before
you make any changes in the Visual Studio options, make sure you save the current settings
with the Import And Exporting Settings command accessible from the Tools menu.



30 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

Figure 1.15

The Projects And Solu-
tions options

Building a Console Application
Apart from Windows applications, you can use Visual Studio 2010 to build applications that
run in a command prompt window. The command prompt window isn’t really a DOS win-
dow, even though it looks like one. It’s a text window, and the only way to interact with an
application is to enter lines of text and read the output generated by the application, which is
displayed in this text window, one line at a time. This type of application is called a console
application, and I’m going to demonstrate console applications with a single example. We will
not return to this type of application later in the book because it’s not what you’re supposed to
do as a Windows developer.

The console application you’ll build in this section, ConsoleApplication1, prompts users to
enter the name of their favorite language. It then prints the appropriate message on a new line,
as shown in Figure 1.16.

Figure 1.16

A console application
uses the command
prompt window to inter-
act with the user.

Start a new project. In the New Project dialog box, select the template Console Application.
You can also change its default name from ConsoleApplication1 to a more descriptive name.
For this example, don’t change the application’s name.



BUILDING A CONSOLE APPLICATION 31

A console application doesn’t have a user interface, so the first thing you’ll see is the code
editor’s window with the following statements:

Module Module1

Sub Main()

End Sub

End Module

Unlike a Windows application, which is a class, a console application is a module. Main()
is the name of a subroutine that’s executed automatically when you run a console application.
The code you want to execute must be placed between the statements Sub Main() and End Sub.
Insert the statements shown in Listing 1.3 in the application’s Main() subroutine.

Listing 1.3: Console application

Module Module1
Sub Main()

Console.WriteLine("Enter your favorite language")
Dim language As String
language = Console.ReadLine()
language = language.ToUpper
If language = "VISUAL BASIC" Or

language = "VB" Or
language = "VB.NET" Or
language = "VISUAL BASIC 2010" Then

Console.WriteLine("We have a winner!")
Else

Console.WriteLine(language & " is not a bad language.")
End If
Console.WriteLine()
Console.WriteLine()
Console.WriteLine("PRESS ENTER TO EXIT")
Console.ReadLine()

End Sub
End Module

This code is quite similar to the code of the equivalent Windows applications we developed
earlier, except that it uses the Console.WriteLine statement to send its output to the command
prompt window instead of a message box.

A console application doesn’t react to events because it has no visible interface. However,
it’s easy to add some basic elements of the Windows interface to a console application. If you
change the Console.WriteLine method call into the MsgBox() function, the message will be
displayed in a message box.

One reason to build a console application is to test a specific feature of the language with-
out having to build a user interface. Many of the examples in the documentation are console



32 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

applications; they demonstrate the topic at hand and nothing more. If you want to test the
DateDiff() function, for example, you can create a new console application and enter the lines
from Listing 1.4 in its Main() subroutine.

Listing 1.4: Testing the DateDiff() function with a console application

Sub Main()
Console.WriteLine(DateDiff(DateInterval.Day, #3/9/2000#, #5/15/2008#))
Console.WriteLine("PRESS ENTER TO EXIT")
Console.ReadLine()

End Sub

The last two lines will be the same in every console application you write. Without them,
the command prompt window will close as soon as the End Sub statement is reached, and you
won’t have a chance to see the result. The Console.ReadLine method waits until the user
presses the Enter key.

Console applications are convenient for testing short code segments, but Windows program-
ming is synonymous with designing graphical user interfaces, so you won’t find any more
console applications in this book.

Using Code Snippets
Visual Basic 2010 comes with a lot of predefined code snippets for selected actions, and you
can insert these snippets into your code as needed. Let’s say you want to insert the statements
for writing some text to a file, but you have no idea how to access files. Create an empty line in
the listing (press the Enter key a couple of times at the end of a code line). Then open the Edit
menu and choose IntelliSense � Insert Snippet (or right-click somewhere in the code window
and choose Insert Snippet from the context menu).

When Insert Snippet opens, you will see a list of the snippets, organized in folders according
to their function, as shown in Figure 1.17. Double-click any folder name to see the subfold-
ers or actual snippets available for that function. Try it out. Double-click the Fundamentals
folder and take a look at the options available to you: Collections, Data Types, File System, and
Math. Double-click the filesystem item to see a list of common file-related tasks, as shown in
Figure 1.18. Scroll down and locate the item Write Text To A File in the list. Now, double-click
it to insert that snippet at the current location in the code window.

The following snippet will be inserted in your code:

My.Computer.FileSystem.WriteAllText("C:\test.txt", "Text", True)

To write some text to a file, you need to call the WriteAllText method of the
My.Computer.FileSystem object. You can replace the strings shown in the snippet with
actual values. The first string is the filename, the second string is the text to be written to the
file, and the last argument of the method determines whether the text will be appended to the
file (if False) or will overwrite any existing text (if True).

Each snippet shows you the basic statements for performing a common task, and you can
edit the code inserted by Visual Studio as needed. A real-world application would probably
prompt the user for a filename via the File common dialog box and then use the filename spec-
ified by the user in the dialog box instead of a hard-coded filename.



USING THE MY COMPONENT 33

Figure 1.17

The code snippets are
organized according to
function.

Figure 1.18

Selecting a code snippet
to insert in your code

As you program, you should always try to find out whether there’s a snippet for the task at
hand. Sometimes you can use a snippet without even knowing how it works. Although snip-
pets can simplify your life, they won’t help you understand the Framework, which is discussed
in detail throughout this book.

Using the My Component
You have probably noticed that the code snippets available through Visual Studio use an entity
called My — a peculiar object that was introduced with VB 2005 to simplify many program
ming tasks. As you saw in the preceding code snippet, the My component allowed you to write
some text to a file with a single statement, the WriteAllText method. If you’re familiar with
earlier versions of Visual Basic, you know that to actually write text to a file you must first
open a file, then write some text to it, and finally close the file. The My component allows you
to perform all these operations with a single statement.

Another example is the Play method, which you can use to play back a WAV file from
within your code:

My.Computer.Audio.Play ("C:\Sounds\CountDown.wav")

Or you can use it to play back a system sound:

My.Computer.Audio.PlaySystemSound(System.Media.SystemSounds.Exclamation)



34 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

The method that plays back the sound is the Play method, and the method that writes text
to a file is the WriteAllText method. However, you can’t call them directly through the My
component; they’re not methods of the My component. If they were, you’d have to dig hard to
find out the method you need. The My component exposes six components, which contain their
own components. Here’s a description of the basic components of the My component and the
functionality you should expect to find in each component:

My.Application The Application component provides information about the current appli-
cation. The CommandLineArgs property of My.Application returns a collection of strings, which
are the arguments passed to the application when it was started. Typical Windows applications
aren’t called with command-line arguments, but it’s possible to start an application and pass a
filename as an argument to the application (the document to be opened by the application, for
example). The Info property is an object that exposes properties such as DirectoryPath (the
application’s default folder), ProductName, Version, and so on.

My.Computer This component exposes a lot of functionality via a number of properties,
many of which are objects. The My.Computer.Audio component lets you play back sounds.
The My.Computer.Clipboard component lets you access the Clipboard. To find out whether
the Clipboard contains a specific type of data, use the ContainsText, ContainsImage,
ContainsData, and ContainsAudio methods. To retrieve the contents of the Clipboard, use
the GetText, GetImage, GetData, and GetAudioStream methods. Assuming that you have a
form with a TextBox control and a PictureBox control, you can retrieve text or image data from
the Clipboard and display it on the appropriate control with the following statements:

If My.Computer.Clipboard.ContainsImage Then
PictureBox1.Image = My.Computer.Clipboard.GetImage

End If
If My.Computer.Clipboard.ContainsText Then

TextBox2.Text = My.Computer.Clipboard.GetText
End If

You may have noticed that using the My component in your code requires that you write long
statements. You can shorten them substantially via the With statement, as shown next:

With My.Computer.Clipboard
If .ContainsImage Then

PictureBox1.Image = .GetImage
End If
If .ContainsText Then

TextBox2.Text = .GetText
End If

End With

When you’re executing multiple statements on the same object, you can specify the object in
a With statement and call its methods in the block of the With statement by specifying the
method name prefixed with a dot. The With statement is followed by the name of the object
to which all following methods apply and is terminated with the End With statement.

Another property of the My.Computer component is the FileSystem object that exposes
all the methods you need to access files and folders. If you enter the expression



USING THE MY COMPONENT 35

My.Computer.FileSystem followed by a dot, you will see all the methods exposed by
the FileSystem component. Among them, you will find DeleteFile, DeleteDirectory,
RenameFile, RenameDirectory, WriteAllText, ReadAllText, and many more. Select a
method and then type the opening parenthesis. You will see the syntax of the method in a
ToolTip. The syntax of the CopyFile method is as follows:

My.Computer.FileSystem.CopyFile(
sourceFileName As String, destinationFileName As String)

Just specify the path of the file you want to copy and the new file’s name, and you’re finished.
This statement will copy the specified file to the specified location.

You will notice that the ToolTip box with the syntax of the CopyFile method has multiple ver-
sions, which are listed at the left side of the box along with arrow up and arrow down icons.
Click these two buttons to see the next and previous versions of the method. The second ver-
sion of the CopyFile method is as follows:

My.Computer.FileSystem.CopyFile(
sourceFileName As String, destinationFileName As String,
overwrite As Boolean)

The overwrite argument specifies whether the method should overwrite the destination file if
it exists.

The third version of the method accepts a different third argument that determines whether
the usual copy animation will be displayed as the file is being copied.

The various versions of the same method differ in the number and/or type of their arguments,
and they’re called overloaded forms of the method. Instead of using multiple method names
for the same basic operation, the overloaded forms of a method allow you to call the same
method name and adjust its behavior by specifying different arguments.

My.Forms This component lets you access the forms of the current application. You can also
access the application’s forms by name, so the Forms component isn’t the most useful one.

My.Settings This component lets you access the application settings. These settings apply to
the entire application and are stored in an XML configuration file. The settings are created from
within Visual Studio, and you use the Settings component to read them.

My.User This component returns information about the current user. The most important
property of the User component is the CurrentPrincipal property, which is an object that
represents the credentials of the current user.

My.WebServices The WebServices component represents the web services referenced by the
current application.

The My component gives beginners unprecedented programming power and allows you to
perform tasks that would require substantial code if implemented with earlier versions of the
language, not to mention the research it would take to locate the appropriate methods in the
Framework. You can explore the My component on your own and use it as needed. My is not a
substitute for learning the language and the Framework. It can help you initially, but you can’t
go far without learning the methods of the Framework for handling files or any other feature.



36 CHAPTER 1 GETTING STARTED WITH VISUAL BASIC 2010

Let’s say you want to locate all the files of a specific type in a folder, including its sub-
folders. Scanning a folder and its subfolders to any depth is quite a task (you’ll find
the code in the tutorial ‘‘Accessing Folders and Files,’’ which you can download from
www.sybex.com/go/masteringvb2010). You can do the same with a single statement by using
the My component:

Dim files As ReadOnlyCollection(Of String)
files = My.Computer.FileSystem.GetFiles("D:\Data", True, "*.txt")

The GetFiles method populates the files collection with the pathnames of the text files in
the folder D:\Data and its subfolders. However, it won’t help you if you want to process each
file in place. Moreover, this GetFiles method is synchronous: If the folder contains many sub-
folders with many files, it will block the interface until it retrieves all the files. In the tutorial
‘‘Accessing Folders and Files,’’ you’ll see the code that retrieves filenames and adds them to a
control as it goes along.

If you’re already familiar with VB, you may think that the My component is an aid for the abso-
lute beginner or the nonprogrammer. This isn’t true. VB is about productivity, and the My com-
ponent can help you be more productive with your daily tasks, regardless of your knowledge
of the language or programming skills. If you can use My to save a few (or a few dozen) state-
ments, do it. There’s no penalty for using the My component because the compiler replaces the
methods of the My component with the equivalent method calls to the Framework.

The Bottom Line

Navigate the integrated development environment of Visual Studio. To simplify the pro-
cess of application development, Visual Studio provides an environment that’s common to all
languages, known as an integrated development environment (IDE). The purpose of the IDE
is to enable the developer to do as much as possible with visual tools before writing code. The
IDE provides tools for designing, executing, and debugging your applications. It’s your second
desktop, and you’ll be spending most of your productive hours in this environment.

Master It Describe the basic components of the Visual Studio IDE.

Understand the basics of a Windows application. A Windows application consists of
a visual interface and code. The visual interface is what users see at runtime: a form with
controls with which the user can interact — by entering strings, checking or clearing check
boxes, clicking buttons, and so on. The visual interface of the application is designed with
visual tools. The visual elements incorporate a lot of functionality, but you need to write some
code to react to user actions.

Master It Describe the process of building a simple Windows application.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


