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Chapter 1

Foundations of Maxwell’s 
Equations

LEARNING OBJECTIVES

• Review selected chronological developments of electromagnetic concepts

• Appreciate the role of electromagnetic theory in electrical engineering

• Use fundamental electromagnetic fi eld quantities, units, and universal constants

• Use statistical concepts for determining the precision of a measured number

• Understand and apply principles of complex variables and phasor notation

1.1 HISTORICAL OVERVIEW

Some credit the existence of electric charge to a discovery more than two and a 
half thousand years ago by a Greek astronomer and philosopher, Thales of Miletus. 
He found that an amber (ήλεκτρον) rod, after being rubbed with silk or wool, 
would attract straw and small pieces of parchment. The Greek word for amber is 
éléktron, from which the words electron, electronics, electricity, electromagnetic, 
and electrical engineer are derived.

The discovery of the magnetic polarities of lodestone (μάγ νηζ ), a natural mate-
rial found in the Thessalian Magnesia, from which we derivei the name magnetic, 
by Pierre de Maricourt occurred around 1269. From that time through the early 
seventeenth century, progress in the study of magnetism was slow, but, during the 
seventeenth century, there were notable contributions by a number of scientists 
toward understanding magnetism. A. Kirchner demonstrated that the two poles of a 
magnet have equal strength, and Newton attempted to formulate the laws governing 
the forces between bar magnets.

The inverse square law of electric and magnetic forces was not postulated until 
John Michell proposed it in 1750 and Coulomb confi rmed it in 1785. Coulomb’s 
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law may be said to be the starting point of modern electromagnetic theory. Subsequent 
landmark developments in electromagnetic theory include the derivation by Laplace 
in 1782 and Poisson in 1813 of the famous equations that bear their names. Gauss 
published the divergence theorem, often called Gauss’s law, in the same year.

Experiments with electric current could be performed only after invention of 
the battery by Volta in 1800. Having a source for generating a continuous current, 
Oersted, in 1820, was able to demonstrate the production of magnetic fi elds by 
electric currents. His discovery prompted others to investigate the relationship 
between electric current and magnetic fi elds. In 1820, Ampere announced a discov-
ery relating to the forces between electric current-carrying conductors and magnets 
and the mutual attraction or repulsion of two electric currents. These experiments 
led to the formulation of what is now called Ampere’s law. In 1820, Biot and Savart 
repeated Oersted’s experiment to determine a law of force between current carrying 
conductors, giving us the so-called Biot–Savart law.

During the period of Oersted and Ampere, Faraday was also experimenting on 
the interaction between current-carrying conductors and magnetic fi elds and devel-
oped an electric motor in 1821. Faraday’s experiments on developing induced cur-
rents by changing magnetic fi elds led to the law of electromagnetic induction in 
1831. Faraday also proposed the concept of magnetic lines of force and laid the 
foundation of electromagnetic fi eld theory.

In 1864, Maxwell proposedii A Dynamical Theory of the Electromagnetic Field 
and thus unifi ed the experimental researches of over a century through a set of 
equations known as Maxwell’s equations. These equations were verifi ed by Hertz 
in 1887 in a brilliant sequence of demonstrations. It is now generally accepted that 
all electromagnetic phenomena are governed by Maxwell’s equations.

1.2 ROLE OF ELECTROMAGNETIC FIELD THEORY

Electromagnetic fi eld theory is the study of the electric and magnetic phenomena 
caused by electric charges, q, at rest or in motion. There are two kinds of electric 
charges, positive and negative, following a defi nition given by Benjamin Franklin. 
Both positive and negative charges are sources of an electric fi eld intensity,1 E (or 
E� ). Moving charges produce a current that can further give rise to a magnetic fi eld 
intensity, H (or H� ). A vector fi eld is defi ned as a spatial distribution of a vector 
quantity, which may or may not be function of time. A time-varying electric fi eld 
intensity is always accompanied by a magnetic fi eld intensity and vice versa. In other 
words, time-varying electric and magnetic fi eld intensities are intrinsically coupled 
and result in an electromagnetic fi eld intensity. Time-dependent electromagnetic 
fi eld intensities produce waves that radiate from their source toward an observation 
point. Many authors call this the causality principle because, they argue, the phenom-
enon does not work in the opposite direction. But, in our study of electromagnetic 

1 Other authors often use a bold type or a capital letter with an overhead vector to represent a vector 
quantity and interchange the two designations freely. This book will also color-code the electric fi eld 
intensity and magnetic fi eld intensity to make their representation clear in equations and drawings.
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fi elds propagating in a waveguide, we will see that boundary conditions at a conduct-
ing surface boundary require a charge density distribution to support the electric and 
magnetic fi eld intensities defi ned by Maxwell’s equations. Because conduction elec-
trons do not travel at velocities comparable with fi eld propagation velocities, we can 
argue that the surface charges on the conductors must be induced by the fi eld intensi-
ties. Such a picture of the physical universe gives symmetry to nature as defi ned by 
a “principle of equivalence”: It is equivalent to view charges and currents as the 
source of electromagnetic fi elds or to view electromagnetic fi elds as the source of 
induced charges and currents.

The concept of propagating fi elds and waves is essential in the explanation of 
action at a distance. Satellite and mobile communications demonstrate that electric 
fi elds and magnetic fi elds propagate; that electromagnetic waves move in free space 
or in a medium such as air, water, resin fi berboard, or any other material. As we 
will see, they propagate without the presence of a luminiferous ether or “jelly.”

Electromagnetic fi eld theory is important in that it can explain many phenomena 
and solve complicated problems that conventional circuit theory cannot address. For 
instance, a mobile antenna can receive signals transmitted from base stations, where 
there are no physical connections between the transmitter and receiving antennas, and 
no free-space currents or voltages defi ned as in circuit theory. Another good example 
is the strong coupling that may exist between components printed some distance apart 
on circuit boards even though there are no identifi able resistance, capacitance, or 
inductance elements between them. By using computer techniques and electromag-
netic theory, however, the intentional coupling between widely separated antennas 
and the unintentional coupling between nearby circuit components can be accurately 
predicted. In the discipline of Signal Integrity, the phenomenon is called “cross talk.”

1.3 ELECTROMAGNETIC FIELD QUANTITIES

Historically, quantities in electromagnetic fi eld theory are divided into two catego-
ries: source quantities and fi eld quantities. The source of an electromagnetic fi eld 
usually refers to electric charges at rest or in motion, while fi eld quantities are usually 
observed or computed at an observation or fi eld point. In this chapter, we will 
distinguish between classical view of cause and effect, at least for the purpose of 
discussion by routinely displaying source coordinates with a prime, for example, 
(x′, y′, z′); and fi eld or observation coordinates as unprimed, for example, (x, y, z). 
However, we are mindful that it is equivalent to take the view that fi elds induce 
charges or charges induce fi elds and we shall see in the case of fi eld propagation in 
a transmission line or waveguide that this duality can lead to a more complete 
understanding of power loss.

Electric Charges and Charge Densities

The symbol q or Q is used to denote electric charge, which is a fundamental property 
of matter and exists only in positive or negative integral multiples of the charge on 
an electron, −e, where
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 e = ( ) × −1 60217653 14 10 19. C.  (1.1)

C is the abbreviation for the meter–kilogram–second (or International System of 
Units [SI]) unit of charge, coulomb.2 A coulomb is a very large unit for charge 
because it takes 1/1.60 × 10−19 or 6.25 × 1018 electrons to make up 1 C. The quantity 
in parenthesis (14) is the standard deviation in all measurements that have been 
compiled by the National Institute of Standards and Technology to obtain an average 
of the measured values of e. This and other quantities described below can be found 
at http://physics.nist.gov/cgi-bin/cuu/Value?e.

The principle of conservation of electric charge is a fundamental postulate. The 
statement that electric charge is conserved simply means that it can neither be created 
nor destroyed. The principle of conservation of electric charge must be satisfi ed at 
all times and in all situations in electrical engineering.

Next, we defi ne a volume charge density, ρv, as a source quantity as follows:
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where Δq is the amount of charge in a very small volume Δv. In many cases, an 
amount of charge Δq may be identifi ed with an element of surface, Δs, or an element 
of line, Δl. In such cases, it will be more appropriate to defi ne a surface charge 
density, Σs, or a line charge density, λl:
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In general, all charge densities are point functions of space coordinates and may also 
be time dependent. In some texts, the surface charge density, Σs, may be labeled σs 
or ρs, and the line charge density, λl, may be labeled ρl. Alternate labeling is neces-
sary in preventing confusion when, in the same section or publication, we discuss 
electrical conductivity, traditionally labeled σ; and/or scattering cross section, 
traditionally labeled σs. Likewise, we often refer to the distance to the z-axis in 
cylindrical coordinates by the symbol ρ.

Current and Current Density

Electric current is the rate of transfer of charge across a reference surface with 
respect to time;3 that is,

2 One of the oddities of science and technology is that we traditionally do not capitalize the written 
unit that represents a person’s name (like Coulomb) unless the symbol (e.g., C ) is used for that unit.
3 As mentioned earlier, a time-varying electric fi eld intensity is always accompanied by a magnetic 
fi eld intensity and vice versa. In this book, charges and electric fi eld intensities will be colored red and 
currents and magnetic fi eld intensities blue. Thus, a time derivative of a red quantity produces a blue 
quantity, as shown in Equation 1.5 and vice versa.
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where the unit of current is a coulomb per second (C/s) or ampere (A). A physical 
current must fl ow through a fi nite area; hence, it is not a point function but may be 
time dependent. However, in electromagnetic fi eld theory, we defi ne a vector point 
function, current density, J�, which measures the amount of current fl owing through 
a unit area normal to the direction of current fl ow. The current density J� is a vector 
whose magnitude and direction are the current per unit area (A/m2), and the direction 
of current fl ow at a point in space, respectively. J� may also be a time-dependent 
quantity.

Electromagnetic Field Quantities

An electromagnetic fi eld can be described by four fi eld quantities:

Electric fi eld intensity E� (V/m);

Electric fl ux density or displacement D� (C/m2);

Magnetic fi eld intensity H�  (A/m); and

Magnetic fl ux density B�  (Wb/m2 or T).

Here, the unit T stands for the tesla or volt-second per square meter and is 
named in honor of Nikola Tesla (1857–1943), who helped the understanding of 
rotating fi eld poles in electric motors and transformers. The electric fi eld intensity 
E� is the vector fi eld used in electrostatics when charge is at rest in free space 
and is defi ned as the electric force on a unit test charge. The electric displace-
ment vector D� (also called the electric fl ux density or displacement fl ux) is a 
vector fi eld used in studying the electric fi elds inside material objects. Similarly, 
magnetic fi eld intensity H�  is a vector needed in discussing magnetic phenomonen, 
that is the fi eld generated at a point in free space by steady or time-varying 
electric currents in a source; it is related to the magnetic force acting on a 
moving charge. The magnetic fl ux density B�  is useful in the investigation of the 
magnetic fi elds within material objects where the material modifi es the fi eld 
intensity.

When there is no time variation in fi eld quantities, the electric fi eld quantities 
(E�, D�) are independent from the magnetic fi eld quantities (H� , B� ). In time-dependent 
cases, however, the electric and magnetic fi elds are coupled; that is, time-varying 
(E�, D�) will give rise to (H� , B� ) and vice versa. The electromagnetic properties of 
materials are governed by the so-called constitutive relations between E� and D�, and 
H�  and B� . The equations that represent these constitutive relations are called 
Maxwell’s equations.

1.3 Electromagnetic Field Quantities 5



6 Chapter 1 Foundations of Maxwell’s Equations

1.4 UNITS AND UNIVERSAL CONSTANTS

In this book, as in most contemporary engineering texts, we will adhere to the 
SI, often called the meter–kilogram–second system built from seven basic units, 
as shown in Table 1.1. All derived units can be expressed in terms of these 
quantities.

In the SI system, the speed of light is an exact quantity as a consequence of the 
defi nition of the meter adopted in 1983, the defi nition of the kilogram adopted in 
1889, the defi nition of the second adopted in 1967:

1. Meter is the length of the path traveled by light in a vacuum during a time 
interval of 1/299,792,458 of a second.

2. Kilogram is the unit of mass; it is equal to the mass of the international 
prototype of the kilogram.

3. Second is the duration of 9,192,631,770 periods of the radiation correspond-
ing to the transition between the two hyperfi ne levels of the ground state of 
the cesium-133 atom.

4. Ampere is that constant current that, if maintained in two straight parallel 
conductors of infi nite length, of negligible circular cross section, and placed 
1 m apart in vacuum, would produce between these conductors a force equal 
to 2 × 10−7 newton per meter of length.

5. Kelvin, the unit of thermodynamic temperature, is the fraction 1/273.16 of 
the thermodynamic temperature of the triple point of water.

6. Mole is the amount of substance of a system that contains as many elemen-
tary entities as there are atoms in 0.012 kg of carbon 12; its symbol is “mol.” 
When the mole is used, the elementary entities must be specifi ed and may 
be atoms, molecules, ions, electrons, other particles, or specifi ed groups of 
such particles.

7. Candela is the luminous intensity, in a given direction, of a source that emits 
monochromatic radiation of frequency 540 × 1012 Hz and that has a radiant 
intensity in that direction of 1/683 W per steradian.

Table 1-1. Seven Basic Units

Quantity Unit Abbreviation

Length Meter m
Mass Kilogram kg
Time Second s
Current Ampere A
Temperature Kelvin K
Amount of substance Mole mol
Luminous intensity Candela cd
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In electromagnetic fi eld expressions, we frequently encounter three constants: 
the speed of light (and all other electromagnetic waves) in free space, c, the dielectric 
permittivity of free space, ε0, and the magnetic permeability of free space, μ0. Note 
that there is no uncertainty (no standard deviation) in any of these terms because 
they are defi ned exactly.

We defi ne

 c ≡ ( ) ≈ × ( )299 792 458 3 108, , m s m s .  (1.6)

In addition, the magnetic permeability of free space, μ0, is defi ned as

 μ π0
7 24 10≡ × ( )( )( )− H m or N A or s mΩ .  (1.7)

Thus, using an equality that we will later derive for free space that includes the 
electric permittivity of free space, ε0, we can deduce the exact value

 ε μ0 0
2 12 2 21 8 854187817 10≡ = × ( )( )( )−c . . . . F m or C Nm or s mΩ  (1.8)

where the units H/m and F/m stand for henry per meter and farad per meter, respec-
tively. We again note that, because they are defi ned, there is no uncertainty in any 
of the constants c, ε0, or μ0.

For convenience, we will often use the value 3 × 108 m/s for the speed of light 
because it is easier to recall than the defi ned fi gure, and, consistent with this approxi-
mation and Equation 1.8, we will often use the approximation 1/36π × 109 C2/N m2 
for ε0. This practice is common in the study of electromagnetic fi elds and seldom 
leads to signifi cant error. Nonetheless, in critical computations, the more accurate 
values of c and ε0 may be required.

In free space, the constants ε0 and μ0 are the proportionality constants between 
the electric fi eld intensity, E�, and the electric fl ux density, D�, and the magnetic fi eld 
intensity, H� , and the magnetic fl ux density, B� , respectively, such that

 
� �
D E= ( )ε0 in free space  (1.9)

 
� �
B H= ( )μ0 in free space .  (1.10)

Finally, we note that the force, F�12, between two charges, q1 and q2, is given by the 
experimentally confi rmed Coulomb’s law, which is expressed as
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where ke is Coulomb’s constant and is approximately equal to 9 × 109 N m2/C2.
From Equation 1.11, we can see that a measurement of F�12 (in kg m/s2) and of 

r 2
12 (in m2), with the derived quantity for ε0 of Equation 1.8 for two identical charges, 
q, leads to a measured value of charge, q, in units of mass, length, and time.

The measured value of the ampere as defi ned by the SI is found from the force 
created by two parallel wires of length dl1-carrying current I1 and dl2-carrying current 
I2 respectively, by the Biot–Savart force law:
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As we will see, the inverse square “law” of Coulomb (Equation 1.11) and the 
inverse square “force law” of Biot–Savart (Equation 1.12) also lead us to Maxwell’s 
equations. Many researchers have tried, unsuccesfully to date, to measure any devia-
tion from the inverse square law for these quantities. It is worthy of note that the 
gravitational force between two masses, m1 and m2, separated by r12 follows a math-
ematical expression similar to that of Coulomb’s law or the Biot–Savart law:
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F G

m m
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m m
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g
12
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2 12

1 2

12
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4
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where G = 6.673(10) × 10−11 m3/kg s2 is the gravitational constant. In this equation, 
the author has chosen to defi ne a new constant, εg, so that the gravitational force law 
looks the same as Coulomb’s law.

The symmetry of the equations leads the casual observer to postulate4 another force 
due to the mass current K1 and K2 in two parallel lengths dl1 and dl2, respectively:
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12
1 1 2 2

12
2 12

4
=

( )( )μ
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ˆ .  (1.14)

Here, another constant, μg, has been defi ned in order to make the force due to mass cur-
rents symmetric to the Biot–Savart force law. This force has been postulated by others 
and a measurement of it is being attempted by a group of researchers from Stanford and 
NASA.iii

Many researchers have also tried to measure deviations from an inverse square 
law for Equation 1.13 as well. It is partly the similarity of these forces that gives us 
confi dence that the “laws” are correct. However, we should note that more powerful 
forces within the nucleus, the weak and strong forces, do not obey an inverse square 
law, so we should leave open the possibility that a future correction may need to be 
made to any one or all of these “laws.”

EXERCISES

1.1 Compare the gravitational and electric forces5 between a proton and an electron 
if they are separated by the same distance, as shown in Figure 1.1.

 SOLUTION Suppose an electron at r�1 and a proton at r�2, so the distance 
between them is r12 = ⎥r�12 ⎢ where r�12 = r�2 − r�1.
 We know from Coulomb’s law that F�12 = ke(q1q2/r 2

12)r̂12 is the electro-
static force between the electron and the proton and from Newton’s law 

4 Areas of speculation are often used in this text in shaded boxes; they are intended to stimulate 
thinking of the student on a topic she might not otherwise have considered.
5 Gravitational force << weak force << electromagnetic force << strong forces.
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Figure 1.1 Vector representations of physical locations in space.

that F�12 = G(m1m2/r 2
12)r̂12 is the gravitational force between the electron and 

the proton.

 NOTE Both terms are attractive, both are proportional to the product of 
two measured quantities (charge and mass, respectively), and both are propor-
tional to the inverse square of their separation. The gravitational constant G 
is 6.67 × 10−11 m3/kg s2 and the electric constant ke is 8.99 × 109 N m2/C2. The 
measured masses and charges are me = 9.11 × 10−31 kg, qe = −1.60 × 10−19 C, 
mp = 1.67 × 10−27 kg, qp = +1.60 × 10−19 C. Thus,

 �
Fdue to electrostatic charges

9 198.99 10 Nm C 1.60 10 C 1.= ×( ) ×( )−2 2 660 10 C19×( )( )− r̂ r12 12
2

�
Fdue to gravity

11 27 316.67 10 Nm kg 1.67 10 kg 9.11 10 k= ×( ) ×( ) ×− − −2 2 gg( )( )r̂ r12 12
2

 and the ratio of these two forces is 2.27 × 1039, independent of their separation.

 SOLUTION The electrostatic force between an electron and a proton is so 
much larger than the gravitational force between an electron and a proton that 
we may ignore the gravitational forces.

1.2 Using classical arguments for an electron bound to a proton in a hydrogen atom 
with a circular radius of 1 Å, determine its tangential velocity.

 SOLUTION From Exercise 1.1, F�due to electrostatic charges = 2.30 × 10−28 Nm2(r̂12/r 2
12).

For r 2
12 = (1 Å)2 = 10−20 m2, F�due to electrostatic charges = 2.30 × 10−8 Nr̂12.

 This force seems small until you use it to compute the acceleration of an 
electron:

a F me e= = × ×
=

− −
�

due to electrostatic charges N kg2 3 10 9 11 10

2 5

8 31. .
. 22 10 2 58 1022 2 21× = ×m s g. ,

 where g is the acceleration of gravity.
 From our knowledge of centripetal forces, for an electron circling a proton 
at a radius of 1 Å, ae = v2

t /r, where vt is the electron’s tangential velocity. Thus

v ra vt e t
2 10 22 2 610 2 52 10 1 58 10= = ( ) ×( ) = ×− m m s or m s. . .
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 CONCLUSION The tangential velocity of an electron circling a hydrogen 
nucleus (a proton) is approximately 0.5% the speed of light.6 For larger Z 
atoms, the accelerations and tangential velocities will be even closer to the 
speed of light, so we must take into account relativistic effects when computing 
electron velocities for heavy atoms.

Electrical engineers prefer to express the properties of an electromagnetic 
waveiv via its frequency, f (in Hz), or its wavelength, λ (in m), which are 
related by

 c f= λ .  (1.15)

Physicists and astronomers often express the properties of an electromag-
netic wave via its energy, E, or its temperature, T, which are related by

 E hf= ,  (1.16)

 where

h = ( ) × ( ) ×( )− −6 62606876 52 10 4 13566727 16 1034 15. .Js or eVs

 is Plank’s constant.

 E k TB= ,  (1.17)

 where kB = 1.3806503(24) × 10−23 J/K is Boltzmann’s constant.

1.3 Find the wavelength, energy, and temperature of a 2.4-GHz wave.7

 SOLUTION

λ = = ×
×

= =c

f

3 00 10

2 40 10 1
0 125 12 5

8
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.
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m s
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E hf= = ×( ) ×( ) = × = ×− − −4 14 10 2 40 10 1 9 94 10 1 59 1015 9 6 24. . . .eVs s eV J
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1 59 10

1 38 10
0 115

24

23

.
.

.
J

J K
K

1.4 Find the wavelength, frequency, and characteristic temperature of a 1 keV 
x-ray.8

 SOLUTION

T
E

k

V

B

= = ( ) ×( )
×

= ×
−

−

10 1 60 10

1 38 10
11 6 10

3 19

23
6.

.
.

C

J K
K

f
E

h
= = ( )

×
= ×−

10

4 14 10
2 42 10

3

15
17eV

eVs
Hz

.
.

6 Had our answer come out closer to the speed of light, we would need a recalculation using the 
special theory of relativity for mass rather than the classical theory for rest mass.
7 This frequency is common in computer central processing units (CPUs), cell phones, and microwave 
ovens.
8 This energy is common at the face of a cathode ray tube (CRT) if electrons are accelerated by a 1 kV 
potential.
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λ = = ×
×

= × =−c

f

3 00 10

2 42 10 1
1 24 10 12 4

8

17
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.
. .

m s

s
m Å

1.5 Because 1 0 0μ ε = c  for electromagnetic waves, it is not unreasonable to postulate 

that 1 μ εg g c=  for gravomagnetic waves. With this postulate, fi nd the value of 
the constants εg and μg and compare the magnitude of the force caused by a 1 C/s 
electrical current with that of a 1 kg/s mass current if they are in the same lengths 
and have the same distance of separation.

 SOLUTION
 If G = 6.673 × 10−11 N m2/kg2 = 1/4πεg, then εg = 1.193 × 109 kg s2/m3.

 If 1 μ εg g c= , then μg = 9.317 × 10−27 m/kg.

F

F g

charge

mass current

current = = ×μ
μ

0 201 35 10.

1.6 If there is one “free electron” (conduction electron) per Cu atom,9 compute the 
number of free electrons in a 1-m3 block of Cu and fi nd the average velocity 
(drift velocity) of electrons needed to produce a current of 1 C/s in one direction 
and the mass current of those same electrons.

 SOLUTION The number of “free electrons” in a block of copper is

N = = ×
× −

density

molar mass
Avogadro’snumber

kg m

kg mo

8 93 10

64 10

3 3

3

.
ll

e mol6 023 1023. ×( )

 and

q NN = ×( ) = ×−1 60 10 1 34 1019 10 3. . .C e C m

 is the “free electron” charge in a block of copper. If this charge in a 1-m3 block 
is moving across one of the 1-m2 faces at a velocity of 1 m/s, then it will 
produce a current I = 1.34 × 1010 C/s. Thus, to produce an electric current of 
1 C/s, <v> need be only 7.44 × 10−11 m/s.

The mass of the “free electrons” in the block of copper is mN = N (9.11 × 
10−31 kg/e) = 0.0766 kg/m3. If this mass is moving at an average velocity of 
7.44 × 10−11 m/s, then the mass current across a 1-m2 face of the block will be 
5.70 × 10−11 kg/s.

9 The designation “free electrons” is given by those electrons outside the bound core of an ion; these 
electrons interact with their neighbors to such an extent that they lose track of which one was their 
parent and thus are “free” to move in the conductor.
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1.5 PRECISION OF MEASURED QUANTITIES

Standard Uncertainty and Relative Standard Uncertainty

Defi nition

The standard uncertainty σy of a measurement result, y, is the estimated standard 
deviation of y.

Meaning of Uncertainty

If the probability distribution characterized by the measurement result y and its 
standard uncertainty σy is approximately normal (Gaussian), and σy is a reliable 
estimate of the standard deviation of y, then the interval from y − σy to y + σy is 
expected to encompass approximately 68.26% of the distribution of values that could 
reasonably be attributed to the value of the quantity Y of which y is an estimate. 
This implies that it is believed with an approximate level of confi dence of 68.26% 
that Y is greater than or equal to y − σy and is less than or equal to y + σy, which is 
commonly written as Y = y ± σy.

Use of Concise Notation

If, for example, y = 1234.56789 U and σy = 0.00011 U, where U is the unit of y, then 
Y = (1234.56789 ± 0.00011) U. A more concise form of this expression, and one 
that is in common use, is Y = 1234.56789(11) U, where it understood that the number 
in parentheses is the numerical value of the standard uncertainty referred to the 
corresponding last digits of the quoted result.

Appendix A contains a review of statistical defi nitions, examples, and inter-
pretations. See http://physics.nist.gov/cuu/Uncertainty/index.html for additional 
information.

1.6 INTRODUCTION TO COMPLEX VARIABLES

Complex numbers are frequently used in the applications of electromagnetic applica-
tions. In this section, the defi nition and fundamental operations of complex numbers 
and complex variables will be reviewed.

A complex number, z, can be written as

 z z z x yj j= ( ) + ( ) = +Re Im ,  (1.18)

where x and y are both real numbers; x is said to be the real (Re) part of z, y is said 
to be the imaginary (Im) part of z, and j = −1 . z can be also be expressed in polar 
form by

 z z e j= θ,  (1.19)
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where ⎥z⎢ and θ are both real and are called the amplitude and phase of z. With the 
use of Euler’s identity

 e jjθ θ θ= +cos sin ,  (1.20)

we obtain

 z z zj= +cos sin .θ θ  (1.21)

Comparing Equations 1.20 and 1.21, we conclude

 x z= cos ,θ  (1.22a)

 y z= sin ,θ  (1.22b)

and, inversely,

 z x y= +2 2  (1.23a)

 θ θ π= ( ) ≤ ≤−tan .1 0 2
y

x
 (1.23b)

The above relations can be graphically represented as shown in Figure 1.2.
The complex conjugate of z, designated with an asterisk (*), is a complex 

number that replaces j with −j in all places; that is,

 z x y x y zj j e j* *= +( ) = −( ) = − θ.  (1.24)

The magnitude of z is the square root of the product of z and its complex 
conjugate:

 z z z x y x y x yj j= ⋅ = +( ) +( ) = +* * 2 2  (1.25a)

or

 z z z x ye ej j= = +−θ θ 2 2 .  (1.25b)

Arithmetic Operations with Complex Numbers

Arithmetic with complex numbers is tedious when carried out by hand but otherwise 
is very much like arithmetic with real numbers.

z = x + jy =  z e 
jq 

x

y

0

Im(z)
z-plane

Re(z)

z

q

Figure 1.2 The relation between rectangular and 
polar coordinates.
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1. Addition and subtraction:

 z z x jy x jy x x j y y1 2 1 1 2 2 1 2 1 2+ = +( ) + +( ) = +( ) + +( )  (1.26a)

 z z x jy x jy x x j y y1 2 1 1 2 2 1 2 1 2= = +( ) − +( ) = −( ) + −( )  (1.26b)

2. Multiplication:

 z z x jy x jy x x y y j x y x y1 2 1 1 2 2 1 2 1 2 1 2 2 1⋅ = +( )⋅ +( ) = ⋅ − ⋅( ) + ⋅ + ⋅( )  (1.27a)

In the polar form, the multiplication of two complex numbers can be written as

 
z z z e z e z z e

z z j

j j j
1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2⋅ = =
= +( ) + +(

+( )θ θ θ θ

θ θ θ θcos sin ))[ ].  (1.27b)

3. Division: For any z2 ≠ 0,

 

z

z

x jy

x jy

x jy

x jy

x jy

x jy
x x

1

2

1 1

2 2

1 1

2 2

2 2

2 2

1

= +( )
+( )

= +( )
+( )

−( )
−( )

= 22 1 2 2 1 1 2

2
2

2
2

+( ) + +( )
+( )

y y j x y x y

x y

 (1.28a)

or

 

z

z

z e

z e

z

z
e

z

z
j

j

j
j1

2

1

2

1

2

1

2
1 2 1 2

1

2

1 2= =

= −( ) + −( )

−( )
θ

θ
θ θ

θ θ θ θcos sin[[ ]
.  (1.28b)

4. Power: For any positive or negative integer n, we have

 z z e z e

z n j n

n j n n jn

n

= [ ] =
= ( ) + ( )[ ]

θ θ

θ θcos sin
.  (1.29)

Arithmetic Functions of Complex Numbers (Complex Variables)

A function of a complex number could be a combination of addition, multiplication, 
power, or other functions of a complex quantity, for example, (z + 1/z), sin z, ez, 
tanh−1z. An excellent resource for the review of functions of complex numbers is 
given by Spiegel.v

In electrical engineering, it is common for the fi eld vectors E�, D�, H� , B� , and the 
current density, J�, to be written as complex quantities. Furthermore, real and imagi-
nary parts of the fi eld vectors are likely to be functions of space and time. Such 
variable fi elds are called complex variables. The real part of the complex fi eld vector 
(e.g., Re E�) is typically labeled as u(x, y, z, t), and the imaginary part of the complex 
fi eld vectors (e.g., Im E�) is typically labeled as v(x, y, z, t) in Cartesian coordinates. 
It is shorthand to just write the electric fi eld vector as E� without denoting the fact 
that it is a complex quantity that depends on space and time coordinates. Some texts 
remind the student of this fact by expressing E� as E�(x�, t) no matter if the coordinate 
system is Cartesian, cylindrical, spherical, or other. Some texts even put a tilde over 
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the vector fi eld to remind the student that E� is a complex variable, but we will not 
choose that complicated notation here. Our advice is to always assume that a quantity 
in question is a complex variable unless otherwise known or stated (e.g., x, y, z, r, 
θ, φ, and t are always real).

Fortunately, with computers, the tedious manipulation of complex numbers is 
very easy. Not infrequently, however, we will be required to carry out derivations 
using complex algebraic expressions. Although even symbolic simplifi cation can be 
accomplished with computers, it will nonetheless be useful to become adept at doing 
complex algebra by hand.

1.7 PHASOR NOTATION

In electromagnetic engineering, electric and magnetic fi elds that vary sinusoidally 
with time play a large role. In the sense that an arbitrary but otherwise periodic 
fi eld can be expanded into a Fourier series of sinusoidal components and a 
transient nonperiodic fi eld can be expressed as a Fourier integral, we can con-
centrate on analyzing steady and sinusoidal fi elds with the confi dence that our 
theory can be extended to the more general situation involving nonsinusoidal 
time dependence.

In this section, we fi rst review the phasor notation and then represent Maxwell’s 
equation with the phasors. Here, we would like to illustrate the uses of phasor nota-
tion by looking at some examples. Let us consider the series resistor, inductor, 
capacitor (RLC) circuit shown in Figure 1.3 with an applied voltage

 V Vt t( ) = ( )0 cos ,ω  (1.30)

where V0 is the amplitude of the voltage and ω is the angular frequency (rad/s), 
which is equal to 2π f, with f being the frequency in Hz.

Our objective is to solve for the corresponding current i(t), which, in general, 
can be expressed as

 i It t( ) = +( )0 cos ,ω φ  (1.31)

where I0 is the current amplitude and φ designates the current phase.
Using Kirchhoff’s voltage law, we have

 L
d t

dt
R t

C
t dt t

i
i i V

( )
+ ( ) + ( ) = ( )∫

1
.  (1.32)

R

V(t)
i(t)

L

C

Figure 1.3 A series RLC circuit.
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Using the phasor notation, we can express10

 
V V V

V

t t e e

e

j j t

j t
S

( ) = ( ) = ( )[ ]
= [ ]

0 0
0cos Re

Re
ω ω

ω  (1.33)

and

 
i I I

I

t t e e

e

j j t

j t
S

( ) = +( ) = ( )[ ]
= [ ]

0 0cos Re
Re

.
ω φ φ ω

ω  (1.34)

With the phasor notation, we can deduce that

 d dt j ei IS
j t= [ ]Re ω ω  (1.35)

 i Idt
j

eS
j t∫ = ⎡

⎣⎢
⎤
⎦⎥

Re .
1

ω
ω  (1.36)

Substitution of Equations 1.35 and 1.36 into Equation 1.32 leads to

 R j L
C

I VS S+ −( )⎡
⎣⎢

⎤
⎦⎥

=ω
ω
1

 (1.37)

from which the phasor current, IS = VS/ZSeries RLC, can be easily obtained. We note 
that the phasor current, IS, includes information about both the magnitude, I0, and 
phase, ϕ, and that the corresponding instantaneous current, i(t), then follows from 
Equation 1.34.

As seen in Equations 1.35 and 1.36, by using phasor notation, differentiation 
and integration in the time domain are converted to a simple algebraic operation 
symbolized by the following time-frequency conversion operations:

 
d

dt
j i⇔ ( )−ω ωor in physics books  (1.38a)

 dt
j i∫ ⇔ ( )−
1 1

ω ω
or in physics books .  (1.38b)

Because algebraic equations are much easier to solve than integral–differential 
equations, time-harmonic electromagnetic fi elds are much easier to analyze than 
time-varying fi elds.

NOTE Cheng and Hayt and Buck use a subscript S on the complex variable (e.g., 
IS or VS) to remind the reader that the variable is changing only with spatial quanti-
ties. Balanis and Inan and Indan use a script E�(x, y, z, t) = E�(x, y, z)ejωt convention 

10 Electrical engineers almost always use the convention ejω t for the time dependence, while physicists 
and mathematicians conventionally use e−iω t. In these cases, j = −1 and i = −1 so that, when 
we take the real part, cos(ω t) results. However, if we take the derivative, dejω t/dt = jω ejω t but 
de−iω t/dt = −iω e−iω t, we see that a negative sign occurs in equations with derivatives. We must take 
care to know which convention is being used in reading a given text when using Maxwell’s equations.



to indicate that E� varies only with spatial variables. Paul and Edminister use the 
convention E�(x, y, z, t) = E�(x, y, z)ejωt to indicate that E� varies only with spatial 
variables. Pozar uses the convention that E �(x, y, z, t) = Re[E�(x, y, z)ejωt], and Rao 
use the convention E�(x, y, z, t) = E�(x, y, z)ejωt to indicate that E� varies only with 
spatial variables. We will adopt the Rao convention in the following sections and 
will color electric fi elds in red and magnetic fi elds in blue in equations and fi gures. 
When the mathematician’s convention for time harmonics, e−iωt, is used, we will 
highlight that fact by coloring the imaginary number. When ejωt is used, there will 
be no color for the imaginary number.

Time-Harmonic Electromagnetics

For a general time-varying electromagnetic fi eld, the differential (or point) form of 
Maxwell’s equations can be written as

 ∇ × = − ∂
∂

�
�

E
H

t
μ  (1.39a)

 ∇ × = + ∂
∂

� �
�

H J
E

t
ε  (1.39b)

 ∇ ⋅ =
( )�

E
tvρ

ε
 (1.39c)

 ∇ ⋅ =
�
B 0.  (1.39d)

Now, considering a time-harmonic electromagnetic fi eld with the time variation of 
cos(ω t), we can write the electric and magnetic fi elds as

 
� �
E Ex y z t x y z e j t, , , Re , ,( ) = ( )[ ]ω  (1.40a)

 
� �
H Hx y z t x y z e j t, , , Re , , ,( ) = ( )[ ]ω  (1.40b)

where E�(x, y, z) and H� (x, y, z) are vector phasors that contain information on direc-
tion, magnitude, and phase. Using phasor relations in Equation 1.38a, we can sim-
plify Equations 1.39a to 1.39d as

 ∇ × = −
� �
E j Hωμ  (1.41a)

 ∇ × = +
� � �
H J j Eωε  (1.41b)

 ∇ ⋅ =
�
E vρ ε  (1.41c)

 ∇ ⋅ =
�
B 0,  (1.41d)

where the time variable has been eliminated from the differential form 1.39 of 
Maxwell’s equations. Equations 1.41 are called the time-harmonic differential form 
of Maxwell’s equations. Note that all fi elds in above equations are phasor quantities, 
and, to convert them to the time domain, we only have to use the relations 1.40a 
and 1.40b.

1.7 Phasor Notation 17
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PROBLEMS

Using Complex Numbers

1.1 Two complex numbers are given as z1 = 5 − j3 and z2 = 4 + j6.

a. Express z1 and z2 in polar form.

b. Determine z1 · z2 in rectangular and polar forms.

c. Determine z1/z2 in rectangular and polar form.

d. Determine (z1)3 and (z2)5 in polar form.

1.2 If z = 3 + j4, determine following quantities in polar form.

a. z3

b. ⎥z3⎜
c. 1/⎥z3⎢
d. Re(⎥z3⎢)

e. Im(1/⎥z3⎢)

1.3 Complex numbers z1 and z2 are given as z1 = 10e−jπ/4 and z2 = 5ej30°. In polar 
form, determine the following:

a. product z1 · z2

b. ratio z1/z2

c. ratio z1*/z2*

d. value z1

1.4 If two complex number are given as z1 = 2 − j3 and z2 = 4 + j5, fi nd the value 
of ln(z1) · ln(z2).

1.5 If two complex number are given as z1 = 4 − j3 and z2 = 5 + j4, fi nd the value 
of ez1ez2.

Using Phasor Notation

1.6 A voltage source V(t) = 100 cos(6π109t − 45°)(V) is connected to a series RLC 
circuit, as shown in Figure 1.3. If R = 10 MΩ, C = 100 pF, and L = 1 H, use 
phasor notation to fi nd the following:

a. i(t)

b. Vc(t), the voltage cross the capacitor

1.7 Find the phasors for the following fi eld quantities:

a. Ex(z, t) = E0 cos(ωt − βz + φ)(V/m)

b. Ey(z, t) = 100e−3z cos(ωt − 5z + π/4)(V/m)

c. Hx(z, t) = H0 cos(ωt + βz)(A/m)

d. Hy(z, t) = 120πe5z cos(ωt + βz + φh)(A/m)



1.8 Find the instantaneous time domain sinusoidal functions corresponding to the 
following phasors:
a. Ex(z) = E0ejβz(V/m)

b. Ey(z) = 100e−3ze−j5z(V/m)

c. Is(z) = 5 + j4(A)

d. Vs(z) = j10ejπ/3(V)

1.9 Write the phasor expression I for the following current using a cosine 
reference.
a. i(t) = I0 cos(ωt − π/6)

b. i(t) = I0 sin(ωt + π/3)

1.10 Find the instantaneous V(t) for the following phasors using a cosine 
reference.
a. VS = V0e jπ/4

b. VS = [12 − j5](V)

1.8 QUATERNIONS

Because of its historical signifi cance as the mathematical language of Maxwell, the 
subject of quaternions should be briefl y known to students of electromagnetics. As 
mentioned in the “Introduction,” Maxwell’s equations were in the form of eight fi eld 
equations that explicitly contained the magnetic vector potential and 12 quaternion 
equations that contained magnetic mass, magnetic charge, scalar magnetic potential, 
magnetic charge current, and magnetic conductivity of media. The complete set of 
equations is given in the next section. However, we must fi rst understand the opera-
tions of the four-dimensional (4-D) complex numbers in which the formation exists. 
This formalization was devised by Sir William Rowan Hamilton in 1843. At that 
time, vector algebra and matrices had not yet been developed, but the vector dot and 
cross product were a result of Hamilton’s work. It is said that Hamilton was walking 
across the Royal Canal in Dublin with his wife when the solution to quaternions 
came to him in the form of an equation, which he inscribed in stone on the bridge 
now called the Brougham or Broom Bridge. The original inscription has faded but 
a Quaternion plaque exists there today that reads, “Here as he walked by on the 16th 
of October 1843, Sir William Rowan Hamilton in a fl ash of genius discovered the 
fundamental formula for quaternion multiplication

 i j k ijk2 2 2 1= = = = −  (1.42)

and cut it on a stone of this bridge.”11

In his formalism, Hamilton devised a four-vector form of a complex number 
that had the components of a 4-D space just as the two-dimensional (2-D) complex 
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11 Equation 1.42 added for this book.
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number (a + ib), where a and b are real and i2 = −1. In quaternion language, a 
complex number would be written as

 Q a ib jc kd= + + + ,  (1.43)

where a, b, c, and d are real. The scalar part of the quaternion is a, and the vector 
part is ib + jc + kd. The appealing characteristics of the quaternions is that they obey 
the same rules of addition and multiplication as 2-D complex numbers:

 
a ib jc kd a ib jc kd

a a b b i c c
1 1 1 1 2 2 2 2

1 2 1 2 1 2

+ + +( ) + + + +( )
= +( ) + +( ) + +( ) jj d d k+ +( )1 2  (1.44)

and

 

a ib jc kd a ib jc kd
a a a b i a c j a

1 1 1 1 2 2 2 2

1 2 1 2 1 2 1

+ + +( ) + + +( )
= ( ) + ( ) + ( ) + dd k

b a i b b i b c ij b d ik
c a j c b ji

2

1 2 1 2
2

1 2 1 2

1 2 1 2

( )
+ ( ) + ( ) + ( ) + ( )
+ ( ) + ( ) ++ ( ) + ( )
+ ( ) + ( ) + ( ) + ( )

c c j c d jk
d a k d b ki d c kj d d k

1 2
2

1 2

1 2 1 2 1 2 1 2
2  (1.45)

using the additional ring properties:

 ij k ji k jk i kj i ki j ik j= = − = = − = = −, , , , ,  (1.46)

from Equation 1.42. Note that, unlike the commutative relations of 2-D complex 
numbers, Equation 1.46 shows that the 4-D quaternions do not commute (i.e., 
ab ≠ ba).

In Appendix B, we have examined the roots of complex number equations like 
z2 + 1 = 0 in 2-D space and found the roots to be at i and −i. Using the analogous 
equation in 4-D space, we would consider Q2 + 1 = 0 and fi nd an infi nite number 
of solutions. We could draw the locus of these solutions in 3-D space when there 
was no real part (a = 0) for the quaternion with no real part, Q = ib + jc + kd and 
b2 + c2 + d2 = 1. These solutions form a unitary sphere centered on zero in the 3-D 
pure imaginary subspace of quaternions. We could then say that the locus of the 
solutions in 3-D space for a fi xed real part (a1 = cΔt) was a larger sphere with radius 
squared b2 + c2 + d2 = 1 + c2Δt2 in 3-D space. Thus, the radius of the solution sphere 
is growing with time at a rate of cΔt. Sequencing the value of a to successively 
larger values would correspond to sequential spheres of larger radius. One can see 
that the appeal for saying the solutions in quaternion space is a movie of solutions 
with spheres of growing radius like the expansion of a spherical potential at constant 
velocity, c, in 3-D space (the scalar dimension corresponding to a multiple of c 
times time).

1.9 ORIGINAL FORM OF MAXWELL’S EQUATIONS

Maxwell originally introduced the following eight equations to represent the com-
ponents of the electromagnetic fi eld:
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� � �
J j D t= + ∂ ∂  (1.47)

 
� � �

∇ × =H J  (1.48)

 μ
� ��
H A= ×∇  (1.49)

 
� � �� �
E v tH A= ×( ) − ∂ ∂ −μ ϕ∇  (1.50)

 
� �
D E= ε  (1.51)

 
� �
j E= σ  (1.52)

 
� �

∇ ⋅ = −D eρ  (1.53)

 
� �

∇ ⋅ = − ∂ ∂j teρ  (1.54)

While the original fi eld equations do not exactly correspond to the Heavyside vector 
formulation, they will be addressed in the coming chapters. For example, the original 
fi eld equations explicitly contain the magnetic vector potential, A�, which does not 
appear in the Heavyside vector formulation, but we will defi ne μH�  = ∇� × A� as a 
mathematical convenience, and E�Lorenz = −∂A�/∂t − ∇�ϕ as part of the Lorenz gauge, 
in which case the equations look alike. E�motion = μ(v� × H� ) is the one term that appears 
to be discarded. Hertz interpreted the velocity, v, as the (absolute) motion of charges 
relative to the luminiferous ether, but, if v is interpreted as relative velocity between 
charges, then the Maxwell Heavyside equations are defi ned for the case v = 0 (i.e., 
test charges do not move in the observer’s reference frame).

Maxwell also described 12 quaternion equations by employing scalar and vector 
operators:

 S Q S a ib jc kd a⋅ = ⋅ + + +( ) =  (1.55)

 V Q V a ib jc kd ib jc kd⋅ = ⋅ + + +( ) = + + ,  (1.56)

so that when he put S or V in front of a quaternion, he means that S is an operation 
that yields only the scalar part of the quaternion and V is an operation that yields 
only the vector part of a quaternion. The original equations are applied to isotropic 
media, normal letters imply a scalar quantity, and a capital letter implies a quaternion 
without the scalar:

 
� ��
B AV= ⋅∇  (1.57)

 
� � � �
E V v tB A= ⋅ − ∂ ∂ −∇ϕ  (1.58)

 
� �� �
F V v mB eE= ⋅ + − ∇Ω  (1.59)

 
� � �
B H M= + 4π  (1.60)

 4π
� ��
J HVtot = ⋅∇  (1.61)

 
� �
J CE=  (1.62)

 
� �
D EK= 4π  (1.63)

 
� � �
J J D ttot = + ∂ ∂  (1.64)

 
� �
B H= μ  (1.65)

 e DS= ⋅
� �

∇  (1.66)

 m MS= ⋅
� �

∇  (1.67)

 
� �
H = −∇Ω .  (1.68)
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The eight fi eld Equations 1.47–1.54 and the 12 quaternions 1.57–1.68 constitute 
the original form of Maxwell’s equations. The equations include the magnetic scalar 
potential, Ω, and the magnetic charge, m. The ∇� = id/dx1 + jd/dx2 + kd/dx3 is a qua-
ternion operator without the scalar part. The factor of 4π came about as a result of 
using Gaussian or cgs units. As a result of the vector form of Maxwell’s equations, 
we will deduce Equation 1.54, the so-called equation of continuity (or conservation 
of charge statement). It is also interesting that Maxwell included the equation of 
Lorentz force, Equation 1.59, as one of his quaternion equations. We will use this 
force law as the starting point for the development of magnetic fi eld intensity as it 
pertains to two parallel current-carrying wires through the Biot–Savart formulation, 
an inverse square law, which is now the National Institute of Standards and 
Technology standard for measuring the unit of force (the newton).

In Maxwell’s original formulation, Faraday’s A� fi eld was central and had physi-
cal meaning. The magnetic vector potential was not arbitrary, as defi ned by boundary 
conditions and choice of gauge as we will discuss; they were said to be gauge 
invariant. The original equations are thus often called the Faraday–Maxwell theory. 
The centrality of the A� fi eld was abandoned in the later interpretation of Maxwell 
by Heavyside. In this interpretation, electromagnetic fi elds E� and D�, H� and B�  are 
the only physical entities, and the magnetic vector potential is considered a math-
ematical convenience. Some say this perception replaces action-at-a-distance, as 
defi ned by Newton; by contact-action, as defi ned by Descartes; that is, a theory 
accounting for both local and global effects was replaced by a completely local 
theory. The local theory can address global effects only with the aid of the Lorenz 
gauge. These concepts will be more meaningful when we address time-varying 
fi elds in Chapter 7.
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