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1
ENERGY BANDS IN BULK AND
QUANTUM STRUCTURES

1.1 INTRODUCTION

Transitions of Electrons

The emission and absorption of light are generated by the transitions of electrons.
Light is emitted because electrons transit from high-energy states to lower-energy
states, and light is absorbed in the reverse process. When electrons transit from high-
energy states to lower-energy states, nonradiative transitions, which do not emit
light, may exist as well as radiative transitions, which accompany light emissions.

Energy Bands

When the atomic spacing is so large that mutual interactions of atoms may be ne-
glected, the electron energies are discrete and energy levels are formed. With a
decrease in the atomic spacing, the positions of the electrons of neighboring atoms
start to overlap. Therefore, the energy levels begin to split to satisfy the Pauli exclu-
sion principle. With a further decrease in atomic spacing, the number of electrons
whose positions overlap with each other increases. As a result, the number of split
energy levels goes up, and the energy differences in the adjacent energy levels are
reduced. In semiconductor crystals, the number of atoms per cubic centimeter is on
the order of 1022, where the atomic spacing is about 0.2 nm. As a result, the spac-
ing of energy levels is much narrower than the bandgap energy, on the order of
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4 ENERGY BANDS IN BULK AND QUANTUM STRUCTURES

electron volts. Therefore, the constituent energy levels are considered to be almost
continuous, and energy bands are formed.

1.2 BULK STRUCTURE

Bulk

Semiconductors in which constituent atoms are placed periodically at a sufficiently
long range compared with lattice spacing are called bulk semiconductors. In this
section, the energy bands in bulk semiconductors are calculated.

k· p Perturbation

Semiconductors have free electrons and holes only in the vicinity of band edges.
As a result, the band shapes and effective masses of carriers near band edges often
give us sufficient information about optical transitions. To analyze the energy bands
in the neighbor of band edges, k · p perturbation theory [1–4] is often employed.
The wave functions and energies of the bands are calculated with �k = k − k0 as
a perturbation parameter, where k is a wave vector near a band edge and k0 is a
wave vector at a band edge. For simplicity, k0 = 0 is selected in the following.

Schrödinger Equation

The Schrödinger equation in the steady state is given by [5, 6]

[
− �

2

2m
∇2 + V (r)

]
ψn(k, r) = En(k)ψn(k, r), (1.1)

where � = h/2π = 1.0546 × 10−34 J · s is Dirac’s constant, h = 6.6261 × 10−34 J ·
s is Planck’s constant, m = 9.1094 × 10−31 kg is the electron mass in vacuum, V (r)
is a potential, ψn(k, r) is a wave function, En(k) is an energy eigenvalue, n is a
quantum number, and k is a wave vector. In single crystals where the atoms are
placed periodically, the potential V (r) is also spatially periodic. Therefore, as a
solution of (1.1), we can consider a Bloch function, such as

ψn(k, r) = exp(i k · r)un(k, r), (1.2)

un(k, r) = un(k, r + R), (1.3)

where R is a translational vector which represents the periodicity of the crystal.
Equations (1.2) and (1.3) constitute the Bloch theorem. Substituting (1.2) into (1.1)
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leads to

[
− �

2

2m
∇2 + V (r) + H′

]
un(k, r) = En(k)un(k, r), (1.4)

where

H′ = �
2k2

2m
+ �

m
k· p, (1.5)

p = − i �∇. (1.6)

Note that the k· p perturbation theory, whose name is derived from the second term on
the right-hand side of (1.5), is valid only for small k, and we solve (1.4) by regarding
(1.5) as the perturbation.

First-Order Perturbation Theory

For an energy band with n = 0, the wave equation for an unperturbed state with
k = 0 is expressed as

[
− �

2

2m
∇2 + V (r)

]
u0(0, r) = E0(0)u0(0, r). (1.7)

In the following, for simplicity, the energy E0(0) is represented as E0.
In first-order perturbation theory, the wave function u0(k, r) for a nondegen-

erate case is given by

u0(k, r) = u0(0, r) +
∑
α �=0

− i (�2/m)k · 〈α|∇|0〉
E0 − Eα

uα(0, r), (1.8)

〈α|∇|0〉 =
∫

uα
∗(0, r)∇u0(0, r) d3r. (1.9)

Here u0(k, r) and uα(k, r) are assumed to be orthonormal functions and 〈α| and |0〉
are the bra and ket vectors, respectively, which were introduced by Dirac.

Second-Order Perturbation Theory

In second-order perturbation theory, an energy eigenvalue is obtained as

E(k) = E0 + �
2k2

2m
+ �

2

m2

∑
i, j

ki k j

∑
α �=0

〈0|pi |α〉〈α|p j |0〉
E0 − Eα

. (1.10)
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The reciprocal effective mass tensor is defined as

(
1

m

)
i j

≡ 1

�2

∂2 E

∂ki∂k j
= 1

m

⎛
⎝δi j + 2

m

∑
α �=0

〈0|pi |α〉〈α|p j |0〉
E0 − Eα

⎞
⎠ . (1.11)

Using (1.11), (1.10) is reduced to

E(k) = E0 + �
2

2

∑
i, j

(
1

m

)
i j

ki k j . (1.12)

Equations (1.11) and (1.12) indicate that the effect of the periodic potential of the
crystal is included in the effective mass of the electron, which makes analysis easier.
In a cyclotron resonance experiment, the rest mass in vacuum in not measured, but
the effective mass is measured.

sp3 Hybrid Orbitals

Next, we consider the energy bands of semiconductor crystals with zinc blende
structures, which are used widely as material for light sources. In zinc blende
structures, the atomic bonds are formed via sp3 hybrid orbitals. Therefore, the
wave functions for electrons in zinc blende or diamond structures are expressed as
superpositions of s- and p-orbital functions.

We assume that the bottom of a conduction band and the tops of valence bands are
placed at k = 0, as in direct transition semiconductors. When spin-orbit interaction
is neglected, the tops of the valence bands are threefold degenerate, corresponding
to the three p-orbitals (px , py, pz). Here the s-orbital wave function for the bottom
of the conduction band is us(r), and the p-orbital wave functions for the tops of the
valence bands are ux = x f (r), uy = y f (r), and uz = z f (r),where f (r) is a spherical
function.

Since the energy bands are degenerate, a perturbed wave equation is given by a
linear superposition of us(r) and u j (r) ( j = x, y, z), such as

un(k, r) = Aus(r) + Bux (r) + Cuy(r) + Duz(r), (1.13)

where A, B, C, and D are coefficients.
To obtain the energy eigenvalues, (1.4) is rewritten

[
− �

2

2m
∇2 + V (r) + H′

d

]
un(k, r) =

[
En(k) − �

2k2

2m

]
un(k, r), (1.14)

H′
d = �

m
k· p = − i �

2

m
k·∇. (1.15)
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By setting k = 0 in (1.14), an unperturbed equation is obtained. For a conduction
band, we set En(0) = Ec, which is the energy of the bottom of a conduction band,
and u0(0, r) = us(r); for valence bands, we set En(0) = Ev, which is the energy of
the top of each valence band, and u0(0, r) = u j (r) ( j = x, y, z).

Substituting (1.13) into (1.14); multiplying us
∗(r), ux

∗(r), uy
∗(r), and uz

∗(r) from
the left-hand side; and then integrating with respect to a volume over the space leads
to

(H′
ss + Ec − λ)A + H′

sx B + H′
syC + H′

sz D = 0,

H′
xs A + (H′

xx + Ev − λ)B + H′
xyC + H′

xz D = 0,

H′
ys A + H′

yx B + (H′
yy + Ev − λ)C + H′

yz D = 0,

H′
zs A + H′

zx B + H′
zyC + (H′

zz + Ev − λ)D = 0,

(1.16)

where

H′
i j = 〈ui |H′

d|u j 〉 =
∫

ui
∗(r)H′

du j (r) d3r (i, j = s, x, y, z), (1.17)

λ = En(k) − �
2k2

2m
. (1.18)

Note that the orthonormality of us(r) and u j (r) ( j = x, y, z) was used to derive
(1.16).

The condition used to obtain solutions A, B, C , and D other than A = B = C =
D = 0 is

∣∣∣∣∣∣∣∣

Ec − λ Pkx Pky Pkz

P∗kx Ev − λ 0 0
P∗ky 0 Ev − λ 0
P∗kz 0 0 Ev − λ

∣∣∣∣∣∣∣∣
= 0, (1.19)

where

P = − i
�

2

m

∫
us

∗ ∂u j

∂r j
d3r, P∗ = − i

�
2

m

∫
u j

∗ ∂us

∂r j
d3r

( j = x, y, z, rx = x, ry = y, rz = z). (1.20)

From (1.19) we obtain

E1,2(k) = Ec + Ev

2
+ �

2k2

2m
±

[(
Ec − Ev

2

)2

+ k2|P|2
]1/2

, (1.21)

E3,4(k) = Ev + �
2k2

2m
, (1.22)

where (1.18) was used.
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Electron

Nucleus

(a)

Electron

Nucleus

(b)

FIGURE 1.1 Motions of an electron.

Spin-Orbit Interaction

In addition to k· p perturbation, we consider spin-orbit interaction and second-order
perturbation. First, let us consider spin-orbit interaction semiclassically. As shown
in Fig. 1(a), an electron with electric charge −e = −1.6022 × 10−19 C rotates about
the nucleus with electric charge +Ze. The velocity of the electron is v and the position
vector of the electron is r , with the position of the nucleus as the initial point.

If we see the nucleus from the electron as shown in Fig. 1.1(b), the nucleus seems
to rotate about the electron with a velocity −v. As a result, a magnetic flux density
B is produced at the position of the electron, which is written

B = µ0

4π
Ze

r × v

r3
= µ0

4π

Ze

m

1

r3
l. (1.23)

This equation is known as Biot–Savart’s law. In (1.23), µ0 is magnetic permeability
of vacuum, and l is the orbital angular momentum, which is given by

l = r × p = r × mv. (1.24)

The spin magnetic moment µs is expressed as

µs = − e

m
s = −2µB

�
s, (1.25)

where s is the spin angular momentum and µB is the Bohr magneton, which is
defined as

µB ≡ e�

2m
= 9.2732 × 10−24 A · m2. (1.26)

As a result, the magnetic field, which is generated at the position of the electron
due to the orbital motions of the nucleus, interacts with the electron’s spin magnetic
moment. The interaction energy HSO between the magnetic flux density B and the



P1: OSO
c01 JWBS036-Numai August 9, 2010 10:8 Printer Name: Yet to Come

BULK STRUCTURE 9

spin magnetic moment µs is obtained as

HSO = −µs · B = µ0

4π

Ze2

m2

1

r3
l · s. (1.27)

Note that (1.27) is obtained using classical electromagnetism.
From Dirac’s relativistic quantum mechanics, the interaction energy HSO is

given by

HSO = µ0

4π

Ze2

2m2

1

r3
l · s, (1.28)

which is half of (1.27).

Pauli’s Spin Matrices

Pauli’s spin matrices σ are defined as

s = �

2
σ , (1.29)

σx =
[

0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (1.30)

Using Pauli’s spin matrices, the spin-orbit interaction Hamiltonian HSO can be
rewritten

HSO = µ0

4π

Ze2

2m2

1

r3

�

2
l · σ . (1.31)

If the up-spin ↑ (sz = �/2) and down-spin ↓ (sz = −�/2) are expressed as α

and β, respectively, they are written in matrix form:

α =
[

1
0

]
, β =

[
0
1

]
. (1.32)

As a result, operations of σz on α and β are written

σzα = α, σzβ = −β. (1.33)

When a spherical polar coordinate system is used, the spin-orbit interaction
Hamiltonian HSO is expressed as

HSO = �

2
ξ (r) l · σ = �

2
ξ (r)

(
lzσz + l+σ− + l−σ+

2

)
, (1.34)
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where

ξ (r) = µ0

4π

Ze2

2m2

1

r3
,

l+ = lx + i ly, l− = lx − i ly, (1.35)

σ+ = σx + i σy, σ− = σx − i σy .

When the spin-orbit interaction Hamiltonian HSO is added to (1.14) as a perturbation
term, the Schrödinger equation is written

[
− �

2

2m
∇2 + V (r) + H′

d + HSO

]
un(k, r) =

[
En(k) − �

2k2

2m

]
un(k, r). (1.36)

It should be noted that l operates on exp(i k · r) in the Bloch function, but this
operation is neglected because the result is much smaller than the other terms.

To solve (1.36), the wave functions are represented in the spherical polar coordinate
system as

us = us, u+ = −ux + uy√
2

∼ − x + y√
2

, u− = ux − uy√
2

∼ x − y√
2

, uz ∼ z. (1.37)

In (1.37), the spherical function f (r) is omitted after ∼ to simplify expressions. Note
that

√
2 is introduced in the denominators to normalize the wave functions. Using the

spherical harmonic function Y m
l , the wave functions u+, u−, and uz are expressed as

u+ = Y 1
1 = −1

2

√
3

2π

x + i y√
x2 + y2 + z2

= −1

2

√
3

2π
exp(i φ) sin θ,

u− = Y −1
1 = 1

2

√
3

2π

x − i y√
x2 + y2 + z2

= 1

2

√
3

2π
exp(−i φ) sin θ,

uz = Y 0
1 = 1

2

√
3

π

z√
x2 + y2 + z2

= 1

2

√
3

π
cos θ,

(1.38)

where x = r sin θ cos φ, y = r sin θ sin φ, and z = r cos θ .
Including the up- and down-spins α and β, the following eight wave functions are

present:

usα, usβ, u+α, u+β, uzα, uzβ, u−α, u−β.

Therefore, we have to calculate the elements of the 8 × 8 matrix to obtain energy
eigenvalues from (1.36).
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For brevity, we assume that k = (
kx , ky, kz

)
is a vector in the positive direction of

the z-axis and express the elements of k as

kz = k, kx = ky = 0. (1.39)

In this case we only have to solve the determinant for the 4 × 4 matrix on four
elements of usα, u+β, uzα, u−β or those of usβ, u−α, uzβ, u+α because of the
symmetry in the 8 × 8 matrix. This determinant for the 4 × 4 matrix is written

∣∣∣∣∣∣∣∣∣∣∣∣∣

Ec − λ 0 Pk 0

0 Ev − λ − �0

3

√
2

3
�0 0

P∗k

√
2

3
�0 Ev − λ 0

0 0 0 Ev − λ + �0

3

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (1.40)

where the terms including �0 are the matrix elements of HSO, and the other terms
are those of H′

d. Here, using ξ (r) in (1.35), �0 is expressed as

�0

3
= �

2

2

∫
u+∗u+ξ (r) d3r = �

2

2

∫
u−∗u−ξ (r) d3r

= �
2

4

∫
(ux

2 + uy
2)ξ (r) d3r = �

2

2

∫
uz

2 ξ (r) d3r. (1.41)

From (1.40), the energy of valence band 1 is obtained as

Ev1(k) = Ev + �0

3
+ �

2k2

2m
. (1.42)

When |P|2k2 is small enough, the energy of the conduction band Ec is reduced to

Ec(k) = Ec + �
2k2

2m
+ |P|2k2

3

(
2

Eg
+ 1

Eg + �0

)
, (1.43)

where

Eg = Ec − Ev − �0

3
. (1.44)
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Similarly, the energies of valence bands 2 and 3 are given by

Ev2(k) = Ev + �0

3
+ �

2k2

2m
− 2|P|2k2

3Eg
, (1.45)

Ev3(k) = Ev − 2

3
�0 + �

2k2

2m
− |P|2k2

3(Eg + �0)
. (1.46)

Note that these results were obtained under first-order k· p perturbation.

Valence Bands

Under second-order perturbation, the energies of the valence bands are given by

Ev1,2(k) = Ev + �0

3
+ A2k2

± [
B2

2k4 + C2
2 (

kx
2ky

2 + ky
2kz

2 + kz
2kx

2)]1/2
(1 → +, 2 → −),

(1.47)

Ev3(k) = Ev − 2

3
�0 + A2k2. (1.48)

Equations (1.43), (1.47), and (1.48) are shown in Fig. 1.2. From the definition of
effective mass in (1.11), the band with energy Ev1(k) is referred to as a heavy hole
band and that with Ev2(k) is called a light hole band. It should be noted that the
heavy and light hole bands are degenerate at k = 0. The band with energy Ev3(k)
is called the split-off band, and �0 is called the split-off energy. The coefficients
A2, B2, and C2 in (1.47) and (1.48) are determined experimentally by cyclotron

Conduction Band

Heavy Hole Band

Light Hole Band

Split-off Band

FIGURE 1.2 Energy bands of a bulk structure when the spin-orbit interaction is considered
under a second-order perturbation.



P1: OSO
c01 JWBS036-Numai August 9, 2010 10:8 Printer Name: Yet to Come

BULK STRUCTURE 13

TABLE 1.1 Relations Between Operators and Eigenvalues

Operator Eigenvalue

l2 l(l + 1)�2 (l = 0:s-orbital, l = 1:p-orbitals)
lz ml�, ml = 1, 0, −1
s2 s(s + 1)�2, s = 1/2
sz ms�, ms = 1/2, −1/2
j 2 j( j + 1)�2, j = 3/2, 1/2
jz m j �, m j=3/2 = 3/2, 1/2, −1/2, −3/2, m j=1/2 = 1/2, −1/2

resonance. In general, the effective masses depend on the direction of k, and the
energy bands are more complicated.

Note that in the preceding analysis, the energy bands of direct transition semi-
conductors, in which the bottom of the conduction band and the tops of the valence
bands are placed at k = 0, are calculated. In indirect transition, the k’s of the bottom
of the conduction band and the k’s of the tops of the valence bands are different.

Due to the spin-orbit interaction, the quantum states are indicated by j = l + s,
where l is the angular momentum operator and s is the spin operator. Therefore, as
indexes of the wave functions, we can use the quantum numbers j and m j , which
represent the eigenvalues of operators j and jz , respectively. The relations between
the operators and the eigenvalues are summarized in Table 1.1.

When we express the wave functions as | j, m j 〉, the wave functions of the valence
bands under the second-order perturbation are expressed as follows:

For a heavy hole band,

∣∣∣∣3

2
,

3

2

〉
= 1√

2
|(x + i y)α〉,

∣∣∣∣3

2
,−3

2

〉
= 1√

2
|(x − i y)β〉,

(1.49)

for a light hole band,

∣∣∣∣3

2
,

1

2

〉
= 1√

6
|2zα + (x + i y)β〉,

∣∣∣∣3

2
,−1

2

〉
= 1√

6
|2zβ − (x − i y)α〉,

(1.50)
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and for a split-off band,

∣∣∣∣1

2
,

1

2

〉
= 1√

3
|zα − (x + i y)β〉,

∣∣∣∣1

2
,−1

2

〉
= 1√

3
|zβ + (x − i y)α〉.

(1.51)

1.3 QUANTUM STRUCTURES

Quantum Effects

Semiconductor structures whose sizes are small enough that their quantum effects,
such as splitting of energy bands and the tunneling effect, may be significant are
called quantum structures.

Square Well

Electrons in quantum structures feel both the periodic potential of crystals and the
quantum well potential. First, the energy eigenvalues and wave functions of a particle
in a square well potential are reviewed briefly. As shown in Fig. 1.3, we assume that
a carrier is present in a square potential well V (r) as

V (r) =
{

0 inside the well,
∞ at the boundaries

(1.52)

When the potential well is a cube with side L , the boundary conditions for a wave
function ϕ(x, y, z) are given by

ϕ(0, y, z) = ϕ(L , y, z) = 0,

ϕ(x, 0, z) = ϕ(x, L , z) = 0,

ϕ(x, y, 0) = ϕ(x, y, L) = 0.

(1.53)

ϕ ϕ

FIGURE 1.3 Square well potential.
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FIGURE 1.4 Wave function ϕ and energy eigenvalues E in a one-dimensional square well
potential.

Under these boundary conditions, the wave function ϕ(x, y, z) and energy eigenvalue
E are obtained as

ϕ(x, y, z) =
√

8

L3
sin kx x · sin ky y · sin kzz,

E = �
2

2m
(kx

2 + ky
2 + kz

2), (1.54)

kx = nxπ

L
, ky = nyπ

L
, kz = nzπ

L
(nx , ny, nz = 1, 2, 3, . . .).

Figure 1.4 shows the wave function ϕ and energy eigenvalues E for a one-dimensional
square well potential. The energy eigenvalues E are discrete and their values are
proportional to a square of the quantum number nx . In addition, with a decrease in
L , the energy separation between the energy levels increases.

Potential Well and Energy Barrier

Figure 1.5 shows the energies of the conduction band and valence bands at k = 0 for
GaAs, which is sandwiched by AlGaAs layers. The low-energy regions for electrons
in the conduction band and holes in the valence bands are called potential wells. Note
that in Fig. 1.5, the vertical line shows the energy of the electrons, and the energy of
the holes decreases with an increase in the height of the vertical line. When the width
of the potential well Lz is on the order of less than several tens of nanometers, the
potential well is called the quantum well. The bandgaps of AlGaAs layers are higher
than those of GaAs. As a result, these AlGaAs layers become the energy barriers for
GaAs and are called energy barrier layers. At the interfaces of the quantum well
and the barriers, energy differences exist in the conduction band �Ec, and in the
valence bands, �Ev, and are called band offsets.
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Energy Barrier
Layer

Energy Barrier
Layer

Potential
Well

Band Offset

Band Offset

FIGURE 1.5 Quantum well structure.

Effective Mass Approximation

The periods of the potential for semiconductor crystals are represented by lattice
constants which are on the order of 0.5 nm. In contrast, the thickness of potential
wells or barriers in quantum structures is between an order of nanometers and that
of several tens of nanometers. Hence, in quantum structures, electrons and holes
feel both periodic and quantum potentials. If we use effective mass, the effect
of the periodic potential is included in the effective mass, as shown in (1.12), and
we only have to consider the quantum potential, referred to as the effective mass
approximation.

Under effective mass approximation, a wave function in the quantum structure is
obtained as a product of base function ψ and envelope function ϕ.

As base function ψ we use a wave function for the periodic potential:

ψn(k, r) = exp(i k · r)unk(r), un(k, r) = unk(r + R). (1.55)

As the envelope function ϕ, we use a wave function for the quantum potential. For
example, for a cube with a side length of L and infinite potential at the boundaries,
the envelope function ϕ is given by

ϕ(x, y, z) =
√

8

L3
sin kx x · sin ky y · sin kzz. (1.56)

Figure 1.6 shows one-, two-, and three-dimensional quantum wells. A sheet in
which only Lz is of quantum size, as shown in Fig. 1.6(a), is called a one-dimensional
quantum well or simply, a quantum well. A stripe in which only L y and Lz are
quantum sizes, as shown in Fig. 1.6(b), is called a two-dimensional quantum well
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(a) (b) (c)

FIGURE 1.6 (a) One-, (b) two-, and (c) three-dimensional quantum wells.

or a quantum wire. A box whose Lx , L y , and Lz are all quantum sizes, as shown in
Fig. 1.6(c), is called a three-dimensional quantum well or a quantum box.

The energies of the carriers, which are confined completely in the sheet shown in
Fig. 1.6(a), are written

E = Exy + Ez,

Exy = �
2

2m∗
π2

L2
(nx

2 + ny
2), Ez = �

2

2m∗
π2

Lz
2 nz

2,
(1.57)

where � is Dirac’s constant; m∗ is the effective mass of the carrier; and nx , ny , and
nz are quantum numbers. If nx , ny , and nz are of the same order, we have Exy � Ez .

Density of States

As an example, let us calculate the density of states in a one-dimensional quantum
well for nz = 1. The density of states is determined by the number of combinations of
nx and ny . When nx and ny are large enough, the combinations (nx , ny) for constant
energy Exy are represented by the points on the circumference of a circle with radius
r , which is given by

r2 = nx
2 + ny

2 = 2m∗L2

�2π2
Exy . (1.58)

Because both nx and ny are positive numbers, the number S of combinations
(nx , ny) is given by the area of a quarter circle with radius r . As a result, S is
expressed as

S = 1

4
πr2 = π

4
(nx

2 + ny
2) = π

4

2m∗L2

�2π2
Exy = m∗L2

2�2π
Exy . (1.59)

Considering the up- and down-spins, the number of states N is twice as large as
S, which is written

N = 2S = m∗L2

�2π
Exy . (1.60)
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Substituting Exy = E − Ez=1 into (1.60), the electron concentration n for the energy
between zero and E is obtained as

n = N

L2Lz
= m∗

�2π Lz
(E − Ez=1). (1.61)

When we define the density of states per volume for the energy between E and
E + dE as ρ1(E), we have

∫
ρ1(E) dE ≡ n. (1.62)

From (1.61) and (1.62), we obtain

ρ1(E) ≡ dn

dE
= m∗

�2π Lz
. (1.63)

The densities of states for nz = 2, 3, . . . are calculated similarly, and the results
are shown in Fig. 1.7(a). Here Lz is 3 nm; m∗ is 0.08m, where m is the electron
mass in vacuum; and the ρ1(E) for nz = 1, 2, and 3 are indicated as ρ11, ρ12, and
ρ13, respectively. It should be noted that the density of states for a one-dimensional
quantum well is a step function. In contrast, the bulk structures have a density of
states such that

ρ0(E) = (2m∗)3/2

2π2�3
E1/2, (1.64)

which is proportional to E1/2 as shown by a dashed line, because the number of states
is represented by the number of the points existing in one-eighth of a sphere with
radius r .
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FIGURE 1.7 Density of states for (a) one-, (b) two-, and (c) three-dimensional quantum
wells.
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If we set L y = Lz = L , the energies of the carriers, which are confined completely
in the wire shown in Fig. 1.6(b), are written

E = Ex + Eyz,

Ex = �
2

2m∗
π2

Lx
2 nx

2, Eyz = �
2

2m∗
π2

L2
(ny

2 + nz
2).

(1.65)

For a pair of quantum numbers (ny, nz), the density of states ρ2(E) is obtained as

ρ2(E) =
√

2m∗

�π L2
Ex

−1/2 =
√

2m∗

�π L2
(E − Eyz)−1/2. (1.66)

The result calculated for (1.66) is shown in Fig. 1.7(b). When the energy E is equal
to Eyz , the density of states ρ2(E) is infinity. When E exceeds Eyz , ρ2(E) decreases
in proportion to (E − Eyz)−1/2, which leads to a density of states ρ2(E) with a
sawtoothed shape.

If we set Lx = L y = Lz = L , the energies of the carriers, which are confined
completely in the box shown in Fig. 1.6 (c), are written

E = Ex + Ey + Ez,

Ex = �
2

2m∗
π2

L2
nx

2, Ey = �
2

2m∗
π2

L2
ny

2, Ez = �
2

2m∗
π2

L2
nz

2.
(1.67)

It should be noted that the energy eigenvalues are completely discrete. The density
of states ρ3(E) is a delta function, which is written

ρ3(E) = 2
∑

nx ,ny ,nz

δ(E − Ex − Ey − Ez). (1.68)

Figure 1.7(c) shows the number of states per volume and the density of states in a
three-dimensional quantum well.

With an increase in the dimension of the quantum wells, the energy bandwidths
of the densities of states decrease. Therefore, the energy distribution of the electron
concentrations narrows with an increase in the dimension of the quantum wells,
as shown in Fig. 1.8. Therefore, the optical gain concentrates on a certain energy
(wavelength). As a result, in quantum well lasers, a low threshold current, a high
speed modulation, low chirping, and a narrow spectral linewidth are expected.

1.4 SUPERLATTICES

Array quantum structures and solitary structures are called superlattices. From the
viewpoint of the potential, superlattices are classified as follows. Figure 1.9 shows
three kinds of potentials of superlattices. The horizontal direction indicates the po-
sition of the layers, and the vertical direction represents the energy of the electrons.
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FIGURE 1.8 Energy distribution of electron concentrations in quantum wells: (a) bulk
structure; (b) one-dimensional quantum; (c) two-dimensional quantum structure.

With an increase in height, the energy of electrons increases and that of holes de-
creases. As shown in Fig. 1.9(a), in a type I superlattice , the position of the potential
well for electrons in the conduction band is the same as that for holes in the valence
band. Therefore, both electrons and holes are confined in semiconductor layer B,
which has a narrower bandgap than that of semiconductor layer A. In the type II
superlattice in Fig. 1.9(b), the electrons in the conduction band are confined in semi-
conductor layer B, and the holes in the valence band are confined in semiconductor
layer A. In the type III superlattice in Fig. 1.9(c), the energy of the conduction
band of semiconductor layer B overlaps that of the valence band of semiconductor
layer A, which results in a semimetal. Note that in the literature, types II and III are
sometimes called types I′ and II, respectively.

From the perspective of the period, superlattices are classified as follows. Fig-
ure 1.10 shows the relationships between the characteristics of superlattices and the
thickness of barriers and wells. When each layer thickness is larger than several tens
of nanometers, only the bulk characteristics are observed. If the barrier thickness
is less than several tens of nanometers, the quantum mechanical tunneling effect
appears. When the barriers are thick and only the wells are thin, quantum energy
levels are formed in the wells. If such wells are used as the active layers in light-

(a) (c)(b)

B A B A B B A B A B B A B A B

FIGURE 1.9 Classification of super lattices by potential: (a) type I; (b) type II; and (c)
type III.
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FIGURE 1.10 Classification of superlattices by period.

emitting devices, narrow light emission spectra are obtained. When both barriers and
wells are thinner than about 10 nm, the wave functions of a well start to penetrate
adjacent wells. As a result, the wave functions of each well overlap each other, which
produces minizones and induces Bloch oscillations or negative resistances. When
the thickness of both barriers and wells decreases further, down to the order of atomic
layers, bending of Brillouin zones appears, which will transform indirect transition
materials into direct transition materials.
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