
CHAPTER 1
REVIEW

This chapter reviews notation and background material in mathematics, probability,
and statistics. Readers may wish to skip this chapter and turn directly to Chapter 2,
returning here only as needed.

1.1 MATHEMATICAL NOTATION

We use boldface to distinguish a vector x = (x1, . . . , xp) or a matrix M from a scalar
variable x or a constant M. A vector-valued function f evaluated at x is also boldfaced,
as in f(x) = (f1(x), . . . , fp(x)). The transpose of M is denoted MT.

Unless otherwise specified, all vectors are considered to be column vectors, so,
for example, an n × p matrix can be written as M = (x1 . . . xn)T. Let I denote an
identity matrix, and 1 and 0 denote vectors of ones and zeros, respectively.

A symmetric square matrix M is positive definite if xTMx > 0 for all nonzero
vectors x. Positive definiteness is equivalent to the condition that all eigenvalues of
M are positive. M is nonnegative definite or positive semidefinite if xTMx ≥ 0 for all
nonzero vectors x.

The derivative of a function f , evaluated at x, is denoted f ′(x). When x =
(x1, . . . , xp), the gradient of f at x is

f ′(x) =
(

df (x)

dx1
, . . . ,

df (x)

dxp

)
.

The Hessian matrix for f at x is f ′′(x) having (i, j)th element equal to d2f (x)/
(dxi dxj). The negative Hessian has important uses in statistical inference.

Let J(x) denote the Jacobian matrix evaluated at x for the one-to-one mapping
y = f(x). The (i, j)th element of J(x) is equal to dfi(x)/dxj .

A functional is a real-valued function on a space of functions. For example, if
T (f ) = ∫ 1

0 f (x) dx, then the functional T maps suitably integrable functions onto the
real line.

The indicator function 1{A} equals 1 if A is true and 0 otherwise. The real line
is denoted �, and p-dimensional real space is �p.
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1.2 TAYLOR’S THEOREM AND MATHEMATICAL
LIMIT THEORY

First, we define standard “big oh” and “little oh” notation for describing the relative
orders of convergence of functions. Let the functions f and g be defined on a common,
possibly infinite interval. Let z0 be a point in this interval or a boundary point of it
(i.e., −∞ or ∞). We require g(z) /= 0 for all z /= z0 in a neighborhood of z0. Then
we say

f (z) = O(g(z)) (1.1)

if there exists a constant M such that |f (z)| ≤ M|g(z)| as z → z0. For example,
(n + 1)/(3n2) = O(n−1), and it is understood that we are considering n → ∞. If
limz→z0 f (z)/g(z) = 0, then we say

f (z) = O(g(z)). (1.2)

For example, f (x0 + h) − f (x0) = hf ′(x0) + O(h) as h → 0 if f is differentiable at
x0. The same notation can be used for describing the convergence of a sequence {xn}
as n → ∞, by letting f (n) = xn.

Taylor’s theorem provides a polynomial approximation to a function f . Suppose
f has finite (n + 1)th derivative on (a, b) and continuous nth derivative on [a, b]. Then
for any x0 ∈ [a, b] distinct from x, the Taylor series expansion of f about x0 is

f (x) =
n∑

i=0

1

i!
f (i)(x0)(x − x0)i + Rn, (1.3)

where f (i)(x0) is the ith derivative of f evaluated at x0, and

Rn = 1

(n + 1)!
f (n+1)(ξ)(x − x0)n+1 (1.4)

for some point ξ in the interval between x and x0. As |x − x0| → 0, note that Rn =
O(|x − x0|n+1).

The multivariate version of Taylor’s theorem is analogous. Suppose f is a
real-valued function of a p-dimensional variable x, possessing continuous partial
derivatives of all orders up to and including n + 1 with respect to all coordinates, in
an open convex set containing x and x0 /= x. Then

f (x) = f (x0) +
n∑

i=1

1

i!
D(i)(f ; x0, x − x0) + Rn, (1.5)

where

D(i)(f ; x, y) =
p∑

j1=1

· · ·
p∑

ji=1

{(
di

dtj1 · · · dtji

f (t)

∣∣∣∣
t=x

) i∏
k=1

yjk

}
(1.6)
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and

Rn = 1

(n + 1)!
D(n+1)(f ; ξ, x − x0) (1.7)

for some ξ on the line segment joining x and x0. As |x − x0| → 0, note that Rn =
O(|x − x0|n+1).

The Euler–Maclaurin formula is useful in many asymptotic analyses. If f has
2n continuous derivatives in [0, 1], then∫ 1

0
f (x) dx =f (0) + f (1)

2

−
n−1∑
i=0

b2i(f (2i−1)(1) − f (2i−1)(0))

(2i)!
− b2nf

(2n)(ξ)

(2n)!
, (1.8)

where 0 ≤ ξ ≤ 1, f (j) is the jth derivative of f , and bj = Bj(0) can be determined
using the recursion relation

m∑
j=0

(
m + 1

j

)
Bj(z) = (m + 1)zm (1.9)

initialized with B0(z) = 1. The proof of this result is based on repeated integrations
by parts [376].

Finally, we note that it is sometimes desirable to approximate the derivative of
a function numerically, using finite differences. For example, the ith component of
the gradient of f at x can be approximated by

df (x)

dxi

≈ f (x + εiei) − f (x − εiei)

2εi

, (1.10)

where εi is a small number and ei is the unit vector in the ith coordinate direction.
Typically, one might start with, say, εi = 0.01 or 0.001 and approximate the desired
derivative for a sequence of progressively smaller εi. The approximation will
generally improve until εi becomes small enough that the calculation is degraded and
eventually dominated by computer roundoff error introduced by subtractive cancel-
lation. Introductory discussion of this approach and a more sophisticated Richardson
extrapolation strategy for obtaining greater precision are provided in [376]. Finite
differences can also be used to approximate the second derivative of f at x via

df (x)

dxi dxj

≈ 1

4εiεj

(
f (x + εiei + εjej) − f (x + εiei − εjej)

− f (x − εiei + εjej) + f (x − εiei − εjej)

)
(1.11)

with similar sequential precision improvements.
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1.3 STATISTICAL NOTATION AND PROBABILITY
DISTRIBUTIONS

We use capital letters to denote random variables, such as Y or X, and lowercase
letters to represent specific realized values of random variables such as y or x. The
probability density function of X is denoted f ; the cumulative distribution function
is F . We use the notation X ∼ f (x) to mean that X is distributed with density f (x).
Frequently, the dependence of f (x) on one or more parameters also will be denoted
with a conditioning bar, as in f (x|α, β). Because of the diversity of topics covered in
this book, we want to be careful to distinguish when f (x|α) refers to a density function
as opposed to the evaluation of that density at a point x. When the meaning is unclear
from the context, we will be explicit, for example, by using f (·|α) to denote the
function. When it is important to distinguish among several densities, we may adopt
subscripts referring to specific random variables, so that the density functions for
X and Y are fX and fY , respectively. We use the same notation for distributions of
discrete random variables and in the Bayesian context.

The conditional distribution of X given that Y equals y (i.e., X|Y = y) is de-
scribed by the density denoted f (x|y), or fX|Y (x|y). In this case, we write that X|Y has
density f (x|Y ). For notational simplicity we allow density functions to be implicitly
specified by their arguments, so we may use the same symbol, say f , to refer to many
distinct functions, as in the equation f (x, y|μ) = f (x|y, μ)f (y|μ). Finally, f (X) and
F (X) are random variables: the evaluations of the density and cumulative distribution
functions, respectively, at the random argument X.

The expectation of a random variable is denoted E{X}. Unless specifically
mentioned, the distribution with respect to which an expectation is taken is the dis-
tribution of X or should be implicit from the context. To denote the probability of
an event A, we use P[A] = E{1{A}}. The conditional expectation of X|Y = y is
E{X|y}. When Y is unknown, E{X|Y} is a random variable that depends on Y . Other
attributes of the distribution of X and Y include var{X}, cov{X, Y}, cor{X, Y}, and
cv{X} = var{X}1/2/E{X}. These quantities are the variance of X, the covariance and
correlation of X and Y , and the coefficient of variation of X, respectively.

A useful result regarding expectations is Jensen’s inequality. Let g be a convex
function on a possibly infinite open interval I, so

g(λx + (1 − λ)y) ≤ λg(x) + (1 − λ)g(y) (1.12)

for all x, y ∈ I and all 0 < λ < 1. Then Jensen’s inequality states that E{g(X)} ≥
g(E{X}) for any random variable X having P[X ∈ I] = 1.

Tables 1.1, 1.2, and 1.3 provide information about many discrete and contin-
uous distributions used throughout this book. We refer to the following well-known
combinatorial constants:

n! = n(n − 1)(n − 2) · · · (3)(2)(1) with 0! = 1, (1.13)(
n

k

)
= n!

k!(n − k)!
, (1.14)
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n

k1 . . . km

)
= n!∏m

i=1 ki!
where n =

m∑
i=1

ki, (1.15)

�(r) =
{

(r − 1)! for r = 1, 2, . . .∫ ∞
0 tr−1 exp{−t} dt for general r > 0.

(1.16)

It is worth knowing that

�
(

1
2

)
= √

π and �
(
n + 1

2

)
= 1 × 3 × 5 × · · · × (2n − 1)

√
π/2n

for positive integer n.
Many of the distributions commonly used in statistics are members of an

exponential family. A k-parameter exponential family density can be expressed as

f (x|γ) = c1(x)c2(γ) exp

{
k∑

i=1

yi(x)θi(γ)

}
(1.17)

for nonnegative functions c1 and c2. The vector γ denotes the familiar parameters, such
as λ for the Poisson density and p for the binomial density. The real-valued θi(γ) are
the natural, or canonical, parameters, which are usually transformations of γ . The
yi(x) are the sufficient statistics for the canonical parameters. It is straightforward
to show

E{y(X)} =κ′(θ) (1.18)

and

var{y(X)} =κ′′(θ), (1.19)

where κ(θ) = − log c3(θ), letting c3(θ) denote the reexpression of c2(γ) in terms of
the canonical parameters θ = (θ1, . . . , θk), and y(X) = (y1(X), . . . , yk(X)). These
results can be rewritten in terms of the original parameters γ as

E

{
k∑

i=1

dθi(γ)

dγj

yi(X)

}
= − d

dγj

log c2(γ) (1.20)

and

var

{
k∑

i=1

dθi(γ)

dγj

yi(X)

}
= − d2

dγ2
j

log c2(γ) − E

{
k∑

i=1

d2θi(γ)

dγ2
j

yi(X)

}
. (1.21)

Example 1.1 (Poisson) The Poisson distribution belongs to the exponential family
with c1(x) = 1/x!, c2(λ) = exp{−λ}, y(x) = x, and θ(λ) = log λ. Deriving moments
in terms of θ, we have κ(θ) = exp{θ}, so E{X} = κ′(θ) = exp{θ} = λ and var{X} =
κ′′(θ) = exp{θ} = λ. The same results may be obtained with (1.20) and (1.21), noting
that dθ/dλ = 1/λ. For example, (1.20) gives E {X/λ} = 1. �

It is also important to know how the distribution of a random variable changes
when it is transformed. Let X = (X1, . . . , Xp) denote a p-dimensional random
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variable with continuous density function f . Suppose that

U = g(X) = (g1(X), . . . , gp(X)) = (U1, . . . , Up), (1.22)

where g is a one-to-one function mapping the support region of f onto the space of
all u = g(x) for which x satisfies f (x) > 0. To derive the probability distribution of
U from that of X, we need to use the Jacobian matrix. The density of the transformed
variables is

f (u) = f (g−1(u)) |J(u)| , (1.23)

where |J(u)| is the absolute value of the determinant of the Jacobian matrix of g−1

evaluated at u, having (i, j)th element dxi/duj , where these derivatives are assumed
to be continuous over the support region of U.

1.4 LIKELIHOOD INFERENCE

If X1, . . . , Xn are independent and identically distributed (i.i.d.) each having density
f (x | θ) that depends on a vector of p unknown parameters θ = (θ1, . . . , θp), then the
joint likelihood function is

L(θ) =
n∏

i=1

f (xi|θ). (1.24)

When the data are not i.i.d., the joint likelihood is still expressed as the joint density
f (x1, . . . , xn|θ) viewed as a function of θ.

The observed data, x1, . . . , xn, might have been realized under many different
values for θ. The parameters for which observing x1, . . . , xn would be most likely
constitute the maximum likelihood estimate of θ. In other words, if ϑ̂ is the function
of x1, . . . , xn that maximizes L(θ), then θ̂ = ϑ̂(X1, . . . , Xn) is the maximum likeli-
hood estimator (MLE) for θ. MLEs are invariant to transformation, so the MLE of a
transformation of θ equals the transformation of θ̂.

It is typically easier to work with the log likelihood function,

l (θ) = log L(θ), (1.25)

which has the same maximum as the original likelihood, since log is a strictly mono-
tonic function. Furthermore, any additive constants (involving possibly x1, . . . , xn

but not θ) may be omitted from the log likelihood without changing the location of its
maximum or differences between log likelihoods at different θ. Note that maximizing
L(θ) with respect to θ is equivalent to solving the system of equations

l′(θ) = 0, (1.26)

where

l′(θ) =
(

dl(θ)

dθ1
, . . . ,

dl(θ)

dθn

)
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is called the score function. The score function satisfies

E{l′(θ)} = 0, (1.27)

where the expectation is taken with respect to the distribution of X1, . . . , Xn. Some-
times an analytical solution to (1.26) provides the MLE; this book describes a variety
of methods that can be used when the MLE cannot be solved for in closed form. It
is worth noting that there are pathological circumstances where the MLE is not a
solution of the score equation, or the MLE is not unique; see [127] for examples.

The MLE has a sampling distribution because it depends on the realization
of the random variables X1, . . . , Xn. The MLE may be biased or unbiased for θ, yet
under quite general conditions it is asymptotically unbiased as n → ∞. The sampling
variance of the MLE depends on the average curvature of the log likelihood: When the
log likelihood is very pointy, the location of the maximum is more precisely known.

To make this precise, let l′′(θ) denote the p × p matrix having (i, j)th element
given by d2l(θ)/(dθidθj). The Fisher information matrix is defined as

I(θ) = E{l′(θ)l′(θ)T} = −E{l′′(θ)}, (1.28)

where the expectations are taken with respect to the distribution of X1, . . . , Xn. The
final equality in (1.28) requires mild assumptions, which are satisfied, for example, in
exponential families. I(θ) may sometimes be called the expected Fisher information
to distinguish it from −l′′(θ), which is the observed Fisher information. There are
two reasons why the observed Fisher information is quite useful. First, it can be
calculated even if the expectations in (1.28) cannot easily be computed. Second, it is
a good approximation to I(θ) that improves as n increases.

Under regularity conditions, the asymptotic variance–covariance matrix of
the MLE θ̂ is I(θ∗)−1, where θ∗ denotes the true value of θ. Indeed, as n → ∞, the
limiting distribution of θ̂ is Np(θ∗, I(θ∗)−1). Since the true parameter values are
unknown, I(θ∗)−1 must be estimated in order to estimate the variance–covariance
matrix of the MLE. An obvious approach is to use I(θ̂)−1. Alternatively, it is also
reasonable to use −l′′(θ̂)−1. Standard errors for individual parameter MLEs can
be estimated by taking the square root of the diagonal elements of the chosen
estimate of I(θ∗)−1. A thorough introduction to maximum likelihood theory and
the relative merits of these estimates of I(θ∗)−1 can be found in [127, 182, 371, 470].

Profile likelihoods provide an informative way to graph a higher-dimensional
likelihood surface, to make inference about some parameters while treating others
as nuisance parameters, and to facilitate various optimization strategies. The profile
likelihood is obtained by constrained maximization of the full likelihood with respect
to parameters to be ignored. If θ = (μ, φ), then the profile likelihood for φ is

L(φ|μ̂(φ)) = max
μ

L(μ, φ). (1.29)

Thus, for each possible φ, a value of μ is chosen to maximize L(μ, φ). This optimal
μ is a function of φ. The profile likelihood is the function that maps φ to the value
of the full likelihood evaluated at φ and its corresponding optimal μ. Note that the φ̂
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that maximizes the profile likelihood L(φ|μ̂(φ)) is also the MLE for φ obtained from
the full likelihood L(μ, φ). Profile likelihood methods are examined in [23].

1.5 BAYESIAN INFERENCE

In the Bayesian inferential paradigm, probability distributions are associated with
the parameters of the likelihood, as if the parameters were random variables. The
probability distributions are used to assign subjective relative probabilities to regions
of parameter space to reflect knowledge (and uncertainty) about the parameters.

Suppose that X has a distribution parameterized by θ. Let f (θ) represent the
density assigned to θ before observing the data. This is called a prior distribution.
It may be based on previous data and analyses (e.g., pilot studies), it may represent
a purely subjective personal belief, or it may be chosen in a way intended to have
limited influence on final inference.

Bayesian inference is driven by the likelihood, often denoted L(θ|x) in this
context. Having established a prior distribution for θ and subsequently observed data
yielding a likelihood that is informative about θ, one’s prior beliefs must be updated
to reflect the information contained in the likelihood. The updating mechanism is
Bayes’ theorem:

f (θ|x) = cf (θ)f (x|θ) = cf (θ)L(θ|x), (1.30)

where f (θ|x) is the posterior density of θ. The posterior distribution for θ is used
for statistical inference about θ. The constant c equals 1/

∫
f (θ)L(θ|x) dθ and is often

difficult to compute directly, although some inferences do not require c. This book
describes a large variety of methods for enabling Bayesian inference, including the
estimation of c.

Let θ̃ be the posterior mode, and let θ∗ be the true value of θ. The posterior
distribution of θ̃ converges to N(θ∗, I(θ∗)−1) as n → ∞, under regularity conditions.
Note that this is the same limiting distribution as for the MLE. Thus, the posterior
mode is of particular interest as a consistent estimator of θ. This convergence reflects
the fundamental notion that the observed data should overwhelm any prior as n → ∞.

Bayesian evaluation of hypotheses relies upon the Bayes factor. The ratio of
posterior probabilities of two competing hypotheses or models, H1 and H2, is

P[H2|x]

P[H1|x]
= P[H2]

P[H1]
B2,1 (1.31)

where P[Hi|x] denotes posterior probability, P[Hi] denotes prior probability, and

B2,1 = f (x|H2)

f (x|H1)
=

∫
f (θ2|H2)f (x|θ2, H2) dθ2∫
f (θ1|H1)f (x|θ1, H1) dθ1

(1.32)

with θi denoting the parameters corresponding to the ith hypothesis. The quantity
B2,1 is the Bayes factor; it represents the factor by which the prior odds are multiplied
to produce the posterior odds, given the data. The hypotheses H1 and H2 need not be
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nested as for likelihood ratio methods. The computation and interpretation of Bayes
factors is reviewed in [365].

Bayesian interval estimation often relies on a 95% highest posterior density
(HPD) region. The HPD region for a parameter is the region of shortest total length
containing 95% of the posterior probability for that parameter for which the posterior
density for every point contained in the interval is never lower than the density for
every point outside the interval. For unimodal posteriors, the HPD is the narrowest
possible interval containing 95% of the posterior probability. A more general interval
for Bayesian inference is a credible interval. The 100(1 − α)% credible interval is
the region between the α/2 and 1 − α/2 quantiles of the posterior distribution. When
the posterior density is symmetric and unimodal, the HPD and the credible interval
are identical.

A primary benefit of the Bayesian approach to inference is the natural manner
in which resulting credibility intervals and other inferences are interpreted. One may
speak of the posterior probability that the parameter is in some range. There is also
a sound philosophical basis for the Bayesian paradigm; see [28] for an introduction.
Gelman et al. provide a broad survey of Bayesian theory and methods [221].

The best prior distributions are those based on prior data. A strategy that is
algebraically convenient is to seek conjugacy. A conjugate prior distribution is one that
yields a posterior distribution in the same parametric family as the prior distribution.
Exponential families are the only classes of distributions that have natural conjugate
prior distributions.

When prior information is poor, it is important to ensure that the chosen prior dis-
tribution does not strongly influence posterior inferences. A posterior that is strongly
influenced by the prior is said to be highly sensitive to the prior. Several strategies are
available to reduce sensitivity. The simplest approach is to use a prior whose support
is dispersed over a much broader region than the parameter region supported by the
data, and fairly flat over it. A more formal approach is to use a Jeffreys prior [350].
In the univariate case, the Jeffreys prior is f (θ) ∝ I(θ)−1/2, where I(θ) is the Fisher
information; multivariate extensions are possible. In some cases, the improper prior
f (θ) ∝ 1 may be considered, but this can lead to improper posteriors (i.e., not inte-
grable), and it can be unintentionally informative depending on the parameterization
of the problem.

Example 1.2 (Normal–Normal Conjugate Bayes Model) Consider Bayesian
inference based on observations of i.i.d. random variables X1, . . . , Xn with density
Xi|θ ∼ N(θ, σ2) where σ2 is known. For such a likelihood, a normal prior for θ is
conjugate. Suppose the prior is θ ∼ N(μ, τ2). The posterior density is

f (θ|x) ∝ f (θ)
n∏

i=1

f (xi|θ) (1.33)

∝ exp

{
−1

2

(
(θ − μ)2

τ2 +
∑n

i=1(xi − θ)2

σ2

)}
(1.34)

∝ exp

{
−1

2

(
θ − μ/τ2 + (nx̄)/σ2

1/τ2 + n/σ2

)2
/(

1

1/τ2 + n/σ2

)}
, (1.35)
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where x̄ is the sample mean. Recognizing (1.35) as being in the form of a normal
distribution, we conclude that f (θ|x) = N(μn, τ

2
n), where

τ2
n = 1

1/τ2 + n/σ2 (1.36)

and

μn =
(

μ

τ2 + nx̄

σ2

)
τ2
n. (1.37)

Hence, a posterior 95% credibility interval for θ is (μn − 1.96τn, μn + 1.96τn). Since
the normal distribution is symmetric, this is also the posterior 95% HPD for θ.

For fixed σ, consider increasingly large choices for the value of τ. The posterior
variance for θ converges to σ2/n as τ2 → ∞. In other words, the influence of the
prior on the posterior vanishes as the prior variance increases. Next, note that

lim
n→∞

τ2
n

σ2/n
= 1.

This shows that the posterior variance for θ and the sampling variance for the MLE,
θ̂ = X̄, are asymptotically equal, and the effect of any choice for τ is washed out with
increasing sample size.

As an alternative to the conjugate prior, consider using the improper prior
f (θ) ∝ 1. In this case, f (θ|x) = N(x̄, σ2/n), and a 95% posterior credibility
interval corresponds to the standard 95% confidence interval found using frequentist
methods. �

1.6 STATISTICAL LIMIT THEORY

Although this book is mostly concerned with a pragmatic examination of how and
why various methods work, it is useful from time to time to speak more precisely
about the limiting behavior of the estimators produced by some procedures. We review
below some basic convergence concepts used in probability and statistics.

A sequence of random variables, X1, X2, . . ., is said to converge in proba-
bility to the random variable X if limn→∞ P[|Xn − X| < ε] = 1 for every ε > 0.
The sequence converges almost surely to X if P[limn→∞ |Xn − X| < ε] = 1 for
every ε > 0. The variables converge in distribution to the distribution of X if
limn→∞ FXn (x) = FX(x) for all points x at which FX(x) is continuous. The vari-
able X has property A almost everywhere if P[A] = ∫

1{A}fX(x) dx = 1.
Some of the best-known convergence theorems in statistics are the laws of large

numbers and the central limit theorem. For i.i.d. sequences of one-dimensional random
variables X1, X2, . . ., let X̄n = ∑n

i=1 Xi/n. The weak law of large numbers states that
X̄n converges in probability to μ = E{Xi} if E{|Xi|} < ∞. The strong law of large
numbers states that X̄n converges almost surely to μ if E{|Xi|} < ∞. Both results
hold under the more stringent but easily checked condition that var{Xi} = σ2 < ∞.
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If θ is a parameter and Tn is a statistic based on X1, . . . , Xn, then Tn is said to
be weakly or strongly consistent for θ if Tn converges in probability or almost surely
(respectively) to θ. Tn is unbiased for θ if E{Tn} = θ; otherwise the bias is E{Tn} − θ.
If the bias vanishes as n → ∞, then Tn is asymptotically unbiased.

A simple form of the central limit theorem is as follows. Suppose that i.i.d. ran-
dom variables X1, . . . , Xn have mean μ and finite variance σ2, and that E{exp{tXi}}
exists in a neighborhood of t = 0. Then the random variable Tn = √

n(X̄n − μ)/σ
converges in distribution to a normal random variable with mean zero and variance
one, as n → ∞. There are many versions of the central limit theorem for various
situations. Generally speaking, the assumption of finite variance is critical, but the
assumptions of independence and identical distributions can be relaxed in certain
situations.

1.7 MARKOV CHAINS

We offer here a brief introduction to univariate, discrete-time, discrete-state-space
Markov chains. We will use Markov chains in Chapters 7 and 8. A thorough introduc-
tion to Markov chains is given in [556], and higher-level study is provided in [462,
543].

Consider a sequence of random variables
{
X(t)

}
, t = 0, 1, . . . , where each X(t)

may equal one of a finite or countably infinite number of possible values, called states.
The notation X(t) = j indicates that the process is in state j at time t. The state space,
S, is the set of possible values of the random variable X(t).

A complete probabilistic specification of X(0), . . . , X(n) would be to write their
joint distribution as the product of conditional distributions of each random variable
given its history, or

P
[
X(0), . . . , X(n)

]
= P

[
X(n)

∣∣∣ x(0), . . . , x(n−1)
]

× P
[
X(n−1)

∣∣∣ x(0), . . . , x(n−2)
]

× · · ·

× P
[
X(1)

∣∣∣ x(0)
]
P

[
X(0)

]
. (1.38)

A simplification of (1.38) is possible under the conditional independence assumption
that

P
[
X(t)

∣∣∣ x(0), . . . , x(t−1)
]

= P
[
X(t)

∣∣∣ x(t−1)
]
. (1.39)

Here the next state observed is only dependent upon the present state. This is the
Markov property, sometimes called “one-step memory.” In this case,

P
[
X(0), . . . , X(n)

]
= P

[
X(n)

∣∣∣ x(n−1)
]

×P
[
X(n−1)

∣∣∣ x(n−2)
]
· · · P

[
X(1)

∣∣∣ x(0)
]
P

[
X(0)

]
. (1.40)
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TABLE 1.4 San Francisco rain data considered in Example 1.3.

Wet Today Dry Today

Wet Yesterday 418 256

Dry Yesterday 256 884

Let p
(t)
ij be the probability that the observed state changes from state i at time t

to state j at time t + 1. The sequence
{
X(t)

}
, t = 0, 1, . . . is a Markov chain if

p
(t)
ij = P

[
X(t+1) = j

∣∣∣ X(0) = x(0), X(1) = x(1), . . . , X(t) = i
]

= P
[
X(t+1) = j

∣∣∣ X(t) = i
]

(1.41)

for all t = 0, 1, . . . and x(0), x(1), . . . , x(t−1), i, j ∈ S. The quantity p
(t)
ij is called the

one-step transition probability. If none of the one-step transition probabilities change
with t, then the chain is called time homogeneous, and p

(t)
ij = pij . If any of the one-step

transition probabilities change with t, then the chain is called time-inhomogeneous.
A Markov chain is governed by a transition probability matrix. Suppose that

the s states inS are, without loss of generality, all integer valued. Then P denotes s × s

transition probability matrix of a time-homogeneous chain, and the (i, j)th element
of P is pij . Each element in P must be between zero and one, and each row of the
matrix must sum to one.

Example 1.3 (San Francisco Weather) Let us consider daily precipitation out-
comes in San Francisco. Table 1.4 gives the rainfall status for 1814 pairs of consecutive
days [488]. The data are taken from the months of November through March, starting
in November of 1990 and ending in March of 2002. These months are when San
Francisco receives over 80% of its precipitation each year, virtually all in the form of
rain. We consider a binary classification of each day. A day is considered to be wet if
more than 0.01 inch of precipitation is recorded and dry otherwise. Thus, S has two
elements: “wet” and “dry.” The random variable corresponding to the state for the tth
day is X(t).

Assuming time homogeneity, an estimated transition probability matrix for X(t)

would be

P̂ =
[

0.620 0.380

0.224 0.775

]
. (1.42)

Clearly, wet and dry weather states are not independent in San Francisco, as a wet
day is more likely to be followed by a wet day and pairs of dry days are highly
likely. �
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The limiting theory of Markov chains is important for many of the methods
discussed in this book. We now review some basic results.

A state to which the chain returns with probability 1 is called a recurrent state.
A state for which the expected time until recurrence is finite is called nonnull. For
finite state spaces, recurrent states are nonnull.

A Markov chain is irreducible if any state j can be reached from any state i in a
finite number of steps for all i and j. In other words, for each i and j there must exist
m > 0 such that P

[
X(m+n) = i

∣∣ X(n) = j
]

> 0. A Markov chain is periodic if it can
visit certain portions of the state space only at certain regularly spaced intervals. State
j has period d if the probability of going from state j to state j in n steps is 0 for all
n not divisible by d. If every state in a Markov chain has period 1, then the chain is
called aperiodic. A Markov chain is ergodic if it is irreducible, aperiodic, and all its
states are nonnull and recurrent.

Let π denote a vector of probabilities that sum to one, with ith element πi

denoting the marginal probability that X(t) = i. Then the marginal distribution of
X(t+1) must be πTP. Any discrete probability distribution π such that πTP = πT is
called a stationary distribution for P, or for the Markov chain having transition proba-
bility matrix P. If X(t) follows a stationary distribution, then the marginal distributions
of X(t) and X(t+1) are identical.

If a time-homogeneous Markov chain satisfies

πipij = πjpji (1.43)

for all i, j ∈ S, then π is a stationary distribution for the chain, and the chain is called
reversible because the joint distribution of a sequence of observations is the same
whether the chain is run forwards or backwards. Equation (1.43) is called the detailed
balance condition.

If a Markov chain with transition probability matrix P and stationary distribution
π is irreducible and aperiodic, then π is unique and

lim
n→∞ P

[
X(t+n) = j

∣∣∣ X(t) = i
]

= πj, (1.44)

where πj is the jth element of π. The πj are the solutions of the following set of
equations:

πj ≥ 0,
∑
i∈S

πi = 1, and πj =
∑
i∈S

πipij for each j ∈ S. (1.45)

We can restate and extend (1.44) as follows. If X(1), X(2), . . . are realizations
from an irreducible and aperiodic Markov chain with stationary distribution π, then
X(n) converges in distribution to the distribution given by π, and for any function h,

1

n

n∑
t=1

h(X(t)) → Eπ{h(X)} (1.46)

almost surely as n → ∞, provided Eπ{|h(X)|} exists [605]. This is one form of the
ergodic theorem, which is a generalization of the strong law of large numbers.
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We have considered here only Markov chains for discrete state spaces. In
Chapters 7 and 8 we will apply these ideas to continuous state spaces. The prin-
ciples and results for continuous state spaces and multivariate random variables are
similar to the simple results given here.

1.8 COMPUTING

If you are new to computer programming, or wishing to learn a new language, there is
no better time to start than now. Our preferred language for teaching and learning about
statistical computing is R (freely available at www.r-project.org), but we avoid any
language-specific limitations in this text. Most of the methods described in this book
can also be easily implemented in other high-level computer languages for mathemat-
ics and statistics such as MATLAB. Programming in Java and low-level languages
such as C++ and FORTRAN is also possible. The tradeoff between implementation
ease for high-level languages and computation speed for low-level languages often
guides this selection. Links to these and other useful software packages, including
libraries of code for some of the methods described in this book, are available on the
book website.

Ideally, your computer programming background includes a basic understand-
ing of computer arithmetic: how real numbers and mathematical operations are
implemented in the binary world of a computer. We focus on higher-level issues
in this book, but the most meticulous implementation of the algorithms we
describe can require consideration of the vagaries of computer arithmetic, or use
of available routines that competently deal with such issues. Interested readers may
refer to [383].




