
CHAPTER 1

Introduction

Circuit simulation is a technique for checking and verifying the design of electri-
cal and electronic circuits and systems prior to manufacturing and deployment. It
is used across a wide spectrum of applications, ranging from integrated circuits
and microelectronics to electrical power distribution networks and power elec-
tronics. Circuit simulation is a mature and established art and also remains an
important area of research. This text covers the theoretical background for circuit
simulation, as well as the numerical techniques that are at the core of modern
circuit simulators. Circuit simulation combines a) mathematical modeling of the
circuit elements , or devices , b) formulation of the circuit/network equations, and
c) techniques for solution of these equations. We will focus mainly on the formu-
lation and solution of the network equations and will not cover device modeling
in any detail.

Compared to simulators that operate on a design description at higher levels
of abstraction, such as logic or functional simulators, circuit simulators use a
detailed (so-called circuit level or transistor level) description of the circuit and
perform a relatively accurate simulation. Typically, such a simulation uses phys-
ical models of the circuit elements, solves the resulting differential and algebraic
equations, and generates time-waveforms of node voltages and element currents.
In general, a circuit simulator allows the use of any simulation primitive, pro-
vided it can be described with an appropriate device model . In practice, while
some devices (e.g., resistors, capacitors) are two-terminal elements, others (e.g.,
transistors) have more than two terminals. However, a multiterminal element is
usually modeled as a subcircuit consisting of only two-terminal elements. Thus,
a common starting point for studying circuit simulation is to restrict the formu-
lation to two-terminal elements. For integrated circuits, circuit simulators often
work with an extracted circuit description, which gives better accuracy. Thus
circuit capacitance, resistance, and inductance can be included in the analysis, be
they prespecified discrete components or parasitic.

Early techniques for circuit simulation using computers were introduced in
the 1950s and 1960s, and several limited-scope simulators were developed. The
first general-purpose circuit simulator to experience widespread usage was SPICE,
developed by L. W. Nagel at the University of California, Berkeley, in the

Circuit Simulation, by Farid N. Najm
Copyright © 2010 John Wiley & Sons, Inc.

1

CO
PYRIG

HTED
 M

ATERIA
L

2 INTRODUCTION

early 1970s, under the supervision of Professor D. O. Pederson. According to
Nagel (1975), SPICE evolved from an earlier simulator called CANCER that, in turn,
“emerged from a series of courses that were instructed by Professor R. A. Rohrer”
at Berkeley. The original CANCER program, described in Nagel and Rohrer (l971),
was followed up by SPICE, described in Nagel and Pederson (l973), and then
SPICE2, which is described in Nagel’s 1975 thesis. The rest, as they say, is his-
tory, as SPICE has become the de facto standard circuit simulator. At the time of
this writing, SPICE3f is the latest version of the program. Further information on
SPICE and its history is available in Kundert (1995), in Vladimirescu (1994), and
in Pederson (1984).

SPICE was developed specifically with integrated circuits in mind. Indeed, the
acronym stands for Simulation Program with Integrated Circuit Emphasis . This,
coinciding with the birth and growth of the integrated circuits industry in the
1970s, led to widespread adoption of the program. Furthermore, the availability of
the SPICE code and documentation from Berkeley, for a nominal fee, spurred the
development of similar circuit simulators elsewhere. Today, there are thousands
of copies of circuit simulators in use across the industry, and there are many
SPICE-like simulators in the market. Some semiconductor companies average
over 1 million circuit simulation runs per week!

Circuit simulation issues to be covered in this book include a) device equations,
b) equation formulation, and c) solution techniques. In this chapter, we will briefly
introduce each of these issues and then present the overall structure of a circuit
simulator.

1.1 DEVICE EQUATIONS

In this context, a device is any simulation primitive, or element , described by
means of a current-voltage relationship. Thus, a resistor is described by the
(Ohm’s law) equation v = Ri . By convention, the positive (reference) direction
for current is determined from the positive (reference) direction for voltage, as
shown in Fig. 1.1, so that current flows in the device from the positive reference
node to the negative node.

When the element equation contains no terms with powers of 2 or higher, the
element is said to be a linear element . A network of linear elements is said to be
a linear circuit . The resistor element equation is algebraic. On the other hand, a
capacitor is described by i = Cdv/dt , which is a first-order ordinary differential

+ −v

i
R

Figure 1.1: A resistor.

EQUATION FORMULATION 3

+

−

v

i

C

Figure 1.2: A capacitor.

v+ −

i
f(.)

Figure 1.3: Nonlinear resistor.

equation . It is first order because it contains only first-order derivatives and it
is ordinary because it contains no partial derivatives. Since there are no powers
of 2 or more, this too is a linear equation. Here too, the reference direction for
current is based on the reference direction for voltage, as in Fig. 1.2.

Wiring is typically modeled using lumped R, L , or C elements, so that metal
interconnect is described by a system of linear first-order differential equations .
Resistors and capacitors are examples of two-terminal linear devices. In general,
a two-terminal device may be described by an i-v equation i = f (v), where f
can be any function f : R → R. When f is a nonlinear function, the device
is said to be nonlinear and is given the (nonlinear resistor) symbol shown in
Fig. 1.3.

A pn-junction diode is an example of a commonly used two-terminal nonlinear
device. Transistors, such as BJTs and MOSFETs are three-terminal nonlinear
devices (four-terminal, if a detailed model is used that includes the body voltage).

1.2 EQUATION FORMULATION

The behavior of a circuit is captured by a set of equations that are formulated by
combining the element equations and Kirchoff’s Current and Voltage Laws (KCL
and KVL). In general, this results in a set of simultaneous nonlinear first-order
differential equations . For a purely resistive, linear , circuit, the equations are
simply a system of simultaneous linear algebraic equations.

As an example, consider the linear circuit shown in Fig. 1.4. From KCL, we
can write:

i = i1 = i2 (1.1)

4 INTRODUCTION

V

R1

R2

i1

i2i

21

+

−

Figure 1.4: A simple linear circuit.

The element equations provide:

v1 = V, i1 = v1 − v2

R1
, i2 = v2

R2
(1.2)

which, substituted into KCL (i1 = i2), gives:

1

R1
(v1 − v2) = 1

R2
v2 (1.3)

KVL around the loop then provides:

V = R1i1 + R2i2 = (R1 + R2)i = (R1 + R2)
v2

R2
(1.4)

where, in the last step, we have benefited from KCL (i = i2) and the element
equation i2 = v2/R2, and this then leads to:

v2 = R2

R1 + R2
V (1.5)

With v2 in hand then, using (1.3), we get the value of v1, and the element equation
i2 = v2/R2 can then be used to solve for i = i1 = i2.

The above ad hoc approach of solving equations by substitution and similar
operations does not scale well to large circuits. Instead, we need a systematic
and automatic approach for formulating and solving the circuit equations. For
now, we maintain our focus on the simple case of linear resistive circuits. There
are two popular approaches for systematic equation formulation, sparse tableau
analysis (STA) and modified nodal analysis (MNA). Sparse tableau analysis,
described in Hachtel et al. (1971), involves the following steps:

1. Write KCL as Ai = 0, where A is a reduced incidence matrix that we will
introduce later on, and i is a vector of all branch currents.

2. Write KVL as u = AT v, where u is a vector of all branch voltages and v

a vector of all nodal voltages to ground.
3. Write the element equations as Zi + Y u = s, where Z and Y are matrices

and s is a vector.

EQUATION FORMULATION 5

The combination of these three sets of linear algebraic equations leads to the
sparse tableau system:

⎡
⎣A 0 0

0 I −AT

Z Y 0

⎤
⎦

⎡
⎣ i

u
v

⎤
⎦ =

⎡
⎣0

0
s

⎤
⎦ (1.6)

This formulation has some key features in that it can be applied to any circuit
in a systematic fashion, the equations can be assembled directly from the input
(circuit specification), as we will see later on, and the coefficients matrix is very
sparse (has mostly zero elements), although it is larger in dimension than the
MNA matrix. Modified nodal analysis, described in Ho et al. (1975), involves
the following steps:

1. Write KCL as Ai = 0.
2. Use the element equations to eliminate as many current variables as possible

from KCL, leading to equations in terms of mostly branch voltages.
3. Use KVL to replace all the branch voltages by nodal voltages to ground.
4. Append element equations of those elements whose current variables could

not be eliminated as additional equations of the MNA system.

We will see the details of this process later on, and it leads to the MNA system:

[
Y B
C Z

] [
v

i

]
=

[
sv

si

]
(1.7)

As with STA, this formulation can be applied to any circuit in a systematic fashion
and the equations can be assembled directly from the input (circuit specification).
As well, the coefficient matrix is sparse, but often not as sparse as the STA matrix,
although it is smaller in dimension. The MNA matrix can become singular during
the numerical solution process and, therefore, requires careful pivoting.

With the larger matrix size, STA can take longer to formulate the equations
than MNA, but it solves them faster; it is well suited for repeated use as in
statistical analysis. Most modern circuit simulators use the MNA approach.

As an example of the MNA formulation, consider the linear resistive circuit
in Fig. 1.5. We write KCL at every node and then eliminate the current variables
using the element equations, as follows:

KCL at node 2:
V − v2

R1
= v2 − v3

R2
⇒

(
1

R1
+ 1

R2

)
v2 − 1

R2
v3 = V

R1

KCL at node 3:
v2 − v3

R2
= v3

R3
⇒ − 1

R2
v2 +

(
1

R2
+ 1

R3

)
v3 = 0

6 INTRODUCTION

V

1 2 3R1
R2i1 i2

i

R3

i3+

−

Figure 1.5: A linear circuit, used to demonstrate the MNA formulation.

This leads to the MNA matrix equation:
⎡
⎢⎢⎣

(
1

R1
+ 1

R2

) −1

R2−1

R2

(
1

R2
+ 1

R3

)
⎤
⎥⎥⎦

[
v2

v3

]
=

⎡
⎣ V

R1
0

⎤
⎦ (1.8)

Notice that the system matrix can be written as the sum of three matrices:
⎡
⎢⎢⎣

(
1

R1
+ 1

R2

) −1

R2−1

R2

(
1

R2
+ 1

R3

)
⎤
⎥⎥⎦ =

⎡
⎣

1

R1
0

0 0

⎤
⎦ +

⎡
⎢⎢⎣

1

R2

−1

R2

−1

R2

1

R2

⎤
⎥⎥⎦ +

⎡
⎣0 0

0
1

R3

⎤
⎦

(1.9)
each of which relates to a specific element. These contributions of the various
elements are called element stamps , as we will see later on. In general, a resistor
like R2, which is not connected to ground, has the following element stamp:

v+ v−
...

...

n+ · · · +G2 · · · −G2 · · ·
...

...

n− · · · −G2 · · · +G2 · · ·
...

...

where G2 = 1/R2. This and similar element stamps are used to directly build the
required MNA matrix as the simulator is reading (parsing) the circuit description
file.

1.3 SOLUTION TECHNIQUES

As seen in the above examples, such as in (1.8), solving linear resistive circuits
reduces to solving the linear system:

Ax = b (1.10)

SOLUTION TECHNIQUES 7

This is a classical problem that is basic to many engineering disciplines and
has a variety of solution techniques. Direct methods of solution include matrix
inversion, Gaussian elimination, and LU factorization. Indirect methods (relax-
ation methods) of solution include Gauss-Jacobi and Gauss-Seidel, successive
over-relaxation, etc. The most common method is LU factorization, which pro-
ceeds as follows:

1. Factor A as A = LU , where L is lower-diagonal and U is upper-diagonal.
2. Solve Lz = b for z, by forward substitution.
3. Solve U x = z for x , by backward substitution.

We will see the details of this process later on and we will recognize that a most
desirable property throughout all this is matrix sparsity .

1.3.1 Nonlinear Circuits

Solving nonlinear circuits is typically done using Newton’s method . We will see
that this means that we repeatedly, until convergence, perform the following two
steps:

1. Linearize the circuit equations around a candidate solution point.
2. Solve the resulting linear circuit using LU factorization to discover a better

solution point.

In this way, the MNA formulation for linear resistive circuits turns out to be suf-
ficient , because the solution of a nonlinear circuit is reduced to repeated solutions
of linearized versions of that circuit.

As an example of the process of linearization around a candidate solution point,
consider a nonlinear resistor with the element equation i = f (v), as depicted in
Fig. 1.6. The equation of the tangent line at the point (v0, i0) is:

i = f ′(v0) [v − v0] + i0 = f ′(v0)v + Ieq (1.11)

v

i

v0

i0

Ieq

Tangent

Figure 1.6: An i-v characteristic for a nonlinear resistor, showing linearization around a
candidate solution point.

8 INTRODUCTION

Ieqv

i

f '(v0)
1

+

−

Figure 1.7: A linear circuit that has the same current–voltage characteristic as the tangent
line in Fig. 1.6.

where Ieq = i0 − f ′(v0)v0. This equation is also the i-v characteristic of the
sub-circuit shown in Fig. 1.7. This sub-circuit is called a companion model , of
the nonlinear resistor. The element stamp of the companion model is then used
to build the matrix of the linearized circuit, and the resulting linear system is
solved. This process is repeated until the successive candidate solution points
have converged to their final value.

1.3.2 Dynamic Circuits

All the preceding has been for resistive circuits and we have focused on the
solution at a single point in time, a so-called DC Analysis. In general, circuits
include dynamic (L , C) elements, and we are interested in the response over
time, a so-called Transient Analysis. This is done by using a finite difference
approximation of the derivative, such as:

i = C
dv

dt
≈ C

(v(t + �t) − v(t))

�t
(1.12)

By replacing all derivatives by their finite difference approximations, the circuit
equations effectively become algebraic, rather than differential, and possibly
nonlinear. Given the solution at time t , i.e., v(t) and i(t), these equations are then
solved for v(t + �t) and i(t + �t). Thus, by this operation of time discretization ,
the problem is reduced to solving a possibly nonlinear resistive network at every
time-point, based on the use of another kind of companion model for the dynamic
elements.

1.4 CIRCUIT SIMULATION FLOW

The flow-chart shown in Fig. 1.8 is useful to visualize the overall simulation flow
inside a circuit simulator. The simulator repeatedly applies time discretization,
element linearization, and matrix equation solution. In the following chapters, we
will describe the many details, and pitfalls, of these various activities.

CIRCUIT SIMULATION FLOW 9

Nonlinear Differential Equations
F(x,x′) = 0

Nonlinear Algebraic Equations
F(x) = 0

Circuit Description
File

Linear Algebraic Equations
Ax = b

Converged?

End Time?

End.

Discretize

Linearize

Yes

No

Yes

No

Solve

Figure 1.8: Overall circuit simulation flow.

1.4.1 Analysis Modes

Circuit simulators offer different analysis modes . Berkeley’s The Spice Page, at
the web site:

http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE

lists the following analysis modes for SPICE3:

• DC Analysis: Determines the DC operating point of the circuit with induc-
tors shorted and capacitors opened. It is automatically performed prior to
a Transient Analysis, to determine the initial conditions, and prior to an

10 INTRODUCTION

AC Small-Signal Analysis, to determine the linearized, small-signal models
for nonlinear devices. It can also be used to get the DC transfer curves by
means of a DC sweep.

• Transient Analysis: Computes the output variables, voltages and currents,
as functions of time over a user-specified time interval.

• AC Small-Signal Analysis: Finds the AC output variables as functions of
frequency (transfer function), over a user-specified range of frequencies.

• Pole-Zero Analysis: Computes the poles and/or zeros in the small-signal
AC transfer function. It is time-consuming for large circuits.

• Small-Signal Distortion Analysis: Computes steady-state harmonic and
intermodulation products for small input signal magnitudes.

• Sensitivity Analysis: Finds the sensitivity of an output variable with
respect to all circuit variables, including model parameters.

• Noise Analysis: Studies device-generated noise for the given circuit, pro-
viding the noise contributions of each device to the output voltage.

In addition, analysis at different temperatures is allowed; further details are avail-
able in Vladimirescu (1994). Other simulators offer additional capabilities, such
as statistical analysis, switched capacitor circuit analysis, etc. However, per-
haps the most common usage of circuit simulation involves running, first, a
DC Analysis, followed by a Transient Analysis. Thus, our study will focus on
only these two analysis modes.

Notes Additional background on circuit simulation is available in various texts,
such as in Chua and Lin (1975), sections 2.1–2.5 and 3.1–3.5, in Vladimirescu
(1994), in Vlach and Singhal (1994), sections 1.1–1.5, and in Pillage et al. (1995),
chapter 1.

Problems

1.1. (Computer Project) Write a parser, in C or C++, that can read a circuit
specification in terms of a simple “language” that we now describe. The
language is quite limited and restrictive, and represents the bare minimum
that will be needed for subsequent projects in this book. The parser should
not be case-sensitive, and should interpret any contiguous sequence of
spaces or tabs as equivalent to a single space. Every line of the input file
should describe a single circuit element, and the description of every circuit
element should be given wholly within a single input line. The order of
lines in the input file is immaterial and any characters following a % in
an input line should be considered as comments and ignored. Circuit node
names should be non-negative integers, from the set {0, 1, 2, . . .}, and the
node name 0 should be reserved and used for the ground or reference
node.

PROBLEMS 11

The accepted circuit elements and their specifications are given below.
In this, the symbol <node.*>, where * can be any single alphanumeric
character, denotes a node name. Specifically, <node.+> denotes the node
that is the positive voltage reference point for the element and <node.->

denotes the negative reference node. The positive direction of current in
any element is assumed to be from <node.+> to <node.->. The symbol
<int> denotes a non-negative integer, and <value> denotes a non-negative
real number. The <value> given for a circuit parameter, like resistance or
capacitance, should be in the standard units: Volt, Ampere, Ohm, Farad, or
Henry, but it should not include the corresponding unit. Finally, anything
inside brackets, such as [G2] or [<value>] is an optional field.

• Voltage source: Only independent DC voltage sources are allowed, spec-
ified as:

V<int> <node.+> <node.-> <value>

• Current source: Only independent DC current sources are allowed, spec-
ified as:

I<int> <node.+> <node.-> <value> [G2]

• Resistor: Only linear resistors are allowed, specified as:

R<int> <node.+> <node.-> <value> [G2]

• Capacitor: Only linear capacitors are allowed, specified as:

C<int> <node.+> <node.-> <value> [G2]

• Inductor: Only linear inductors are allowed, and they should be specified
as:

L<int> <node.+> <node.-> <value>

• Diode: The diode model, and its parameter values, will not be part of the
input description. Instead, the model will be built into any subsequent
simulation code that you will write and only the terminals should be
specified here. Optionally, a scale factor can also be included so as to
allow the specification of diodes that are larger than minimum size. The
specification is:

D<int> <node.+> <node.-> [<value>]

12 INTRODUCTION

• BJT: Similar to the diode model, only the terminals and an optional scale
factor are given. Let QN denote an npn device and QP denote pnp; the
specification is:

QN<int> <node.C> <node.B> <node.E> [<value>]

QP<int> <node.C> <node.B> <node.E> [<value>]

where the nodes represent the collector, base, and emitter terminals,
respectively.

• MOSFET: Similar to the above, we give only the terminals and an
optional scale factor, and the body terminal is to be ignored:

MN<int> <node.D> <node.G> <node.S> [<value>]

MP<int> <node.D> <node.G> <node.S> [<value>]

where MN denotes an n-channel device and MP is p-channel, and the nodes
represent the drain, gate, and source terminals, respectively.

The parser should create a data structure, as a linked list of records, where
each record describes a separate circuit element, including its terminals and
parameter values. Test your parser on circuits of your choice. An example
is given in Fig. 2.35.

