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CHAPTER 1

INTRODUCTION

1.1  REGRESSION AND MODEL BUILDING

Regression analysis is a statistical technique for investigating and modeling the 
relationship between variables. Applications of regression are numerous and occur 
in almost every field, including engineering, the physical and chemical sciences, 
economics, management, life and biological sciences, and the social sciences. In fact, 
regression analysis may be the most widely used statistical technique.

As an example of a problem in which regression analysis may be helpful, suppose 
that an industrial engineer employed by a soft drink beverage bottler is analyzing 
the product delivery and service operations for vending machines. He suspects that 
the time required by a route deliveryman to load and service a machine is related 
to the number of cases of product delivered. The engineer visits 25 randomly chosen 
retail outlets having vending machines, and the in-outlet delivery time (in minutes) 
and the volume of product delivered (in cases) are observed for each. The 25 obser-
vations are plotted in Figure 1.1a. This graph is called a scatter diagram. This display 
clearly suggests a relationship between delivery time and delivery volume; in fact, 
the impression is that the data points generally, but not exactly, fall along a straight 
line. Figure 1.1b illustrates this straight-line relationship.

If we let y represent delivery time and x represent delivery volume, then the 
equation of a straight line relating these two variables is

	 y x0 1 	 (1.1)

where β0 is the intercept and β1 is the slope. Now the data points do not fall  
exactly on a straight line, so Eq. (1.1) should be modified to account for this. Let 

Introduction to Linear Regression Analysis, Fifth Edition. Douglas C. Montgomery, Elizabeth A. Peck, 
G. Geoffrey Vining.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

c01.indd   1 6/27/2017   5:33:59 PM

CO
PYRIG

HTED
 M

ATERIA
L



2    INTRODUCTION

the difference between the observed value of y and the straight line (β0 + β1x) be 
an error ε. It is convenient to think of ε as a statistical error; that is, it is a random 
variable that accounts for the failure of the model to fit the data exactly. The error 
may be made up of the effects of other variables on delivery time, measurement 
errors, and so forth. Thus, a more plausible model for the delivery time data is

	 y x0 1 	 (1.2)

Equation (1.2) is called a linear regression model. Customarily x is called the inde-
pendent variable and y is called the dependent variable. However, this often causes 
confusion with the concept of statistical independence, so we refer to x as the pre-
dictor or regressor variable and y as the response variable. Because Eq. (1.2) involves 
only one regressor variable, it is called a simple linear regression model.

To gain some additional insight into the linear regression model, suppose that we 
can fix the value of the regressor variable x and observe the corresponding value 
of the response y. Now if x is fixed, the random component ε on the right-hand side 
of Eq. (1.2) determines the properties of y. Suppose that the mean and variance of 
ε are 0 and σ 2, respectively. Then the mean response at any value of the regressor 
variable is

E y x E x xy x| | 0 1 0 1

Notice that this is the same relationship that we initially wrote down following 
inspection of the scatter diagram in Figure 1.1a. The variance of y given any value 
of x is

Var Vary x xy x| |
2

0 1
2

Thus, the true regression model μy|x = β0 + β1x is a line of mean values, that is, the 
height of the regression line at any value of x is just the expected value of y for that 

Figure 1.1  (a) Scatter diagram for delivery volume. (b) Straight-line relationship between 
delivery time and delivery volume.
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Regression and Model Building    3

x. The slope, β1 can be interpreted as the change in the mean of y for a unit change 
in x. Furthermore, the variability of y at a particular value of x is determined by the 
variance of the error component of the model, σ 2. This implies that there is a distri-
bution of y values at each x and that the variance of this distribution is the same at 
each x.

For example, suppose that the true regression model relating delivery time to 
delivery volume is μy|x = 3.5 + 2x, and suppose that the variance is σ 2 = 2. Figure 1.2 
illustrates this situation. Notice that we have used a normal distribution to describe 
the random variation in ε. Since y is the sum of a constant β0 + β1x (the mean) and 
a normally distributed random variable, y is a normally distributed random variable. 
For example, if x = 10 cases, then delivery time y has a normal distribution with 
mean 3.5 + 2(10) = 23.5 minutes and variance 2. The variance σ 2 determines the 
amount of variability or noise in the observations y on delivery time. When σ 2 is 
small, the observed values of delivery time will fall close to the line, and when σ 2 is 
large, the observed values of delivery time may deviate considerably from the line.

In almost all applications of regression, the regression equation is only an approx-
imation to the true functional relationship between the variables of interest. These 
functional relationships are often based on physical, chemical, or other engineering 
or scientific theory, that is, knowledge of the underlying mechanism. Consequently, 
these types of models are often called mechanistic models. Regression models, on 
the other hand, are thought of as empirical models. Figure 1.3 illustrates a situation 
where the true relationship between y and x is relatively complex, yet it may be 
approximated quite well by a linear regression equation. Sometimes the underlying 
mechanism is more complex, resulting in the need for a more complex approximat-
ing function, as in Figure 1.4, where a “piecewise linear” regression function is used 
to approximate the true relationship between y and x.

Generally regression equations are valid only over the region of the regressor 
variables contained in the observed data. For example, consider Figure 1.5. Suppose 
that data on y and x were collected in the interval x1 ≤ x ≤ x2. Over this interval the 

Figure 1.2  How observations are generated 
in linear regression.
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4    INTRODUCTION

Figure 1.4  Piecewise linear 
approximation of a complex relationship.
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linear regression equation shown in Figure 1.5 is a good approximation of the true 
relationship. However, suppose this equation were used to predict values of y for 
values of the regressor variable in the region x2 ≤ x ≤ x3. Clearly the linear regres-
sion model is not going to perform well over this range of x because of model error 
or equation error.

In general, the response variable y may be related to k regressors, x1, x2, . . . , xk, 
so that

	 y x x xk k0 1 1 2 2  	 (1.3)

This is called a multiple linear regression model because more than one regressor 
is involved. The adjective linear is employed to indicate that the model is linear in 
the parameters β0, β1, . . . , βk, not because y is a linear function of the x’s. We shall 
see subsequently that many models in which y is related to the x’s in a nonlinear 
fashion can still be treated as linear regression models as long as the equation is 
linear in the β’s.

An important objective of regression analysis is to estimate the unknown param-
eters in the regression model. This process is also called fitting the model to the data. 
We study several parameter estimation techniques in this book. One of these tech-
mques is the method of least squares (introduced in Chapter 2). For example, the 
least-squares fit to the delivery time data is

ˆ . .y x3 321 2 1762

where ŷ is the fitted or estimated value of delivery time corresponding to a delivery 
volume of x cases. This fitted equation is plotted in Figure 1.1b.

The next phase of a regression analysis is called model adequacy checking, in 
which the appropriateness of the model is studied and the quality of the fit ascer-
tained. Through such analyses the usefulness of the regression model may be deter-
mined. The outcome of adequacy checking may indicate either that the model is 
reasonable or that the original fit must be modified. Thus, regression analysis is an 
iterative procedure, in which data lead to a model and a fit of the model to the data 
is produced. The quality of the fit is then investigated, leading either to modification 
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Data Collection    5

of the model or the fit or to adoption of the model. This process is illustrated several 
times in subsequent chapters.

A regression model does not imply a cause-and-effect relationship between the 
variables. Even though a strong empirical relationship may exist between two or 
more variables, this cannot be considered evidence that the regressor variables and 
the response are related in a cause-and-effect manner. To establish causality, the 
relationship between the regressors and the response must have a basis outside the 
sample data—for example, the relationship may be suggested by theoretical consid-
erations. Regression analysis can aid in confirming a cause-and-effect relationship, 
but it cannot be the sole basis of such a claim.

Finally it is important to remember that regression analysis is part of a broader 
data-analytic approach to problem solving. That is, the regression equation itself 
may not be the primary objective of the study. It is usually more important to gain 
insight and understanding concerning the system generating the data.

1.2  DATA COLLECTION

An essential aspect of regression analysis is data collection. Any regression analysis 
is only as good as the data on which it is based. Three basic methods for collecting 
data are as follows:

•	 A retrospective study based on historical data
•	 An observational study
•	 A designed experiment

A good data collection scheme can ensure a simplified and a generally more appli-
cable model. A poor data collection scheme can result in serious problems for the 
analysis and its interpretation. The following example illustrates these three methods.

Example 1.1

Consider the acetone–butyl alcohol distillation column shown in Figure 1.6. The 
operating personnel are interested in the concentration of acetone in the distillate 
(product) stream. Factors that may influence this are the reboil temperature, the 
condensate temperature, and the reflux rate. For this column, operating personnel 
maintain and archive the following records:

•	 The concentration of acetone in a test sample taken every hour from the 
product stream

•	 The reboil temperature controller log, which is a plot of the reboil 
temperature

•	 The condenser temperature controller log
•	 The nominal reflux rate each hour

The nominal reflux rate is supposed to be constant for this process. Only infre-
quently does production change this rate. We now discuss how the three different 
data collection strategies listed above could be applied to this process. 	  ■
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6    INTRODUCTION

Retrospective Study  We could pursue a retrospective study that would use either 
all or a sample of the historical process data over some period of time to determine 
the relationships among the two temperatures and the reflux rate on the acetone 
concentration in the product stream. In so doing, we take advantage of previously 
collected data and minimize the cost of the study. However, these are several 
problems:

1.  We really cannot see the effect of reflux on the concentration since we must 
assume that it did not vary much over the historical period.

2.	 The data relating the two temperatures to the acetone concentration do not 
correspond directly. Constructing an approximate correspondence usually 
requires a great deal of effort.

3.	 Production controls temperatures as tightly as possible to specific target values 
through the use of automatic controllers. Since the two temperatures vary so 
little over time, we will have a great deal of difficulty seeing their real impact 
on the concentration.

4.	 Within the narrow ranges that they do vary, the condensate temperature tends 
to increase with the reboil temperature. As a result, we will have a great deal 

Figure 1.6  Acetone–butyl alcohol distillation column.
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of difficulty separating out the individual effects of the two temperatures. This 
leads to the problem of collinearity or multicollinearity, which we discuss in 
Chapter 9.

Retrospective studies often offer limited amounts of useful information. In 
general, their primary disadvantages are as follows:

•	 Some of the relevant data often are missing.
•	 The reliability and quality of the data are often highly questionable.
•	 The nature of the data often may not allow us to address the problem at hand.
•	 The analyst often tries to use the data in ways they were never intended to be 

used.
•	 Logs, notebooks, and memories may not explain interesting phenomena identi-

fied by the data analysis.

Using historical data always involves the risk that, for whatever reason, some of  
the data were not recorded or were lost. Typically, historical data consist of informa-
tion considered critical and of information that is convenient to collect. The conve-
nient information is often collected with great care and accuracy. The essential 
information often is not. Consequently, historical data often suffer from transcrip-
tion errors and other problems with data quality. These errors make historical data 
prone to outliers, or observations that are very different from the bulk of the data. 
A regression analysis is only as reliable as the data on which it is based.

Just because data are convenient to collect does not mean that these data are 
particularly useful. Often, data not considered essential for routine process monitor-
ing and not convenient to collect do have a significant impact on the process. His-
torical data cannot provide this information since they were never collected. For 
example, the ambient temperature may impact the heat losses from our distillation 
column. On cold days, the column loses more heat to the environment than during 
very warm days. The production logs for this acetone–butyl alcohol column do not 
record the ambient temperature. As a result, historical data do not allow the analyst 
to include this factor in the analysis even though it may have some importance.

In some cases, we try to use data that were collected as surrogates for what we 
really needed to collect. The resulting analysis is informative only to the extent that 
these surrogates really reflect what they represent. For example, the nature of the 
inlet mixture of acetone and butyl alcohol can significantly affect the column’s per-
formance. The column was designed for the feed to be a saturated liquid (at the 
mixture’s boiling point). The production logs record the feed temperature but do 
not record the specific concentrations of acetone and butyl alcohol in the feed 
stream. Those concentrations are too hard to obtain on a regular basis. In this case, 
inlet temperature is a surrogate for the nature of the inlet mixture. It is perfectly 
possible for the feed to be at the correct specific temperature and the inlet feed to 
be either a subcooled liquid or a mixture of liquid and vapor.

In some cases, the data collected most casually, and thus with the lowest quality, 
the least accuracy, and the least reliability, turn out to be very influential for explain-
ing our response. This influence may be real, or it may be an artifact related to the 
inaccuracies in the data. Too many analyses reach invalid conclusions because they 
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8    INTRODUCTION

lend too much credence to data that were never meant to be used for the strict 
purposes of analysis.

Finally, the primary purpose of many analyses is to isolate the root causes under-
lying interesting phenomena. With historical data, these interesting phenomena may 
have occurred months or years before. Logs and notebooks often provide no sig-
nificant insights into these root causes, and memories clearly begin to fade over time. 
Too often, analyses based on historical data identify interesting phenomena that go 
unexplained.

Observational Study  We could use an observational study to collect data for this 
problem. As the name implies, an observational study simply observes the process 
or population. We interact or disturb the process only as much as is required to 
obtain relevant data. With proper planning, these studies can ensure accurate, com-
plete, and reliable data. On the other hand, these studies often provide very limited 
information about specific relationships among the data.

In this example, we would set up a data collection form that would allow the 
production personnel to record the two temperatures and the actual reflux rate at 
specified times corresponding to the observed concentration of acetone in the 
product stream. The data collection form should provide the ability to add com-
ments in order to record any interesting phenomena that may occur. Such a proce-
dure would ensure accurate and reliable data collection and would take care of 
problems 1 and 2 above. This approach also minimizes the chances of observing an 
outlier related to some error in the data. Unfortunately, an observational study 
cannot address problems 3 and 4. As a result, observational studies can lend them-
selves to problems with collinearity.

Designed Experiment  The best data collection strategy for this problem uses a 
designed experiment where we would manipulate the two temperatures and the 
reflux ratio, which we would call the factors, according to a well-defined strategy, 
called the experimental design. This strategy must ensure that we can separate out 
the effects on the acetone concentration related to each factor. In the process, we 
eliminate any collinearity problems. The specified values of the factors used in the 
experiment are called the levels. Typically, we use a small number of levels for each 
factor, such as two or three. For the distillation column example, suppose we use a 
“high” or +1 and a “low” or −1 level for each of the factors. We thus would use  
two levels for each of the three factors. A treatment combination is a specific com-
bination of the levels of each factor. Each time we carry out a treatment combina-
tion is an experimental run or setting. The experimental design or plan consists of 
a series of runs.

For the distillation example, a very reasonable experimental strategy uses  
every possible treatment combination to form a basic experiment with eight differ-
ent settings for the process. Table 1.1 presents these combinations of high and low 
levels.

Figure 1.7 illustrates that this design forms a cube in terms of these high and low 
levels. With each setting of the process conditions, we allow the column to reach 
equilibrium, take a sample of the product stream, and determine the acetone con-
centration. We then can draw specific inferences about the effect of these factors. 
Such an approach allows us to proactively study a population or process.
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1.3  USES OF REGRESSION

Regression models are used for several purposes, including the following:

1.	 Data description
2.	 Parameter estimation
3.	 Prediction and estimation
4.	 Control

Engineers and scientists frequently use equations to summarize or describe a set of 
data. Regression analysis is helpful in developing such equations. For example, we 
may collect a considerable amount of delivery time and delivery volume data, and 
a regression model would probably be a much more convenient and useful summary 
of those data than a table or even a graph.

Sometimes parameter estimation problems can be solved by regression methods. 
For example, chemical engineers use the Michaelis–Menten equation y = β1x/
(x + β2) + ε to describe the relationship between the velocity of reaction y and 
concentration x. Now in this model, β1 is the asymptotic velocity of the reaction, that 
is, the maximum velocity as the concentration gets large. If a sample of observed 
values of velocity at different concentrations is available, then the engineer can use 
regression analysis to fit this model to the data, producing an estimate of the 
maximum velocity. We show how to fit regression models of this type in Chapter 12.

Many applications of regression involve prediction of the response variable. For 
example, we may wish to predict delivery time for a specified number of cases of 
soft drinks to be delivered. These predictions may be helpful in planning delivery 
activities such as routing and scheduling or in evaluating the productivity of delivery 
operations. The dangers of extrapolation when using a regression model for predic-
tion because of model or equation error have been discussed previously (see Figure 
1.5). However, even when the model form is correct, poor estimates of the model 
parameters may still cause poor prediction performance.

Regression models may be used for control purposes. For example, a chemical 
engineer could use regression analysis to develop a model relating the tensile 
strength of paper to the hardwood concentration in the pulp. This equation could 

TABLE 1.1  Designed Experiment 
for the Distillation Column

Reboil 
Temperature

Condensate 
Temperature

Reflux 
Rate

−1 −1 −1
+1 −1 −1
−1 +1 −1
+1 +1 −1
−1 −1 +1
+1 −1 +1
−1 +1 +1
+1 +1 +1

Figure 1.7  The designed experiment for the 
distillation column.
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10    INTRODUCTION

then be used to control the strength to suitable values by varying the level of hard-
wood concentration. When a regression equation is used for control purposes, it is 
important that the variables be related in a causal manner. Note that a cause-and-
effect relationship may not be necessary if the equation is to be used only for pre-
diction. In this case it is only necessary that the relationships that existed in the 
original data used to build the regression equation are still valid. For example, the 
daily electricity consumption during August in Atlanta, Georgia, may be a good 
predictor for the maximum daily temperature in August. However, any attempt to 
reduce the maximum temperature by curtailing electricity consumption is clearly 
doomed to failure.

1.4  ROLE OF THE COMPUTER

Building a regression model is an iterative process. The model-building process is 
illustrated in Figure 1.8. It begins by using any theoretical knowledge of the process 
that is being studied and available data to specify an initial regression model. 
Graphical data displays are often very useful in specifying the initial model. Then 
the parameters of the model are estimated, typically by either least squares or 
maximum likelihood. These procedures are discussed extensively in the text. Then 
model adequacy must be evaluated. This consists of looking for potential misspecifi-
cation of the model form, failure to include important variables, including unneces-
sary variables, or unusual/inappropriate data. If the model is inadequate, then must 
be made and the parameters estimated again. This process may be repeated several 
times until an adequate model is obtained. Finally, model validation should be 
carried out to ensure that the model will produce results that are acceptable in the 
final application.

A good regression computer program is a necessary tool in the model-building 
process. However, the routine application of standard regression compnter pro-
grams often does not lead to successful results. The computer is not a substitute for 
creative thinking about the problem. Regression analysis requires the intelligent 
and artful use of the computer. We must learn how to interpret what the computer 
is telling us and how to incorporate that information in subsequent models. Gener-
ally, regression computer programs are part of more general statistics software 
packages, such as Minitab, SAS, JMP, and R. We discuss and illustrate the use of 

Figure 1.8  Regression model-building process.
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these packages throughout the book. Appendix D contains details of the SAS pro-
cedures typically used in regression modeling along with basic instructions for their 
use. Appendix E provides a brief introduction to the R statistical software package. 
We present R code for doing analyses throughout the text. Without these skills, it 
is virtually impossible to successfully build a regression model.
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