
Chapter 1

Relational Database Fundamentals
In This Chapter
▶ Organizing information

▶ Defining “database” in digital terms

▶ Deciphering DBMS

▶ Comparing database models

▶ Defining “relational database” (can you relate?)

▶ Considering the challenges of database design

SQL (pronounced ess-que-ell, not see’qwl, though database geeks still

argue about that) is a language specifically designed with databases

in mind. SQL enables people to create databases, add new data to them,

maintain the data in them, and retrieve selected parts of the data. Introduced

in 1970, SQL has grown and advanced over the years to become the industry

standard. It is governed by a formal standard maintained by the International

Standards Organization (ISO).

Various kinds of databases exist, each adhering to a different model of how

the data in the database is organized.

SQL was originally developed to operate on data in databases that follow the

relational model. Recently, the international SQL standard has incorporated

part of the object model, resulting in hybrid structures called object-relational

databases. In this chapter, I discuss data storage, devote a section to how the

relational model compares with other major models, and provide a look at

the important features of relational databases.

Before I talk about SQL, however, I want to nail down what I mean by the

term database. Its meaning has changed, just as computers have changed the

way people record and maintain information.

CO
PYRIG

HTED
 M

ATERIA
L

8 Part I: Basic Concepts

Keeping Track of Things
Today people use computers to perform many tasks formerly done with

other tools. Computers have replaced typewriters for creating and modifying

documents. They’ve surpassed electromechanical calculators as the best

way to do math. They’ve also replaced millions of pieces of paper, file folders,

and file cabinets as the principal storage medium for important information.

Compared to those old tools, of course, computers do much more, much

faster — and with greater accuracy. These increased benefits do come at a

cost, however: Computer users no longer have direct physical access to their

data.

When computers occasionally fail, office workers may wonder whether

computerization really improved anything at all. In the old days, a manila file

folder only “crashed” if you dropped it — then you merely knelt down, picked

up the papers, and put them back in the folder. Barring earthquakes or other

major disasters, file cabinets never “went down,” and they never gave you an

error message. A hard-drive crash is another matter entirely: You can’t “pick

up” lost bits and bytes. Mechanical, electrical, and human failures can make

your data go away into the Great Beyond, never to return.

Taking the necessary precautions to protect yourself from accidental data

loss allows you to start cashing in on the greater speed and accuracy that

computers provide.

If you’re storing important data, you have four main concerns:

 ✓ Storing data has to be quick and easy, because you’re likely to do it

often.

 ✓ The storage medium must be reliable. You don’t want to come back later

and find some (or all) of your data missing.

 ✓ Data retrieval has to be quick and easy, regardless of how many items

you store.

 ✓ You need an easy way to separate the exact information you want now

from the tons of data that you don’t want right now.

State-of-the-art computer databases satisfy these four criteria. If you store

more than a dozen or so data items, you probably want to store those items

in a database.

9 Chapter 1: Relational Database Fundamentals

What Is a Database?
The term database has fallen into loose use lately, losing much of its original

meaning. To some people, a database is any collection of data items (phone

books, laundry lists, parchment scrolls . . . whatever). Other people define

the term more strictly.

In this book, I define a database as a self-describing collection of integrated

records. And yes, that does imply computer technology, complete with

programming languages such as SQL.

 A record is a representation of some physical or conceptual object. Say, for

example, that you want to keep track of a business’s customers. You assign a

record for each customer. Each record has multiple attributes, such as name,

address, and telephone number. Individual names, addresses, and so on are

the data.

A database consists of both data and metadata. Metadata is the data that

describes the data’s structure within a database. If you know how your

data is arranged, then you can retrieve it. Because the database contains a

description of its own structure, it’s self-describing. The database is integrated

because it includes not only data items but also the relationships among data

items.

The database stores metadata in an area called the data dictionary, which

describes the tables, columns, indexes, constraints, and other items that

make up the database.

Because a flat file system (described later in this chapter) has no metadata,

applications written to work with flat files must contain the equivalent of the

metadata as part of the application program.

Database Size and Complexity
Databases come in all sizes, from simple collections of a few records to

mammoth systems holding millions of records.

 A personal database is designed for use by a single person on a single computer.

Such a database usually has a rather simple structure and a relatively small

size. A departmental or workgroup database is used by the members of a single

department or workgroup within an organization. This type of database is

generally larger than a personal database and is necessarily more complex;

such a database must handle multiple users trying to access the same data at

the same time. An enterprise database can be huge. Enterprise databases may

model the critical information flow of entire large organizations.

10 Part I: Basic Concepts

What Is a Database
Management System?

Glad you asked. A database management system (DBMS) is a set of programs

used to define, administer, and process databases and their associated

applications. The database being managed is, in essence, a structure that you

build to hold valuable data. A DBMS is the tool you use to build that structure

and operate on the data contained within the database.

You can find many DBMS programs on the market today. Some run only on

mainframe computers, some only on minicomputers, and some only on

personal computers. A strong trend, however, is for such products to

work on multiple platforms or on networks that contain all three classes of

machines. An even newer trend is to distribute data over a storage area
network (SAN) or even to store it out on the Internet.

 A DBMS that runs on platforms of multiple classes, large and small, is called

scalable.

Whatever the size of the computer that hosts the database — and regardless

of whether the machine is connected to a network — the flow of information

between database and user is always the same. Figure 1-1 shows that the

user communicates with the database through the DBMS. The DBMS masks

the physical details of the database storage so that the application only has

to concern itself with the logical characteristics of the data, not with how the

data is stored.

Figure 1-1:
Block

diagram of
a DBMS-

based
information

system.

Application
Program

User
User

Interface

DBMS Database

11 Chapter 1: Relational Database Fundamentals

Flat Files
Where structured data is concerned, the flat file is as simple as it gets. No, a

flat file isn’t a folder that’s been squashed under a stack of books. Flat files

are so called because they have minimal structure. If they were buildings,

they’d barely stick up from the ground. A flat file is simply a collection of

data records, one after another, in a specified format — the data, the whole

data, and nothing but the data — in effect, a list. In computer terms, a flat file

is simple. Because the file doesn’t store structural information (metadata),

its overhead (stuff in the file that is not data but takes up storage space) is

minimal.

Say that you want to keep track of the names and addresses of your company’s

customers in a flat file system. The system may have a structure something

like this:

Harold Percival 26262 S. Howards Mill Rd Westminster CA92683
Jerry Appel 32323 S. River Lane Rd Santa Ana CA92705
Adrian Hansen 232 Glenwood Court Anaheim CA92640
John Baker 2222 Lafayette St Garden Grove CA92643
Michael Pens 77730 S. New Era Rd Irvine CA92715
Bob Michimoto 25252 S. Kelmsley Dr Stanton CA92610
Linda Smith 444 S.E. Seventh St Costa Mesa CA92635
Robert Funnell 2424 Sheri Court Anaheim CA92640
Bill Checkal 9595 Curry Dr Stanton CA92610
Jed Style 3535 Randall St Santa Ana CA92705

The value is not in the data, but in the structure
Years ago, some clever person calculated that
if you reduce human beings to their compo-
nents of carbon, hydrogen, oxygen, and nitro-
gen atoms (plus traces of others), they would be
worth only 97 cents. However droll this assess-
ment, it’s misleading. People aren’t composed
of mere isolated collections of atoms. Our
atoms combine into enzymes, proteins, hor-
mones, and many other substances that would

cost millions of dollars per ounce on the phar-
maceutical market. The precise structure of
these combinations of atoms is what gives them
greater value. By analogy, database structure
makes possible the interpretation of seemingly
meaningless data. The structure brings to the
surface patterns, trends, and tendencies in the
data. Unstructured data — like uncombined
atoms — has little or no value.

12 Part I: Basic Concepts

As you can see, the file contains nothing but data. Each field has a fixed

length (the Name field, for example, is always exactly 15 characters long), and

no structure separates one field from another. The person who created the

database assigned field positions and lengths. Any program using this file

must “know” how each field was assigned, because that information is not

contained in the database itself.

Such low overhead means that operating on flat files can be very fast. On

the minus side, however, application programs must include logic that

manipulates the file’s data at a very detailed level. The application must

know exactly where and how the file stores its data. Thus, for small systems,

flat files work fine. The larger a system is, however, the more cumbersome a

flat-file system becomes.

 Using a database instead of a flat-file system eliminates duplication of effort.

Although database files themselves may have more overhead, the applications

can be more portable across various hardware platforms and operating

systems. A database also makes writing application programs easier because

the programmer doesn’t need to know the physical details of where and how

the data is stored.

Databases eliminate duplication of effort, because the DBMS handles the

data-manipulation details. Applications written to operate on flat files must

include those details in the application code. If multiple applications all

access the same flat-file data, these applications must all (redundantly)

include that data-manipulation code. If you’re using a DBMS, however, you

don’t need to include such code in the applications at all.

Clearly, if a flat-file-based application includes data-manipulation code that

only runs on a particular hardware platform, migrating the application to a

new platform is a headache waiting to happen. You have to change all the

hardware-specific code — and that’s just for openers. Migrating a similar

DBMS-based application to another platform is much simpler — fewer

complicated steps, fewer aspirin consumed.

Database Models
Different as databases may be in size, they are generally always structured

according to one of three database models:

 ✓ Hierarchical: These databases arrange their data in a simple hierarchical

structure that allows fast access. They suffer from redundancy problems

and their structural inflexibility makes database modification difficult.

 ✓ Network: Network databases have minimal redundancy but pay for that

advantage with structural complexity.

13 Chapter 1: Relational Database Fundamentals

 ✓ Relational: These databases store their data in tables that are related

to each other. Nowadays, new installations of database management

systems are almost exclusively of the relational type. Organizations that

already have a major investment in hierarchical or network technology

may add to the existing model, but groups that have no need to maintain

compatibility with such so-called legacy systems nearly always choose

the relational model for their databases.

The first databases to see wide use were large organizational databases that

today would be called enterprise databases, built according to either the

hierarchical model or the network model. Systems built according to the

relational model followed several years later. SQL is a strictly modern

language; it applies only to the relational model and its descendant, the

object-relational model. So here’s where this book says, “So long, it’s been

good to know ya,” to the hierarchical and network models.

 New database management systems that aren’t based on the relational model

probably conform to the (newer) object model or the (hybrid) object-relational

model.

Relational model
Dr. E. F. Codd of IBM first formulated the relational database model in 1970,

and this model started appearing in products about a decade later. Ironically,

IBM did not deliver the first relational DBMS. That distinction went to a small

start-up company, which named its product Oracle.

Relational databases have almost completely replaced earlier database types.

That’s largely because you can change the structure of a relational database

without having to change or modify applications that were based on the old

structures. Suppose, for example, that you add one or more new columns to

a database table. You don’t need to change any previously written applications

that process that table — unless, of course, you alter one or more of the

columns that those applications have to use.

 Of course, if you remove a column that an existing application has to use, you

experience problems no matter what database model you follow. One of the

quickest ways to make a database application crash is to ask it to retrieve a

kind of data that your database doesn’t contain.

Why relational is better
In applications written with DBMSs that follow the hierarchical or network

model, database structure is hard-coded into the application. That is, the

14 Part I: Basic Concepts

application is dependent on the specific physical implementation of the

database. If you add a new attribute to the database, you must change your

application to accommodate the change, whether or not the application

uses the new attribute. An unmodified application will expect the data to

be arranged according to the old layout, so it will produce garbage when it

writes data into the file that now contains the new attribute.

Relational databases offer structural flexibility; applications written for

those databases are easier to maintain than similar applications written for

hierarchical or network databases. That same structural flexibility enables

you to retrieve combinations of data that you may not have anticipated

needing at the time of the database’s design.

Components of a relational database
Relational databases gain their flexibility because their data resides in tables

that are largely independent of each other. You can add, delete, or change

data in a table without affecting the data in the other tables, provided that

the affected table is not a parent of any of the other tables. (Parent-child

table relationships are explained in Chapter 5, and no, they don’t involve

discussing allowances over dinner.) In this section, I show what these tables

consist of and how they relate to the other parts of a relational database.

Dealing with your relations
At holiday time, many of my relatives come to my house and sit down at my

table. Databases have relations, too, but each of their relations has its own

table. A relational database is made up of one or more relations.

 A relation is a two-dimensional array of rows and columns, containing single-

valued entries and no duplicate rows. Each cell in the array can have only one

value, and no two rows may be identical. If that’s a little hard to picture, here’s

an example that will put you in the right ballpark. . . .

Most people are familiar with two-dimensional arrays of rows and columns,

in the form of electronic spreadsheets such as Microsoft Excel. A major-

league baseball player’s offensive statistics, as listed on the back of baseball

card, are an example of such an array. On the baseball card are columns for

15 Chapter 1: Relational Database Fundamentals

year, team, games played, at-bats, hits, runs scored, runs batted in, doubles,

triples, home runs, bases on balls, steals, and batting average. A row covers

each year that the player has played in the Major Leagues. You can also store

this data in a relation (a table), which has the same basic structure. Figure

1-2 shows a relational database table holding the offensive statistics for a

single major-league player. In practice, such a table would hold the statistics

for an entire team — or perhaps the whole league.

Figure 1-2:
A table

showing
a baseball

player’s
offensive
statistics.

Roberts
Roberts
Roberts

1988
1989
1990

Padres
Padres
Padres

5
117
149

9
329
556

3
99

172

 0
15
36

0
8
3

0
3
9

.333

.301

.309

Year
At
BatPlayer Team Game Hits

1
81

104

Runs

0
25
44

RBI 2B 3B HR

 1
49
55

Walk

 0
21
46

Steals
Bat.
Avg.

Columns in the array are self-consistent: A column has the same meaning in

every row. If a column contains a player’s last name in one row, the column

must contain a player’s last name in all rows. The order in which the rows

and columns appear in the array has no significance. As far as the DBMS is

concerned, it doesn’t matter which column is first, which is next, and which

is last. The same is true of rows. The DBMS processes the table the same way

regardless of the organization.

Every column in a database table embodies a single attribute of the table,

just like that baseball card. The column’s meaning is the same for every row

of the table. A table may, for example, contain the names, addresses, and

telephone numbers of all an organization’s customers. Each row in the table

(also called a record, or a tuple) holds the data for a single customer. Each

column holds a single attribute — such as customer number, customer name,

customer street, customer city, customer state, customer postal code, or

customer telephone number. Figure 1-3 shows some of the rows and columns

of such a table.

 The relations in this database model correspond to tables in any database

based on the model. Try to say that ten times fast.

16 Part I: Basic Concepts

Figure 1-3:
Each data-

base row
contains
a record;

each
database

column
holds a

single
attribute.

ColumnsRow

Enjoy the view
One of my favorite views is of the Yosemite Valley from the mouth of the

Wawona Tunnel, late on a spring afternoon. Golden light bathes the sheer

face of El Capitan, Half Dome glistens in the distance, and Bridal Veil Falls

forms a silver cascade of sparkling water, while a trace of wispy clouds

weaves a tapestry across the sky. Databases have views as well — even if

they’re not quite that picturesque. The beauty of database views is their

sheer usefulness when you’re working with your data.

Tables can contain many columns and rows. Sometimes all that data

interests you, and sometimes it doesn’t. Only some columns of a table may

interest you, or perhaps you want to see only rows that satisfy a certain

condition. Some columns of one table and some other columns of a related

table may interest you. To eliminate data that isn’t relevant to your current

needs, you can create a view — a subset of a database that an application can

process. It may contain parts of one or more tables.

 Views are sometimes called virtual tables. To the application or the user, views

behave the same as tables. Views, however, have no independent existence.

Views allow you to look at data, but views are not part of the data.

17 Chapter 1: Relational Database Fundamentals

Say, for example, that you’re working with a database that has a CUSTOMER

table and an INVOICE table. The CUSTOMER table has the columns

CustomerID, FirstName, LastName, Street, City, State, Zipcode, and

Phone. The INVOICE table has the columns InvoiceNumber, CustomerID,

Date, TotalSale, TotalRemitted, and FormOfPayment.

A national sales manager wants to look at a screen that contains only the

customer’s first name, last name, and telephone number. Creating from the

CUSTOMER table a view that contains only the FirstName, LastName, and

Phone columns enables the manager to view what he or she needs without

having to see all the unwanted data in the other columns. Figure 1-4 shows

the derivation of the national sales manager’s view.

Figure 1-4:
The sales

manager’s
view derives

from the
CUSTOMER

table.

CUSTOMER Table

Customer ID
FirstName
LastName
Street
City
State
Zipcode
Phone

SALES_MGR View

FirstName
LastName
Phone

INVOICE Table

InvoiceNumber
CustomerID
Date
TotalSale
TotalRemitted
FormOfPayment

A branch manager may want to look at the names and phone numbers of

all customers whose zip codes fall between 90000 and 93999 (southern and

central California). A view that places a restriction on the rows it retrieves, as

well as the columns it displays, does the job. Figure 1-5 shows the sources for

the columns in the branch manager’s view.

The accounts-payable manager may want to look at customer names

from the CUSTOMER table and Date, TotalSale, TotalRemitted, and

FormOfPayment from the INVOICE table, where TotalRemitted is less

than TotalSale. The latter would be the case if full payment hasn’t yet

been made. This need requires a view that draws from both tables. Figure 1-6

18 Part I: Basic Concepts

shows data flowing into the accounts-payable manager’s view from both the

CUSTOMER and INVOICE tables.

Figure 1-5:
The branch
manager’s

 view
includes

only
certain rows

from the
CUSTOMER

table.

CUSTOMER Table

Customer ID
FirstName
LastName
Street
City
State
Zipcode
Phone

BRANCH_MGR View

FirstName
LastName
Phone

INVOICE Table

InvoiceNumber
CustomerID
Date
TotalSale
TotalRemitted
FormOfPayment

Zipcode > = 90000 AND Zipcode < = 93999

Views are useful because they enable you to extract and format database

data without physically altering the stored data. They also protect the

data that you don’t want to show, because they don’t contain it. Chapter 6

illustrates how to create a view by using SQL.

Figure 1-6:
The

accounts-
payable

manager’s
view draws

from two
tables.

CUSTOMER Table

Customer ID
FirstName
LastName
Street
City
State
Zipcode
Phone

FirstName
LastName
Date
Total Sale
TotalRemitted
FormOfPayment

ACCTS_PAY View

INVOICE Table

InvoiceNumber
CustomerID
Date
TotalSale
TotalRemitted
FormOfPayment

TotalRemitted < TotalSale

19 Chapter 1: Relational Database Fundamentals

Schemas, domains, and constraints
 A database is more than a collection of tables. Additional structures, on

several levels, help to maintain the data’s integrity. A database’s schema

provides an overall organization to the tables. The domain of a table column

tells you what values you may store in the column. You can apply constraints

to a database table to prevent anyone (including yourself) from storing invalid

data in the table.

Schemas
The structure of an entire database is its schema, or conceptual view. This

structure is sometimes also called the complete logical view of the database.

The schema is metadata — as such, it’s part of the database. The metadata

itself, which describes the database’s structure, is stored in tables that are

just like the tables that store the regular data. Even metadata is data; that’s

the beauty of it.

Domains
An attribute of a relation (that is, a column of a table) can assume some finite

number of values. The set of all such values is the domain of the attribute.

Say, for example, that you’re an automobile dealer who handles the newly

introduced Curarri GT 4000 sports coupe. You keep track of the cars you

have in stock in a database table that you name INVENTORY. You name one

of the table columns Color, which holds the exterior color of each car. The

GT 4000 comes in only four colors: blazing crimson, midnight black, snowflake

white, and metallic gray. Those four colors are the domain of the Color

attribute.

Constraints
Constraints are an important, although often overlooked, component of a

database. Constraints are rules that determine what values the table attributes

can assume.

By applying tight constraints to a column, you can prevent people from

entering invalid data into that column. Of course, every value that is legitimately

in the domain of the column must satisfy all the column’s constraints. As I

mention in the preceding section, a column’s domain is the set of all values

that the column can contain. A constraint is a restriction on what a column

may contain. The characteristics of a table column, plus the constraints

that apply to that column, determine the column’s domain. By applying

constraints, you can prevent users from entering data into a column that falls

outside the column’s domain.

20 Part I: Basic Concepts

In the auto dealership example, you can constrain the database to accept

only those four values in the Color column. If a data entry operator then

tries to enter in the Color column a value of, for example, forest green,

the system refuses to accept the entry. Data entry can’t proceed until the

operator enters a valid value into the Color field.

You may wonder what happens when the Curarri AutoWerks decides to

offer a forest-green version of the GT 4000 as a mid-year option. The answer

is (drum roll, please) job security for database-maintenance programmers.

This kind of thing happens all the time and requires updates to the database

structure. Only people who know how to modify the database structure

(such as you) will be able to prevent a major snafu.

The object model challenges
the relational model
The relational model has been fantastically successful in a wide variety of

application areas. However, it does not do everything that anyone would ever

want. The limitations have been made more visible by the rise in popularity

of object-oriented programming languages such as C++, Java, and C#. Such

languages are capable of handling more complex problems than traditional

languages due to their advanced features, such as user-extensible type

systems, encapsulation, inheritance, dynamic binding of methods, complex

and composite objects, and object identity.

I am not going to explain all that jargon in this book (although I do touch on

some of these terms later). Suffice it to say that the classic relational model

doesn’t mesh well with many of these features. As a result, database

management systems based on the object model have been developed and

are available on the market. As yet, their market share is relatively small.

The object-relational model
Database designers, like everyone else, are constantly searching for the

best of all possible worlds. They mused, “Wouldn’t it be great if we could

have the advantages of an object-oriented database system, and still retain

compatibility with the relational system that we have come to know and

love?” This kind of thinking led to the hybrid object-relational model.

Object-relational DBMSs extend the relational model to include support for

object-oriented data modeling. Object-oriented features have been added

to the international SQL standard, allowing relational DBMS vendors to

transform their products into object-relational DBMSs, while retaining

21 Chapter 1: Relational Database Fundamentals

compatibility with the standard. Thus, whereas the SQL-92 standard

describes a purely relational database model, SQL:1999 describes an object-

relational database model. SQL:2003 has more object-oriented features, and

SQL:2008 goes even further in that direction.

In this book, I describe ISO/IEC international standard SQL. This is primarily

a relational database model. I also include the object-oriented extensions to

the standard that were introduced in SQL:1999, and the additional extensions

included in SQL:2003 and SQL:2008. The object-oriented features of the new

standard allow developers to apply SQL databases to problems that are too

complex to address with the older, purely relational, paradigm. Vendors of

DBMS systems are incorporating the object-oriented features in the ISO

standard into their products. Some of these features have been present for

years, while others are yet to be included.

Database Design Considerations
A database is a representation of a physical or conceptual structure, such as

an organization, an automobile assembly, or the performance statistics of all

the major-league baseball clubs. The accuracy of the representation depends

on the level of detail of the database design. The amount of effort that you

put into database design should depend on the type of information you want

to get out of the database. Too much detail is a waste of effort, time, and hard

drive space. Too little detail may render the database worthless.

 Decide how much detail you need now and how much you may need in the

future — and then provide exactly that level of detail in your design (no more

and no less). But don’t be surprised if you have to adjust the design eventually

to meet changing real-world needs.

 Today’s database management systems, complete with attractive graphical

user interfaces and intuitive design tools, can give the would-be database

designer a false sense of security. These systems make designing a database

seem comparable to building a spreadsheet or engaging in some other relatively

straightforward task. No such luck. Database design is difficult. If you do it

incorrectly, not only is your database likely to suffer from poor performance,

but it also may well become gradually more corrupt as time goes on. Often the

problem doesn’t turn up until after you devote a great deal of effort to data

entry. By the time you know that you have a problem, it’s already serious.

In many cases, the only solution is to completely redesign the database and

reenter all the data. The up side is that by the time you finish your second

version of the same database, you realize how much better you understand

database design.

22 Part I: Basic Concepts

