
C H A P T E R 1
TIME SERIES DATA: EXAMPLES
AND BASIC CONCEPTS

1.1 INTRODUCTION

In many fields of study, data is collected from a system (or as we would also like
to call it a process) over time. This sequence of observations generates a time
series such as the closing prices of the stock market, a country’s unemployment
rate, temperature readings of an industrial furnace, sea level changes in coastal
regions, number of flu cases in a region, inventory levels at a production site,
and so on. These are only a few examples of a myriad of cases where time series
data is used to better understand the dynamics of a system and to make sensible
forecasts about its future behavior.

Most physical processes exhibit inertia and do not change that quickly.
This, combined with the sampling frequency, often makes consecutive obser-
vations correlated. Such correlation between consecutive observations is called
autocorrelation . When the data is autocorrelated, most of the standard model-
ing methods based on the assumption of independent observations may become
misleading or sometimes even useless. We therefore need to consider alternative
methods that take into account the serial dependence in the data. This can be
fairly easily achieved by employing time series models such as autoregressive
integrated moving average (ARIMA) models. However, such models are usu-
ally difficult to understand from a practical point of view. What exactly do they
mean? What are the practical implications of a given model and a specific set of
parameters? In this book, our goal is to provide intuitive understanding of seem-
ingly complicated time series models and their implications. We employ only
the necessary amount of theory and attempt to present major concepts in time
series analysis via numerous examples, some of which are quite well known in
the literature.

1.2 EXAMPLES OF TIME SERIES DATA

Examples of time series can be found in many different fields such as finance,
economics, engineering, healthcare, and operations management, to name a few.
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Figure 1.1 GNP (nominal) of the United States from 1947 to 2010 (in billion dollars).
Source: US Department of Commerce, http://research.stlouisfed.org/fred2/data/GNP.txt.

Consider, for example, the gross national product (GNP) of the United States from
1947 to 2010 in Figure 1.1 where GNP shows a steady exponential increase over
the years. However, there seems to be a “hiccup” toward the end of the period
starting with the third quarter of 2008, which corresponds to the financial cri-
sis that originated from the problems in the real estate market. Studying such
macroeconomic indices, which are presented as time series, is crucial in iden-
tifying, for example, general trends in the national economy, impact of public
policies, or influence of global economy.

Speaking of problems with the real estate market, Figure 1.2 shows the
median sales prices of houses in the United States from 1988 to the second
quarter of 2010. One can argue that the signs of the upcoming crisis could be
noticed as early as in 2007. However, the more crucial issue now is to find out
what is going to happen next. Homeowners would like to know whether the value
of their properties will fall further and similarly the buyers would like to know
whether the market has hit the bottom yet. These forecasts may be possible with
the use of appropriate models for this and many other macroeconomic time series
data.

Businesses are also interested in time series as in inventory and sales data.
Figure 1.3 shows the well-known number of airline passengers data from 1949
to 1960, which will be discussed in greater detail in Chapter 5. On the basis of
the cyclical travel patterns, we can see that the data exhibits a seasonal behavior.
But we can also see an upward trend, suggesting that air travel is becoming more
and more popular. Resource allocation and investment efforts in a company can
greatly benefit from proper analysis of such data.
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Figure 1.2 Median sales prices of houses in the United States. Source: US Bureau of
the Census, http://www.census.gov/hhes/www/housing/hvs/historic/index.html.
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Figure 1.3 The number of airline passengers from 1949 to 1960.

In Figure 1.4, the quarterly dollar sales (in $1000) data of Marshall Field
& Company for the period 1960 through 1975 also shows a seasonal pattern.
The obvious increase in sales in the fourth quarter can certainly be attributed
to Christmas shopping sprees. For inventory problems, for example, this type
of data contains invaluable information. The data is taken from George Foster’s
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Figure 1.4 Quarterly dollar sales (in $1000) of Marshall Field & Company for the period
1960 through 1975.

Financial Statement Analysis (1978), where Foster uses this dataset in Chapter 4
to illustrate a number of statistical tools that are useful in accounting.

In some cases, it may also be possible to identify certain leading indicators
for the variables of interest. For example, building permit applications is a leading
indicator for many sectors of the economy that are influenced by construction
activities. In Figure 1.5, the leading indicator is shown in the top panel whereas
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Figure 1.5 Time series plots of sales and a leading indicator.
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the sales data is given at the bottom. They exhibit similar behavior; however, the
important task is to find out whether there exists a lagged relationship between
these two time series. If such a relationship exists, then from the current and past
behavior of the leading indicator, it may be possible to determine how the sales
will behave in the near future. This example will be studied in greater detail in
Chapter 8.

Sometimes, the natural course of time series is interrupted because of some
known causes such as public policy changes, strikes, new advertisement cam-
paigns, and so on. In Chapter 8, the classic example of the market share fight
between Colgate–Palmolive’s “Colgate Dental Cream” and Proctor and Gam-
ble’s “Crest Toothpaste” will be discussed. Before the introduction of Crest by
Proctor and Gamble into the US market, Colgate enjoyed a market leadership
with a close to 50% market share. However, in 1960, the Council on Dental
Therapeutics of the American Dental Association (ADA) endorsed Crest as an
“important aid in any program of dental hygiene.” Figure 1.6 shows the market
shares of the two brands during the period before and after the endorsement.
Now is it possible to deduce from this data that ADA’s endorsement had any
impact on the market shares? If so, was the effect permanent or temporary? In
our analysis of these series in Chapter 8, some answers to these questions have
been provided through an “intervention analysis.”

This book also covers many engineering examples, most of which come
from Box et al. (2008) (BJR hereafter). The time series plot of hourly temperature
readings from a ceramic furnace is given in Figure 1.7. Even though the time
interval considered consists of only 80 observations, the series looks stationary
in the sense that both the mean and the variance do not seem to vary over time.
The analysis of this series has been performed in Chapter 4.
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Figure 1.6 Time series plot of the weekly Colgate market share (ColgateMS) and Crest
market share (CrestMS).
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Figure 1.7 A time series plot of 80 consecutive hourly temperature observations from a
ceramic furnace.

Figures 1.8 and 1.9 show the concentration and temperature readings,
respectively, of a chemical process. The data come from series A and C of
BJR. Both series exhibit nonstationary behavior in the sense that the mean seems
to vary over time. This is to be expected from many engineering processes
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Figure 1.8 Time series plot of chemical process concentration readings sampled every
2 h (BJR series A).
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Figure 1.9 Time series plot of the temperature from a pilot plant observed every minute
(BJR series C).

that are not tightly controlled. The analysis of both series has been provided in
Chapter 4.

Data for another engineering example is given in the series J of BJR where
the dynamic relationship between the input variable, methane gas rate, and the
output, CO2 concentration, in a pilot plant is discussed. In Figure 1.10, we can
observe an apparent relationship between these two variables but a rigorous anal-
ysis is needed to fit a so-called transfer function–noise model to quantify this
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Figure 1.10 Time series plots of gas furnace data (BJR series J).
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relationship. This is one of the examples used in Chapter 8 to illustrate some of
the finer points in transfer function–noise models.

Time series data is of course not limited to economics, finance, business,
and engineering. There are several other fields where the data is collected as a
sequence in time and shows serial dependence. Consider the number of internet
users over a 100-min period given in Figure 1.11. The data clearly does not follow
a local mean but wanders around showing signs of “nonstationarity.” This data
is used in Chapter 6 to discuss how seemingly different models can fit a dataset
equally well.

Figure 1.12 shows the annual sea level data for Copenhagen, Denmark,
from 1889 to 2006. The data seems to have a stationary behavior with a subtle
increase during the last couple of decades. What can city officials expect in the
near future when it comes to sea levels rising? Can we make any generalizations
regarding the sea levels all around the world based on this data? The data is
available at www.psmsl.org. It is interesting to observe that the behavior we
see in Figure 1.12 is only one of many different behaviors exhibited by similar
datasets collected at various locations around the world. Note that in Figure 1.12,
we observe missing data points, which is a surprisingly common problem with
this type of data, and hence provides an excellent example to discuss the missing
observations issue in Chapter 7.

There are also many examples in healthcare where time series data is col-
lected and analyzed. In the fall of 2009, H1N1 flu pandemic generated a lot of
fear throughout the world. The plot of the weekly number of reported cases in
the United States is given in Figure 1.13. On the basis of this data, can we predict
the number of flu cases in the autumn of 2010 and winter of 2011? What could
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Figure 1.11 Time series plot of the number of internet server users over a 100-min
period.
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Figure 1.12 The annual sea levels in millimeters for Copenhagen, Denmark.
Source: www.psmsl.org.
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Figure 1.13 H1N1 flu cases in the United States from week 16 of 2009 to week 20 of
2010. Source: US Center for Disease Control CDC.

be the reason for a considerable decline in the number of cases at the end of
2009—a successful vaccination campaign, a successful “wash your hands” cam-
paign, or people’s improved immune system? Needless to say, an appropriate
analysis of this data can greatly help to better prepare for the new flu season.
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These examples can be extended to many other fields. The common thread
is the data that is collected in time exhibiting a certain behavior, implying serial
dependence. The tools and methodologies presented in this book will, in many
cases, be proved very useful in identifying underlying patterns and dynamics in a
process and allow the analyst to make sensible forecasts about its future behavior.

1.3 UNDERSTANDING AUTOCORRELATION

Modern time series modeling dates back to 1927 when the statistician G. U. Yule
published an article where he used the dynamic movement of a pendulum as
the inspiration to formulate an autoregressive model for the time dependency in
an observed time series. We now demonstrate how Yule’s pendulum analogue
is an excellent vehicle for gaining intuition more generally about the dynamic
behavior of time series models.

First, let us review the basic physics of the pendulum shown in Figure 1.14.
If a pendulum in equilibrium with mass m under the influence of gravity is
suddenly hit by a single impulse force, it will begin to swing back and forth.
Yule describes this as a simple pendulum that is in equilibrium in the middle of
the room, being pelted by peas thrown by some naughty boys in the room. This
of course causes the harmonic motion that the pendulum displays subsequently.
The frequency of this harmonic motion depends on the length of the pendulum,

Figure 1.14 A simple
pendulum.
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Figure 1.15 A simple pendulum in motion.

the amplitude of the mass of the bob, the impulse force, and the dissipative
forces of friction and viscosity of the surrounding medium. The forces affecting
a pendulum in motion are given in Figure 1.15.

After the initial impulse, the pendulum will gradually be slowed down by
the dissipative forces until it eventually reaches the equilibrium again. How this
happens provides an insight into the dynamic behavior of the pendulum—is it a
short or long pendulum, is the bob light or heavy, is the friction small or large,
and is the pendulum swinging in air or in a more viscous medium such as water?

An example for the displacement of the pendulum referenced to the equi-
librium position at 0 is given in Figure 1.16. The harmonic movement z (t) of a
pendulum as a function of time t can be at least approximately described by a
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Figure 1.16 The displacement of a simple pendulum in motion.
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second order linear differential equation with constant coefficients

m
d2z

dt2
+ γ

dz

dt
+ kz = aδ(t) (1.1)

where δ(t) is an impulse (delta) function that, like a pea shot, at time t = 0 forces
the pendulum away from its equilibrium and a is the size of the impact by the
pea. It is easy to imagine that the curve traced by this second order differential
equation is a damped sinusoidal function of time although, if the friction or
viscosity is sufficiently large, the (overdamped) pendulum may gradually come
to rest following an exponential curve without ever crossing the centerline.

Differential equations are used to describe the dynamic process behav-
ior in continuous time. But time series data is typically sampled (observed)
at discrete times—for example, every hour or every minute. Yule therefore
showed that if we replace the first- and second order differentials with dis-
crete first- and second order differences, ∇zt = zt − zt−1 and ∇2zt = ∇(∇zt ) =
zt − 2zt−1 + zt−2, we can rewrite Equation (1.1) as a second order difference
equation β2∇2z̃t + β1∇ z̃t + β0z̃t = at where at mimics a random pea shot at
time t and z̃t = zt − μ is the deviation from the pendulum’s equilibrium position.
After simple substitutions and rearrangements, this can be written as

z̃t = φ1z̃t−1 + φ2z̃t−2 + at (1.2)

which is called a second order autoregressive time series model where the current
observation z̃t is regressed on the two previous observations z̃t−1 and z̃t−2 and the
error term is at . Therefore, if observed in discrete time, the oscillatory behavior
of a pendulum can be described by Equation (1.2).

The model in Equation (1.2) is called an autoregressive model as the posi-
tion of the pendulum at any given time t can be modeled using the position of the
same pendulum at times t − 1 and t − 2. Borrowing the standard linear regression
terminology, this model corresponds to the one where the position of the pendu-
lum at any given time is (auto)-regressed onto itself at previous times. The reason
that the model uses only two positions that are immediately preceding the current
time is that the governing physics of the behavior of a simple pendulum dictates
that it should follow second order dynamics. We should not expect all systems
to follow the same second order dynamics. Nor do we expect to have a prior
knowledge or even a guess of such dynamics for any given system. Therefore,
empirical models where the current value is modeled using the previous values
of appropriate lags are deemed appropriate for modeling time series data. The
determination of the “appropriate” lags will be explored in the following chapters.

1.4 THE WOLD DECOMPOSITION

It is possible to provide another intuitive interpretation of Equation (1.2). The
current position is given as a function of not only two previous positions but also
of the current disturbance, at . This is, however, an incomplete account of what is
going on here. If Equation (1.2) is valid for z̃t , it should also be valid for z̃t−1 and
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z̃t−2 for which at−1 and at−2 will be used respectively as the disturbance term in
Equation (1.2). Therefore, the equation for z̃t does not only have at on the right-
hand side but also at−1 and at−2 through the inclusion of the autoregressive terms
z̃t−1 and z̃t−2. Using the same argument, we can further show that the equation
for z̃t contains all previous disturbances. In fact, the powers of the coefficients
in front of the autoregressive terms in Equation (1.2), namely φ1 and φ2, serve
as the “weights” of these past disturbances. Therefore, certain coefficients can
lead to an unstable infinite sum as these weights can increase exponentially as
we move back in the past. For example, consider +2 and +3 for φ1 and φ2,
respectively. This combination will give exponentially increasing weights for
the past disturbances. Hence, only certain combinations of the coefficients will
provide stable behavior in the weights and lead to a stationary time series. Indeed,
stationary time series provide the foundation for discussing more general time
series that exhibit trend and seasonality later in this book.

Stationary time series are characterized by having a distribution that is
independent of time shifts. Most often, we will only require that the mean and
variance of these processes are constant and that autocorrelation is only lag
dependent. This is also called weak stationarity .

Now that we have introduced stationarity, we can also discuss one of the
most fundamental results of modern time series analysis, the Wold decomposition
theorem (see BJR). It essentially shows that any stationary time series process
can be written as an infinite sum of weighted random shocks

z̃t = at + ψ1at−1 + ψ2at−2 + . . .

= at +
∞∑

j=1

ψj at−j (1.3)

where z̃t = zt − μ is the deviation from the mean, at ’s are uncorrelated random

shocks with zero mean and constant variance, and {ψi } satisfies
+∞∑
i=0

ψ2
i < ∞.

For most practical purposes, the Wold decomposition involving an infinite sum
and an infinite number of parameters ψj is mostly of theoretical interest but not
very useful in practice. However, we can often generate the ψj ’s from a few
parameters. For example, if we let ψj = φ

j
1, we can generate the entire infinite

sequence of ψj ’s as the powers of a single parameter φ1. It should be noted that
although this imposes a strong restriction on the otherwise unrelated ψj ’s, it also
allows us to represent infinitely many parameters with only one. Moreover, for
most processes encountered in practice, most of the ψj weights will be small
and without much consequence except for a relatively small number related to
the most recent at ’s. Indeed, one of the essential ideas of the groundbreaking
Box–Jenkins approach to time series analysis (see BJR) was their recognition that
it was possible to approximate a wide variety of ψ weight patterns occurring in
practice using models with only a few parameters. It is this idea of “parsimonious”
models that led them to introduce the autoregressive moving average (ARMA)
models that will be discussed in great detail in Chapter 3.
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It should also be noted that while the models for stationary time series,
such as the ARMA models, constitute the foundation of many methodologies
we present in this book, the assumption that a time series is stationary is quite
unrealistic in real life. For a system to exhibit a stationary behavior, it has to be
tightly controlled and maintained in time. Otherwise, systems will tend to drift
away from a stationary behavior following the second law of thermodynamics,
which, as George E. P. Box, one of the pioneers in time series analysis, would
playfully state, dictates that everything goes to hell in a hand basket. What is much
more realistic is to claim that the changes to a process, or the first difference,
form a stationary process. And if that is not realistic, we may try to see if
the changes of the changes, the second difference, form a stationary process.
This observation is the basis for the very versatile use of time series models.
Thus, as we will see in later chapters, simple manipulations such as taking the
first difference, ∇zt = zt − zt−1 or ∇2zt = ∇(zt − zt−1) = zt − 2zt−1 + zt−2, can
make those first- or second order differences exhibit stationary behavior even if
zt did not. This will be discussed in greater detail in Chapter 4.

1.5 THE IMPULSE RESPONSE FUNCTION

We have now seen that a stationary time series process can be represented as
the dynamic response of a linear filter to a series of random shocks as illustrated
in Figure 1.17. But what is the significance of the ψj ’s? The reason we are
interested in the ψj weights is that they tell us something interesting about the
dynamic behavior of a system. To illustrate this, let us return to the pendulum
example. Suppose we, for a period of time, had observed a pendulum swinging
back and forth, and found “coincidentally” that the parameters were φ̂1 = 0.9824
and φ̂2 = −0.3722. (Note that these estimates are from the example that will be
discussed in Chapter 3.) Now, suppose the pendulum is brought to rest, but then
at time t = 0 it is suddenly hit by a single small pea shot and then again left
alone. The pendulum, of course, will start to swing but after some time it will
eventually return to rest. But how much will it swing and for how long? If we
knew that, we would have a feel for the type and size of pendulum we are dealing

zt
~Dynamic system/

linear filter
at

Impulse response function

zt = at  +     at–1 +   at–2 + ...~ ψ1 ψ2

Figure 1.17 A time series model as a linear filter of random shock inputs.
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with. In other words, we would be able to appreciate the dynamic behavior of
the system under study, whether it is a pendulum, a ceramic furnace, the US
economy, or something else. Fortunately, this question can directly be answered
by studying the ψj ’s, also known as the impulse response function . Furthermore,
the impulse response function can be computed easily with a spreadsheet program
directly from the autoregressive model, z̃t = φ1z̃t−1 + φ2z̃t−2 + at .

Specifically, suppose we want to simulate that our pendulum is hit from the
left with a single pea shot at time t = 0. Therefore, we let a0 = 1 and at = 0 for
t > 0. To get the computations started, suppose we start a few time units earlier,
say t = −2. Since the pendulum is at rest, we set z−1 = 0 and z−2 = 0 and then
recursively compute the responses as

z̃−2 = 0

z̃−1 = 0

z̃0 = 0.9824z̃−1 − 0.3722z̃−2 + a0 = 0.9824 × 0 − 0.3722 × 0 + 1 = 1

z̃1 = 0.9824z̃0 − 0.3722z̃−1 + a1 = 0.9824 × 1 − 0.3722 × 0 + 0 = 0.9824

z̃2 = 0.9824z̃1 − 0.3722z̃0 + a2

= 0.9824 × 0.9824 − 0.3722 × 1.0 + 0 = 0.59291

and so on (1.4)

This type of recursive computation is easily set up in a spreadsheet. The
response, z̃t , t = 1, 2, . . . , to the single impulse a0 = 1 at t = 0 as it propagates
through the system provides us with the ψ weights. The impulse response func-
tion is shown in Table 1.1 and plotted in Figure 1.18 where we see that the single
pea shot causes the pendulum instantly to move to the right, then slowly returns
back toward the centerline, crosses it at about t = 4, overshoots it a bit, again
crosses the centerline about t = 9, and eventually comes to rest at about t = 14.
In other words, our pendulum is relatively dampened as if it were moving in
water or as if it were very long and had a heavy mass relative to the force of the
small pea shot.

Now suppose we repeated the experiment with a much lighter and less
damped pendulum with parameters φ1 = 0.2 and φ2 = −0.8.

The impulse response for this pendulum is shown in Figure 1.19. We see
that it has a much more temperamental and oscillatory reaction to the pea shot
and that the dynamic reaction stays much longer in the system.

1.6 SUPERPOSITION PRINCIPLE

The reaction of a linear filter model z̃t = at + ψ1at−1 + ψ2at−2 + . . . to a single
pea shot has been discussed above. However, in general we will have a sequence
of random shocks bombarding the system and not just a single shock. The reaction
to each shock is given by the impulse response function. But for linear time series
models, the reaction to a sequence of shocks can easily be generated by the super-
position principle. That means, the individual responses can be added together
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TABLE 1.1 The Impulse Response Function for the AR(2) for the Pendulum

Time (t) at z̃t = ψj

−2 0 0.00000

−1 0 0.00000

0 1 1.00000

1 0 0.98240

2 0 0.59291

3 0 0.21683

4 0 −0.00767

5 0 −0.08824

6 0 −0.08383

7 0 −0.04951

8 0 −0.01744

9 0 0.00130

10 0 0.00776

11 0 0.00715

12 0 0.00413

13 0 0.00140

14 0 −0.00016

15 0 −0.00068
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Figure 1.18 Impulse response function for the AR(2) for the pendulum.

to form the full response to a general sequence of inputs. Indeed, the impulse
responses to each of the individual shocks are simply added up as they occur over
time. For example, if the pendulum model z̃t = 0.9824z̃t−1 − 0.3722z̃t−2 + at

was hit by a random sequence of 10 shocks as shown in Figure 1.20a starting
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Figure 1.19 The impulse response for a pendulum with parameters φ1 = 0.2 and
φ2 = −0.8.
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Figure 1.20 (a) Ten independent random white noise shocks at , t = 1, . . . , 10 and (b) the
superimposed responses of a linear filter generated by the AR(2) model z̃t = 0.9824z̃t−1 −
0.3722z̃t−2 + at .

at time t = 0, then the pendulum’s response over time would be as shown in
Figure 1.20b.

The impulse response function helps us to visualize and gain an intuitive
understanding of the dynamic reaction of a system. Specifically, we can con-
sider any stationary time series model as a linear filter subject to a sequence
of random shocks. How a process reacts to a single shock provides us with
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important information about how the noise propagates through the system and
what effect it has over time. Indeed, we can always intuitively think of any
stationary time series model as a system that mimics the dynamic behavior of
something like a pendulum subject to a sequence of small random pea shots.
Further, if the process is nonstationary, what has been said above will apply to
the first or possibly higher order difference of the data. In either case, the impulse
response function is still a useful tool for visualizing the dynamic behavior of a
system.

1.7 PARSIMONIOUS MODELS

In any modeling effort, we should always keep in mind that the model is only an
approximation of the true behavior of the system in question. One of the cardinal
sins of modeling is to fall in love with the model. As George Box famously
stated, “All models are wrong. Some are useful.” This is particularly true in time
series modeling. There is quite a bit of personal judgment when it comes to deter-
mining the type of model we would like to use for a given data. Even though this
interpretation adds extra excitement to the whole time series modeling process
(we might admittedly be a bit biased when we say “excitement”), it also makes
it subjective. When it comes to picking a model among many candidates, we
should always keep in mind Occam’s razor, which is attributed to philosopher
and Franciscan friar William of Ockham (1285–1347/1349) who used it often in
analyzing problems. In Latin it is “Pluralitas non est ponenda sine necessitate,”
which means “Plurality should not be posited without necessity” or “Entities
are not to be multiplied beyond necessity.” The principle was adapted by many
scientists such as Nicole d’Oresme, a fourteenth century French physicist, and
by Galileo in defending the simplest hypothesis of the heavens, the heliocen-
tric system, or by Einstein who said “Everything should be made as simple as
possible, but not simpler.” In statistics, the application of this principle becomes
obvious in modeling. Statistical models contain parameters that have to be esti-
mated from the data. It is important to employ models with as few parameters
as possible for adequate representation. Hence our principle should be, “When
everything else is equal, choose the simplest model (. . . with the fewest param-
eters).” Why simpler models? Because they are easier to understand, easier to
use, easier to interpret, and easier to explain. As opposed to simpler models,
more complicated models with the prodigal use of parameters lead to poor esti-
mates of the parameters. Models with large number of parameters will tend to
overfit the data, meaning that locally they may provide very good fits; however,
globally, that is, in forecasting, they tend to produce poor forecasts and larger
forecast variances. Therefore, we strongly recommend the use of Occam’s razor
liberally in modeling efforts and always seek the simpler model when all else is
the same.
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EXERCISES
1.1 Discuss why we see serial dependence in data collected in time.

1.2 In the pendulum example given in Section 1.3, what are the factors that affect the
serial dependence in the observations?

1.3 Find the Wold decomposition for the AR(2) model we obtain for the pendulum
example.

1.4 The impulse response function in Table 1.1 is obtained when a0 = 1. Repeat the same
calculations with a0 = 1 and a1 = 1, and comment on your results.




