
Techniques Every Expert 
Programmer Needs to Know

WHAT’S IN THIS CHAPTER?

Understanding Object-oriented fundamentals in PHP ➤

Understanding  ➤ INNER and OUTER JOINs

Other  ➤ JOIN syntax you should know

Using MySQL Unions ➤

Using  ➤ GROUP BY in MySQL queries

Implementing MySQL Logical Operations and fl ow control ➤

Maintaining MySQL relational integrity ➤

Using subqueries in MySQL ➤

Utilizing advanced PHP regular expressions ➤

This chapter covers the techniques that you, the profi cient PHP and MySQL developer, should 
know and use before you tackle more advanced domain features in PHP and MySQL. The 
chapter starts with an in-depth overview of object-oriented programming techniques in PHP 
and object-oriented design patterns. As a PHP developer, you then become familiar with a 
number of core MySQL requirements for retrieving data including the different types of joins, 
UNION, GROUP BY, and subqueries syntax. This chapter also details the logic operators and 
fl ow control and techniques for maintaining relational integrity in MySQL. The chapter con-
cludes with an in-depth review of advanced regular expressions in both PHP and MySQL.

1

563120c01.indd   1563120c01.indd   1 2/18/10   9:08:14 AM2/18/10   9:08:14 AM

CO
PYRIG

HTED
 M

ATERIA
L



2 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

OBJECT-ORIENTED PHP

Object-orientation has become a key concept behind proper PHP software design. This book fol-
lows the idea that in properly designed software, all business logic (the rules that drive how an 
application behaves) should be object oriented. The only exception is when small scripts act as a 
view or a way to display data returned from other objects.

Taking this approach solves a few problems because it:

 Makes it easy to extend the functionality of existing code. ➤

Allows for type hinting, which gives greater control over what variables are passed into  ➤

functions.

Allows for established design patterns to be used to solve common software design problems  ➤

and makes debugging much easier.

This section covers object-oriented PHP and key design patterns in depth. Later chapters cover even 
more advanced object-oriented topics.

Instantiation and Polymorphism

The two key benefi ts of object-oriented programming in PHP are the ability to abstract data into 
classes and for the application to act on those structures. It is important to understand polymor-
phism, which is when one object appears and can be used in the same way as another object of 
a related type. It stands to reason that if B is a descendant of A and a function can accept A as a 
parameter, it can also accept B.

Three classes are used in this chapter while covering polymorphism:

Node ➤

BlogEntry ➤

ForumTopic ➤

In this application both BlogEntry and ForumTopic are siblings of each other and descendants of 
Node. This is a good time to become familiar with the example code that comes with the book. The 
code archive contains a folder for every chapter. Each folder has a .class.php fi le and a .test.php 
fi le for every class. SQL fi les aren’t used in this section, but when they are, they have a .sql extension.

The typical class looks a lot like this:

class ClassNameHere extends AnotherClass {
  public function someFunction() {
    parent::someFunction();
  }
};

The parent keyword is used to directly reference a variable or method in the parent class, bypass-
ing any variables or methods of the same name in the current class. The method is marked as 
public, which is a familiar concept for object-oriented programming but relatively new to PHP. 

563120c01.indd   2563120c01.indd   2 2/18/10   9:08:15 AM2/18/10   9:08:15 AM



Object-Oriented PHP ❘ 3

Older PHP applications will not defi ne a visibility for the member methods. When the visibility is 
not defi ned it is assumed to be public. A member variable or method (function inside a class) can 
have one of three visibilities:

public ➤  indicates that the member is accessible globally across all of PHP.

private ➤  indicates that a member can be accessed only from within the class in which it is 
defi ned. Private members cannot be overridden in later classes because those classes too do 
not have access to the member.

protected ➤  indicates that the member can be accessed only by the class in which it is defi ned 
and all descending classes.

Additionally, three other keywords can augment private, public, and protected. They are 
static, abstract, and final:

static ➤  members are not tied to particular instances of a class and can be accessed by any 
instance. They should be used sparingly but are very useful for shared variables across all 
instances. The static keyword can also be used inside methods and functions to defi ne a 
variable that is global to all calls to that function. Both uses are relied upon by later examples 
in this chapter.

abstract ➤  methods must be implemented in all classes that descend from that class that 
defi nes it. Abstract methods can only be defi ned in classes that are marked as abstract. It is 
not possible to directly instantiate an abstract class because of the nature of abstraction.

fi nal ➤  methods can never be redefi ned in descending classes and therefore their functionality 
cannot be changed.

Variables inside a class can also be declared constant using const. Constants are always public 
static and their value can never be changed at run time. Unlike normal variables, constants cannot 
have a dollar sign in front of them and by convention are always capitalized.

Each and every type of visibility is used throughout this book. The next section covers most of them 
by using the three classes described previously.

Polymorphism in Action

The three classes mentioned previously need to be defi ned in order to be useful. The goal of this sec-
tion is not to create a fully functioning application but rather to demonstrate techniques that are the 
core of the rest of the book. The fi rst class to be defi ned is the Node class as shown in Listing 1-1.

LISTING 1-1: NODE.CLASS.PHP

<?php
abstract class Node {
  private $debugMessages;

  public function __construct() {
    $this->debugMessages = array();
    $this->debug(__CLASS__.” constructor called.”);

563120c01.indd   3563120c01.indd   3 2/18/10   9:08:15 AM2/18/10   9:08:15 AM



4 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

  }

  public function __destruct() {
    $this->debug(__CLASS__.” destructor called.”);
    $this->dumpDebug();
  }

  protected function debug( $msg ) {
    $this->debugMessages[] = $msg;
  }

  private function dumpDebug( ) {
    echo implode( “\n”, $this->debugMessages);
  }

  public abstract function getView();
}
?>

The Node class is abstract and therefore cannot be instantiated. However, it can have private mem-
bers. The descendant classes will not be able to access the private members directly but the members 
can be accessed from other more visible methods inside of Node. In the node class, the member vari-
able $debugMessage is being accessed from several methods and dumpDebug() is a private method 
being called from the destructor. For the purpose of this example, both ForumTopic and BlogEntry 
are identical in all regards except name. The magic constant __CLASS__ will be used to tell them 
apart as shown in Listing 1-2.

LISTING 1-2:  ForumTopic.class.php

<?php
class ForumTopic extends Node {
  private $debugMessages;

  public function __construct() {
    parent::__construct();
    $this->debug(__CLASS__.” constructor called.”);
  }

  public function __destruct() {
    $this->debug(__CLASS__.” destructor called.”);
    parent::__destruct();
  }

  public function getView() {
    return “This is a view into “.__CLASS__;
  }
}
?>

563120c01.indd   4563120c01.indd   4 2/18/10   9:08:15 AM2/18/10   9:08:15 AM



Object-Oriented PHP ❘ 5

Now it is time to run some tests and see what happens. The fi rst test is to create an instance of each 
subclass and observe the debug output. The entire test is just one line of code but has a several lines 
of output:

$forum = new ForumTopic();
/* Output:
Node constructor called.
ForumTopic constructor called.
ForumTopic destructor called.
Node destructor called.
*/

The output shows that the constructor for each class is called and that it bubbles down appropri-
ately to the parent class before adding its own debug message. The opposite is true for the destruc-
tor. Whether the parent class is called fi rst, last, or in the middle of a method can be determined at 
design time for each specifi c class. However, in general, because the constructors and destructors for 
descendant classes often reference the variables from the parent, it is a good practice to call the par-
ent at the beginning of the constructor and end of the destructor.

Almost as important is the output demonstrating that the __CLASS__ variable is always equal to the 
name of the class in which the function being called is defi ned. It is not necessarily the same as the out-
put of get_class($this). The get_class() method returns the name of the class that was instanti-
ated. In non-technical terms this method always returns the class name that directly follows the new 
keyword when instantiating the object.

A WORD ON THE DESTRUCTOR

The destructor, in this case, was never explicitly called. Unless the script ends in a 
fatal error, the destructor for any remaining objects will always be executed when 
the script completes. The garbage collector will also fi re the destructor immediately 
if the number of references to an object goes to zero. In this case the destructor is 
what dumps the debug output to the screen, so it is simple to test to see if the gar-
bage collector is doing its job:

$topic = new ForumTopic();

echo “---------------------\n”;
$topic = null;
echo “---------------------\n”;

/* Output:
---------------------
Node constructor called.
ForumTopic constructor called.
ForumTopic destructor called.
Node destructor called.
---------------------
*/

continues

563120c01.indd   5563120c01.indd   5 2/18/10   9:08:15 AM2/18/10   9:08:15 AM



6 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

However, if there is another variable thrown into the mix the situation becomes 
much different:

$topic = new ForumTopic();
$reference = $topic;

echo “---------------------\n”;
$topic = null;
echo “---------------------\n”;

/* Output:
---------------------
---------------------
Node constructor called.
ForumTopic constructor called.
ForumTopic destructor called.
Node destructor called.
*/

Class instances are always passed by reference unless explicitly cloned. Using 
the reference operator on a class variable like $reference = &$topic; will not 
increase the reference count for the object and will therefore not prevent it from 
being garbage collected. The code, in effect, is creating a reference to a reference.

Handling Terminal Types and Type Hinting

One practical application of get_class() is explored later in this book; however, it is not always 
helpful to determine just the terminal type of an object. For example, in almost every case it is 
wrong to execute code only if the output of get_class() matches a string. After all, what happens 
if the class is subclassed? Shouldn’t the subclasses also pass the test?

The keyword that solves the issue is instanceof. It evaluates to true if the operand on the left is 
of the type on the right or any subclasses of that type. For example, if a method takes an arbitrary 
parameter but should execute specifi c code if the variable is a Node object, it can be written like this:

if ( $foo instanceof Node ) ...

In this case $foo can be an instance of ForumTopic or BlogEntry. It cannot be an instance of Node 
only because Node is abstract and cannot be instantiated. PHP also supports type hinting, which 
allows a method or function to take only an object of a set type or its descendants. Type hinting, 
unfortunately, is not available for primitive types such as string and integer:

function print_view( Node $node ) {
  echo “Printing the view for “.get_class($node).”\n”;
  echo $node->getView().”\n”;
}

Class methods should use type hinting whenever possible to improve the maintainability of the code. 
Code that uses type hinting is less error-prone and partially self-documenting.

563120c01.indd   6563120c01.indd   6 2/18/10   9:08:15 AM2/18/10   9:08:15 AM



Object-Oriented PHP ❘ 7

Interfaces

Interfaces are structures for defi ning functionality that a class must implement. An interface does 
not dictate the inner workings of that functionality. Think of interfaces as templates that classes 
need to adhere to. Chapter 2 makes heavy use of some of PHP’s built-in interfaces.

Classes do not inherit interfaces because only the method signatures and return types are defi ned 
within them. Instead they implement the interface. However, it is occasionally useful to derive one 
interface from another. For example, an interface called Iterator may be used as the base interface 
for a new interface called RecursiveIterator that defi nes all the functionality of the standard 
Iterator interface but also defi nes new functionality.

An interface is never instantiated directly. However, variables can be tested against interfaces. Testing 
against an interface ensures that an object implements all the methods of the interface before attempt-
ing to call a method. For example, say the interface PageElement defi nes a getXML() method:

if ( $object instanceof PageElement )
  $body->appendChild( $object->getXML( $document ) );

Interfaces are defi ned in a similar way to classes. Instead of class the keyword interface is used. 
Two other important distinctions are that all methods inside an interface must always be defi ned as 
public and methods do not have a body. Consider Listing 1-3 which shows a new interface called 
ReadableNode:

LISTING 1-3:  ReadableNode.interface.php

<?php
interface ReadableNode {
  public function isRead();
  public function markAsRead();
  public function markAsUnread();
};
?>

You can then create a reusable utility function markNodeAsRead() to check if a node is readable and 
to call the markAsRead() method if it is.

function markNodeAsRead( $node ) {
  if ( $node instanceof ReadableNode )
    $node->markAsRead();
}

Interfaces are useful for defi ning sets of functionality when it is not important how the methods are 
implemented. Because PHP doesn’t have multi-inheritance they are also useful for defi ning classes 
that have a collection of disparate functionality but still need the benefi ts of polymorphism and type 
hinting. Unlike inheritance, a class can implement as many interfaces as it desires. Also, an interface 
can extend multiple other interfaces. For example, if a class is both Readable and Deletable:

<?php
interface MessagingNode extends Readable, Deletable {

563120c01.indd   7563120c01.indd   7 2/18/10   9:08:15 AM2/18/10   9:08:15 AM



8 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

};

class ForumTopic extends Node implements Readable, Deletable {
  …
};

class BlogEntry extends Node implements MessagingNode {
  …
}
?>

In this case both the classes ForumTopic and BlogEntry must implement every method found in 
both the interface Readable and Deletable. In this case the new MessagingNode interface is little 
more than shorthand.

Magic Methods and Constants

Before diving into design patterns it is necessary to review magic methods inside PHP. Magic 
methods are specially named methods that can be defi ned in any class and are executed via built-
in PHP functionality. Magic methods always begin with a double underscore. In fact, the magic 
methods __destruct() and __construct() have already been used several times in this chapter. It 
is not good practice to write user-defi ned functions and methods that begin with the double under-
score in case PHP implements methods with those names in future versions.

Magic constants are used to access certain read-only properties inside PHP. Magic constants both 
begin and end with a double underscore and are always capitalized. The constant __CLASS__ has 
been used several times in this chapter to output the name of the class in which the code is defi ned.

Practical Use of Magic Constants

It is often useful to determine where in the code output originates. This is the purpose of all of the 
magic constants and is particularly useful when writing custom logging functions. The seven magic 
constants are as follows:

__CLASS__  ➤ equates to the class in which the constant is referenced. As noted earlier, this 
variable is always equal to the class in which it is defi ned, which is not always the class that 
was instantiated. In the previous example, __CLASS__ as defi ned inside Node always returns 
Node even if the method is part of an object that was instantiated as a descendant class. In 
addition to debugging, the class constant is also useful for static callback functions.

__FILE__ ➤  is always equal to the fi lename where the constant is referenced. 

__LINE__ ➤  is used in conjunction with __FILE__ in order to output a location in code. For 
example:

error_log(‘Notice: Placeholder class. Don’t forget to change before 
release! In ‘.__FILE__.’ on line ‘.__LINE__);

Both _FILE_ and _LINE_ are relative to the fi le currently executing regardless of 
whether that fi le was included or required from a different fi le. 

563120c01.indd   8563120c01.indd   8 2/18/10   9:08:15 AM2/18/10   9:08:15 AM



Object-Oriented PHP ❘ 9

__DIR__ ➤  functions exactly like dirname(__FILE__) and returns the absolute directory in 
which the fi le is located. It is useful for specifying absolute paths, which are sometimes faster 
than relative paths; particularly when including scripts. 

__FUNCTION__ ➤  and __METHOD__ make it possible to determine the function or method name, 
respectively, using magic constants. When possible, these constants should be used in place of 
hard-coding the function name.

__NAMESPACE__ ➤  is the seventh and fi nal magic constant. As the name suggests, it is equal to 
the current namespace.

As a debugging mechanism using the magic constants is very basic. More advanced techniques for 
debugging are discussed in depth in Chapter 16.

Adding Magic Functionality to Classes

Although the magic methods __construct() and __destruct() are the most commonly used, 
several more exist. When using design patterns it becomes necessary to expand on certain built-in 
functionality of PHP. This section fi rst covers the cases where each magic method is useful and then 
illustrates the use of the method. The fi rst set of methods has to do with data representation.

In many cases it is useful to have a string representation of an object so you can output it to the user 
or another process. Referencing an object as a string will, by default, evaluate to the object’s ID 
in memory, which in most cases is less than ideal. PHP provides a standard way of overriding this 
default functionality and returning any desirable string representation. A numeric class might return 
the number as a string, a user class might return a username, a node class might return a node title, 
an XML node might return the text content of the node, and so on. The magic method used for this 
functionality is __toString(). The method is triggered in any situation where an object is used as a 
string, for example: echo “Hello $obj”;. It can also be called directly like any other normal pub-
lic method, which is preferable to hacks such as appending an empty string to force coercion.

Serialization is another process integral to PHP applications that store state or cache entire objects. It 
generates a string representation of an object. Serialization is done manually by calling serialize() 
and is reversed with unserialize(). Both methods work on any PHP variable (except a resource such 
as a MySQL handle) without any modifi cation. However, sometimes it is necessary to clean up a com-
plex object prior to serialization.

Classes can implement the magic method __sleep(), which is called immediately before serializa-
tion. It is expected to return an array where the values are the member variables that should be 
saved. Member variables can be public, private, or protected. Likewise, __wakeup() is called 
when you restore the object. One use for these functions is to ignore a resource handle on sleep and 
to then reopen the handle on restoration as shown in Listing 1-4.

LISTING 1-4:  FileLog.class.php

<?php
class FileLog {
  private $fpointer;

563120c01.indd   9563120c01.indd   9 2/18/10   9:08:15 AM2/18/10   9:08:15 AM



10 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

  private $filename;

  function __construct( $filename ) {
    $this->filename = $filename;
    $this->fpointer = fopen($filename,’a’);
  }

  function __destruct() {
    fclose($this->fpointer);
  }

  function __sleep() {
    return array( “filename” );
  }

  function __wakeup() {
    $this->fpointer = fopen($this->filename,’a’);
  }

  public function write( $line ) {
    fwrite( “$line\n”, $this->fpointer );
  }
};

/*
  Example usage:
    $log = new FileLog( “debug.txt” );
    $data = serialize( $log );
    $log = null;
    $log = unserialize($data);
    echo $data;
  Example output:
    O:7:”FileLog”:1:{s:17:”FileLogfilename”;s:9:”debug.txt”}
*/
?>

The serialized data, as seen in the comments of the previous example, contains the data type fol-
lowed by the length of the data and then the data itself. A semicolon separates multiple members 
and each member has two variables. The fi rst variable is the name and the second is the value.

When serializing, private member variables have the class name prepended to them, whereas pro-
tected variables have an asterisk prepended. In both cases the prefi x is surrounded by two null bytes. 
The bytes cannot be seen in print, however. Looking closely at the string s:17:”FileLogfilename” 
it becomes apparent that the string is only 15 printable characters in length. The remaining two 
characters are the null bytes before and after the word FileLog.

The next four magic methods have to do with retrieving, inspecting, and storing inaccessible mem-
ber variables. They are __set(), __unset(), __get(), and __isset(). Each is invoked when trying 
to access a member variable that is not available to the context that is requesting it. That can mean 
that a variable marked as private or protected and accessed outside the scope or that a member vari-
able does not exist. Both __unset() and __isset() are triggered by the functions with the same 
name (sans the underscores) in PHP. All these methods are used extensively in the section “Design 
Patterns” so they won’t be covered in any more detail in this section.

563120c01.indd   10563120c01.indd   10 2/18/10   9:08:15 AM2/18/10   9:08:15 AM



Object-Oriented PHP ❘ 11

Similarly, the method __call() is invoked when you try to call a method that is either undefi ned or 
inaccessible. A similar method named __callStatic() is called for static methods.

Three magic methods won’t be covered in this chapter. __set_state() is used when you import a 
class via a call to var_export() and is worth looking into if an application does a lot of dynamic 
code evaluation. __clone() is invoked if you try to make a clone of an object and you can use it 
for various processes. The third method, __invoke(), is used when an object is being called as if it 
were a function; it is covered more in Chapter 2.

The next section discusses the eight design patterns that you can use in applications for cleaner and 
more readable code as well as to solve common problems in software design.

Design Patterns

This section covers design patterns in PHP. The eight patterns that are covered in this section are:

Singleton ➤

Multiton ➤

Proxy ➤

Façade ➤

Decorator ➤

Factory ➤

Observer Pattern ➤

Publisher/subscriber ➤

Singleton and Multiton Patterns

The singleton and less common multiton patterns control the number of instances of a class in an 
application. As the names imply, a singleton can be instantiated only once and a multiton any num-
ber of times. In the case of the latter, there can be only one instance for any given key.

Because of the nature of singletons they are often used for confi guration and for variables that need 
to be accessed from anywhere in the application. Using singletons is sometimes considered poor 
practice because it creates a global state and does not encapsulate all the functionality of the system 
in a single root object. In many cases this can make unit testing and debugging more diffi cult. This 
book leaves the reader to make his or her own decision regarding these patterns. In general, some 
object orientation is better than none. Listing 1-5 shows an example of a singleton pattern.

LISTING 1-5:  SingletonExample.class.php

<?php
class SingletonExample {
  public static function getInstance() {
    static $instance = null;
    if ( $instance == null ) {

563120c01.indd   11563120c01.indd   11 2/18/10   9:08:15 AM2/18/10   9:08:15 AM



12 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

      $instance = new SingletonExample();
    }
    return $instance;
  }
};
?>

The singleton class makes use of both functions of the keyword static. The fi rst is in the method 
defi nition, indicating that the method is not associated with any particular instance of the class. The 
second is in the method itself. The keyword static, when placed in front of a local variable in a 
function or method indicates that all calls to that method, regardless of what object the call is made 
to, will share that variable.

In the case of the singleton, the variable $instance is initialized to null and retains whatever value 
is set to it across all calls to the method. On fi rst execution it is always null. On later executions 
it is always the same instance of the SingletonExample object. Making a single static method call 
ensures retrieval of the same instance every time:

$singleton = SingletonExample::getInsance();

A multiton is similar except that it requires a key to be passed to the getInstance() function. For 
a given key there can be only one instance of the object. This pattern is useful when dealing with 
many nodes that have unique identifi ers that can appear multiple times in a single execution (such as 
a node in a Content Management System). Multitons save memory and ensure that there aren’t mul-
tiple confl icting instances of the same object. The SingletonExample class can be quickly modifi ed 
to be a multiton instead as shown in Listing 1-6.

LISTING 1-6:  MultitonExample.class.php

<?php   
class MultitonExample {
  public static function getInstance( $key ) {
    static $instances = array();
    if ( !array_key_exists( $key, $instances ) ) {
      $instances[$key] = new MultitonExample();
    }
    return $instance[$key];
  }
};
?>

Because PHP objects are always passed by reference it is ensured that each instance returned from 
a multiton or singleton object is consistent throughout the application. You must be careful when 
using these patterns with serialization or with the clone keyword because either action may result 
in multiple versions of what should be the same object.

Multitons and singletons are similar in concept to lazy initialization. In lazy initialization, object 
initialization that requires a signifi cant amount of processing or memory is delayed until the object 
is needed. This usually consists of a conditional to check to see if the object exists, followed by a 
return of either the existing object or a new one —  much like in the two previous patterns. The book 

563120c01.indd   12563120c01.indd   12 2/18/10   9:08:15 AM2/18/10   9:08:15 AM



Object-Oriented PHP ❘ 13

sometimes uses lazy initialization for database handles or data sets to avoid spending resources that 
are not needed by the application.

Proxy and Façade Patterns

Proxy and façade patterns are grouped together because they each provide abstraction for more 
complex functionality. How abstraction is achieved differs for both patterns.

In the case of a proxy, all methods and member variables are routed to the destination object. The 
proxy can, if it is desirable, modify or inspect the data as it passes through. The magic methods 
make implementing this pattern very easy in PHP. One use for this pattern is to log method access. 
It could also be used to determine code coverage or to just debug an issue (see Listing 1-7):

LISTING 1-7:  LoggingProxy.class.php

<?php

class LoggingProxy {
  private $target;

  function __construct( $target ) {
    $this->target = $target;
  }

  protected function log( $line ) {
    error_log($line);
  }

  public function __set( $name, $value ) {
    $this->target->$name = $value;
    $this->log(“Setting value for $name: $value”);
  }

  public function __get( $name ) {
    $value = $this->target->$name;
    $this->log( “Getting value for $name: $value” );
    return $value;
  }

  public function __isset( $name ) {
    $value = isset($this->target->$name);
    $this->log( “Checking isset for $name: “.($value?”true”:”false”) );
    return $value;
  }

  public function __call( $name, $arguments ) {
    $this->log( “Calling method $name with: “.implode(“,”,$arguments) );
    return call_user_func_array( array($this->target,$name), $arguments );
  }

};

?>

563120c01.indd   13563120c01.indd   13 2/18/10   9:08:15 AM2/18/10   9:08:15 AM



14 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

The LoggingProxy example uses callback functions in the __call() method. The purpose of 
the method is to call a defi ned function within the target class. The class also makes liberal use 
of variable member names. Variable member names and callbacks are covered in greater detail in 
Chapter 2.

A proxy can be as simple as the preceding one or as complex as needed. In most cases a proxy should 
not change the behavior of the class that it is a proxy for; however, it is possible to do that as well. 
It is also possible for the proxy to be an interface into an entirely different system. For example, it 
may be useful to have a MySQL database proxy that executes stored procedures or a proxy that is an 
interface to XML Remote Procedure Calls.

One disadvantage of a proxy is that it is not of the same type as the class it is a proxy for. Therefore 
it cannot be used in situations where type hinting is necessary or when the code checks to ensure 
that an object is of a certain type.

The façade pattern serves a different purpose. It is meant to abstract complex functionality so that 
the application does not need to know the details around which subsystem handles each request. For 
example, if making a typical API request requires that a user be authenticated via a user subsystem, 
the request is made to a remote server with an API subsystem, and then the response is decoded via 
a function from a different API, the resulting façade method looks like this:

public function apiRequestJson( $method, $parameters ) {
  $user = User::getAuthenticatedUser();
  if ( $user->hasPermission( $method ) ) {
    $result = $this->api->$method( $parameters );
    return json_decode( $result );
  }
}

Façades do not add new functionality but rather delegate the responsibilities to the appropriate sub-
system. The subsystems do not need to know of the existence of a façade and the application does 
not need to know about the existence of the subsystems.

Sometimes it becomes necessary to extend the functionality of a class while maintaining object 
integrity and allowing for type hinting. The ideal pattern for that is the decorator pattern.

Decorator Pattern

The decorator pattern extends the functionality of a class similar to standard inheritance. Unlike 
standard inheritance, the decorator pattern can add functionality dynamically at run time if an 
object has already been instantiated. This action is referred to as decorating the object. One ben-
efi t of decoration is that it allows any combination of decorators to extend the same object. For 
example, a car might have an option for an in-car navigation system and an option for leather seats. 
A customer may want just the seats or may want just the navigation system. Using this pattern the 
combination can be dynamic.

Taking the car example a step further, you can create a series of classes for decorating the car. To 
make things easier, all car decorations will extend from a CarDecorator class. It is also possible for 
decorators to extend other decorators. For instance, the user may be able to upgrade from a basic 
radio to a CD player/radio combination to a multi-disc CD player with radio. A chain of inheritance 
can be created because a multi-disk CD player with radio shares all the functionality of a basic 

563120c01.indd   14563120c01.indd   14 2/18/10   9:08:16 AM2/18/10   9:08:16 AM



Object-Oriented PHP ❘ 15

radio. For simplicity, the following examples assume that the only two methods in the class Car are 
getPrice() and getManufacturer() as shown in Listing 1-8:

LISTING 1-8:  AbstractCar.class.php

<?php

abstract class AbstractCar {
  public abstract function getPrice();
  public abstract function getManufacturer();
};

?>

The car class extends the AbstractCar class and must implement all the methods in the abstract 
class. The result is the car without any decorators added as shown in Listing 1-9.

LISTING 1-9:  Car.class.php

<?php

class Car extends AbstractCar {
  private var $price = 16000;
  private var $manufacturer = “Acme Autos”;

  public function getPrice() { return $this->price; }
  public function getManufacturer() { return $this->manufacturer; }
};

?>

The CarDecorator class also extends AbstractCar. It serves as the base class for all future decora-
tors. The purpose of the class is to act as a proxy into the real implementation, which in this case is 
called the target. Because the base price for the car exists not in the decorator object but in the target, 
it is necessary for getPrice() to query the price from the target object as shown in Listing 1-10.

LISTING 1-10:  CarDecorator.class.php

<?php

class CarDecorator extends AbstractCar {
  private var $target;

  function __construct( Car $target ) { $this->target = $target; }

  public function getPrice() { return $target->getPrice(); }
  public function getManufacturer() { return $target->getManufacturer(); }
};

?>

563120c01.indd   15563120c01.indd   15 2/18/10   9:08:16 AM2/18/10   9:08:16 AM



16 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

The fi rst step is complete, creating a CarDecorator class that extends from AbstractCar. The car 
decorator could be used directly but it wouldn’t serve much purpose. For now all it does is forward 
all requests to the target Car object. Extending both Car and its decorator from an abstract class 
allows the decorators to avoid the overhead of extending a complete Car object but still maintain its 
polymorphic properties.

The next step is to defi ne a concrete decorator. Once the base decorator is created it becomes easy to 
implement new decorators as shown in Listing 1-11:

LISTING 1-11:  NavigationSystem.class.php

<?php

class NavigationSystem extends CarDecorator {
  public function getPrice() { return parent::getPrice()+1000; }
};

?>

The pattern can be particularly useful in ecommerce applications but it is also commonly used in 
graphical applications. An icon may decorate a text box; or a scroll bar may decorate a canvas. In 
the previous example getting the price of a car that has a navigation system and leather seats is just 
three lines of code:

<?php

$car = new Car();
$car = new NavigationSystem( $car );
$car = new LeatherSeats( $car );
echo $car->getPrice();

?>

When using decorators in this manner, it is technically possible for multiple instances of the same 
decorator to decorate an object. Having two navigation systems in one car doesn’t make any sense. A 
simple function can be added to the CarDecorator class to check to see if a decorator is being used:

public function hasDecoratorNamed( $name ) {
  if ( get_class($this) == $name )
    return true;
  else if ( $this->target instanceof CarDecorator )
    return $this->target->hasDecoratorNamed( $name );
  else
    return false;
}

The decorator can be combined with a proxy pattern to create additional functionality at run time. 
For example, if the code were to implement all the functionality of a car, the NavigationSystem 
class may add a turnOnNavigation() method. Because the method to turn on navigation would 
only be available in the navigation decorator it becomes necessary to proxy call to unknown meth-
ods through to the target.

563120c01.indd   16563120c01.indd   16 2/18/10   9:08:16 AM2/18/10   9:08:16 AM



Object-Oriented PHP ❘ 17

Factory Method

The factory method pattern is a creational pattern much like singletons, multitons, and lazy initial-
ization. Factory methods are used to return an instance of an object that is a subclass of the object 
containing the factory method. One simple example is a class called GDImage that will take a valid 
image fi lename and return an appropriate image object as shown in Listing 1-12.

LISTING 1-12:  GDImage.class.php

<?php

abstract class GDImage {
  public static function createImage( $filename ) {
    $info = getimagesize( $filename );
    $type = $info[2];

    switch ( $type ) {
      case IMAGETYPE_JPEG:
       new new JPEGImage( $filename );

     case IMAGETYPE_PNG:
       new new PNGImage( $filename );

      case IMAGETYPE_GIF:
       new new GIFImage( $filename );
    }

    return null;
  }
};

?>

In the GD example, the classes PNGImage, GIFImage, and JPEGImage would all descend from the 
common class GDImage. Pure implementations of the factory design pattern will always defi ne fac-
tory methods as static. Additionally, GDImage should be treated as an abstract class and never be 
directly instantiated.

Another use for factory methods is for unit testing. A factory might return a working valid object 
under normal conditions but return a dummy object under test conditions. This is useful because 
using a live object both requires a fully functional data service and can possibly modify real data. 
For example, a class called User may return an AuthenticatedUser if the system is not in test-
ing mode or a TestUser if the system is in testing mode and AuthenticatedUser is not the direct 
subject of the test.

The factory method can be implemented in nearly any situation where a different class needs to be 
instantiated depending on the type of data. There can also be more than one factory method per 
class. For example, the GDImage class in the previous example may have a second factory method 
called createFromString() that returns the appropriate object based on a binary input.

563120c01.indd   17563120c01.indd   17 2/18/10   9:08:16 AM2/18/10   9:08:16 AM



18 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

Observer and Publisher/Subscriber Patterns

The observer pattern and the publisher/subscriber pattern are more common in event-based archi-
tectures than they are in most stateless server-side Internet applications; however they do have 
uses in PHP. The observer pattern is simpler to implement and is suffi cient in most cases so it is 
covered fi rst.

In the observer pattern the observer must know what objects are broadcasting the events that they 
want to listen for. It is a sniper rifl e approach to event handling. When an event happens on the 
publisher object, it notifi es all observers at once. But if another object fi res the same event, it is 
not broadcasted unless the observer is also watching that object. In Listing 1-13, a simple reusable 
observer system can be defi ned with one class and one interface:

LISTING 1-13:  Observer.interface.php

<?php
interface Observer {
  public function notify( $event );
};
?>

The observable object then contains a method that can be used to register an observer as shown in 
Listing 1-14.

LISTING 1-14:OBSERVABLEOBJECT.CLASS.PHP

<?php
class ObservableObject {
  private function $observers = array();

  public function observe( Observer $observer ) {
    $this->observers[] = $observer;
  }

  public function dispatch( $event ) {
    foreach ( $this->observers as $observer )
      $observer->notify( $event );
  }
};
?>

A class that wants to broadcast events extends ObservableObject and any class that wants to listen 
to events can simply implement the interface Observer. In a more complex system the observer can 
specify the type of event that it wants to listen for.

The publisher/subscriber pattern is similar except that it decouples the subscribers (observers) from 
the publishers (observable objects). Instead a new class is introduced called an Event. The observer 

563120c01.indd   18563120c01.indd   18 2/18/10   9:08:16 AM2/18/10   9:08:16 AM



Using MySQL Joins ❘ 19

subscribes for notifi cation whenever the event is triggered anywhere in the application instead of 
observing events on just a single class. The observer does not know or care what classes can publish 
the event.

Some systems implement the publisher/subscriber pattern using a controller as a delegate for all 
events. That method requires that all events be registered in a central location. For simplicity, the 
event object itself will act as a delegate (Listing 1-15):

LISTING 1-15:  BroadcastingEvent.class.php

<?php
class BroadcastingEvent {
  private static $observers = array();

  public static function subscribe( Observer $observer ) {
    self::$observers[] = $observer;
  }

  public function publish() {
    foreach ( self::$observers as $observer )
      $observer->notify( $this );
  }
};
?>

The BroadcastingEvent class and the ObservableObject class both look very similar. Two 
changes are that the array of observers is now a static variable in the class instead of an instance 
variable and the event type no longer needs to be passed to the dispatching function because dis-
patching is a method of the event itself.

The major paradigm shift is that the observers and the dispatching object no longer need to have any 
knowledge of each other. This decoupling allows for an observer/subscriber to listen for all events of 
that type without needing specifi c application knowledge.

In a PHP application, this pattern is used in systems that can be dynamically extended such as 
Content Management Systems. For example, an object can listen for a user load event and take spe-
cifi c actions. A CMS should not require implementation-level knowledge of all its modules.

USING MYSQL JOINS

Retrieving data from a normalized relational database that contains many tables generally involves 
the use of joins in a SELECT statement. A join in MySQL queries enables you to select or manipulate 
data from multiple tables in a single SQL statement.

The SQL standard provides various different join operations such as INNER JOIN, OUTER JOIN, 
STRAIGHT_JOIN, and NATURAL JOIN. MySQL implements most common join syntax; however, your 
expectation may differ between different relational database products.

563120c01.indd   19563120c01.indd   19 2/18/10   9:08:16 AM2/18/10   9:08:16 AM



20 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

The following examples use two simple base tables to demonstrate various different joins. The 
fi rst table contains colors, and second table contains the colors of country fl ags. The sample data 
includes the following rows:

For simplicity, this data is de-normalized to demonstrate the various possible MySQL join syntax. 
These table structures may not necessarily represent optimal database schema design (see Table 1-1). 
To construct this table and data for all examples in this section, see the code fi le create-tables.sql

TABLE 1-1:  Schema Tables

TABLE VALUES

Colors Red, White, Blue, Green, Black

Flags USA, Australia, Canada, Japan, Sweden

To understand joins with multiple tables, you can use the concept of sets and the mathematical 
visual approach of Venn diagrams. This shows the interaction between various sets and therefore 
the types of joins that can be used to retrieve information. See http://en.wikipedia.org/wiki/
Venn_diagram for more background information on Venn diagrams.

Figure 1-1 shows the Venn diagram of two individual sets of information.

Colors

Blue

Green

Red

White

Black

Flags

USA:Red

USA:White

USA:Blue

Sweden:Blue

Sweden:Yellow

FIGURE 1-1

If you wanted to know the colors that are in the USA fl ag, you could use the following SELECT state-
ment to retrieve the necessary rows as described in Figure 1-1. This is shown in Listing 1-16.

LISTING 1-16:  simple-select.sql

SELECT color
FROM flags
WHERE country=’USA’;

+-------+
| color |
+-------+
| Blue  |
| Red   |
| White |
+-------+

563120c01.indd   20563120c01.indd   20 2/18/10   9:08:16 AM2/18/10   9:08:16 AM



Using MySQL Joins ❘ 21

Note the following from the previous listing:

In line 1 you specify the column(s) you want to retrieve. ➤

In line 2 you specify which table you want to retrieve these column(s) from. ➤

In line 3 you specify any criteria or condition where you want to restrict the types of rows  ➤

you want to retrieve.

Figure 1-2 shows the Venn diagram of the intersection of these two sets, and also two exception sets 
of information.

1.

Green

Black

3.

Yellow

2.

Red

White

Blue

1. Colors not in flags

2. Colors in flags

3. Invalid colors

FIGURE 1-2

INNER JOIN

If you want to know more about the attributes of the colors for the USA fl ag, you can use an INNER 
JOIN, as shown in Listing 1-17, with the colors table to retrieve more information.

LISTING 1-17:  inner-join.sql

SELECT flags.color, colors.is_primary, colors.is_dark, colors.is_rainbow
FROM   flags
INNER JOIN colors ON flags.color = colors.color
WHERE  flags.country=’USA’;

+-------+------------+---------+------------+
| color | is_primary | is_dark | is_rainbow |
+-------+------------+---------+------------+
| Blue  | yes        | yes     | yes        |
| Red   | yes        | no      | yes        |
| White | yes        | no      | no         |
+-------+------------+---------+------------+

Note the following for the previous Listing:

Line 1 selects additional columns from the colors table. ➤

Line 3 specifi es an  ➤ INNER JOIN with the colors table and the fl ags table, and states that you 
want to join on the color column in fl ags with the color column in colors.

563120c01.indd   21563120c01.indd   21 2/18/10   9:08:16 AM2/18/10   9:08:16 AM



22 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

The Table Alias

When working with joins in MySQL it is common practice to alias tables used in the SQL query. 
You can very easily rewrite the previous example as shown in Listing 1-18.

LISTING 1-18:  inner-join-alias.sql

SELECT f.color, c.is_primary, c.is_dark, c.is_rainbow
FROM   flags f
INNER JOIN colors c ON f.color = c.color
WHERE  f.country=’USA’;

For each table, you can optionally specify an alias after the table in the FROM clause. There are no 
general restrictions on the length of the alias; however it is best practice to use appropriate naming 
standards for your application. A table alias in MySQL has a maximum 256 characters in length, 
whereas a table name has only 64 characters.

ON and USING

For a join command, the ON syntax is of the format table1.column_name = table2.column_name.

When your schema design names columns in an identical fashion between join tables, you can 
shortcut the ON syntax with the USING syntax in the format USING(column_name). For an example 
see Listing 1-19.

LISTING 1-19:  inner-join-using.sql

SELECT f.color, c.is_primary, c.is_dark, c.is_rainbow
FROM   flags f
INNER JOIN colors c USING (color)
WHERE  f.country=’USA’;

In line 3 you will see the USING syntax as an alternative to the ON syntax in the previous SQL 
example.

When the column name between two tables is the same, you can simply use the 
ON syntax with the USING syntax. It is a good practice to use appropriate data-
base naming standards, and specify columns with the same name when they 
contain the same data in different tables.

An Alternative INNER JOIN Syntax

You can also use the comma (,) syntax for specifying an INNER JOIN as shown in Listing 1-20.

563120c01.indd   22563120c01.indd   22 2/18/10   9:08:16 AM2/18/10   9:08:16 AM



Using MySQL Joins ❘ 23

LISTING 1-20:  inner-join-comma.sql

SELECT f.color, c.is_primary, c.is_dark, c.is_rainbow
FROM   flags f, colors c
WHERE  f.country=’USA’
AND    f.color = c.color;

This comma syntax is a common and well-used approach; however, it does not provide the best 
readability for a software developer. With this comma syntax the join columns and restriction crite-
ria are all specifi ed in the WHERE clause, unlike with the INNER JOIN syntax where the ON or USING 
defi nes the join between each table when the table is specifi ed, and the WHERE restricts the rows of 
results based on the table join. Overall this improves readability and decreases the possibility of 
missing a join column in a more complex multitable statement.

Listing 1-21 shows an example where you miss a join between two tables because it is not defi ned in 
the WHERE clause:

LISTING 1-21:  missing-where-join.sql

SELECT f.color, c.is_primary, c.is_dark, c.is_rainbow
FROM   flags f, colors c
WHERE f.country=’USA’;

+-------+------------+---------+------------+
| color | is_primary | is_dark | is_rainbow |
+-------+------------+---------+------------+
| Blue  | no         | yes     | no         |
| Red   | no         | yes     | no         |
| White | no         | yes     | no         |
| Blue  | yes        | yes     | yes        |
| Red   | yes        | yes     | yes        |
| White | yes        | yes     | yes        |
| Blue  | yes        | yes     | yes        |
| Red   | yes        | yes     | yes        |
| White | yes        | yes     | yes        |
| Blue  | yes        | no      | yes        |
| Red   | yes        | no      | yes        |
| White | yes        | no      | yes        |
| Blue  | yes        | no      | no         |
| Red   | yes        | no      | no         |
| White | yes        | no      | no         |
+-------+------------+---------+------------+

Without the correct table join you are effectively retrieving a cartesian product of both tables.

OUTER JOIN

As you probably noticed with the Venn diagram in Figure 1-2, when looking at a cartesian product 
between two intersecting sets, you will see there are indeed three different possible sets of data. The 
fi rst set is the intersection of both sets and retrieving these rows using the INNER JOIN syntax has 

563120c01.indd   23563120c01.indd   23 2/18/10   9:08:16 AM2/18/10   9:08:16 AM



24 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

been demonstrated with Listing 1-17. The other two sets are the exclusions, that is, the colors that 
are not in fl ags, and the countries that have colors that are not defi ned in the set of recorded colors. 
You can retrieve these rows using the OUTER JOIN syntax as shown in Listing 1-22.

LISTING 1-22:  outer-join.sql

SELECT f.country, f.color
FROM   flags f
LEFT OUTER JOIN colors c USING (color)
WHERE  c.color IS NULL;

+---------+--------+
| country | color  |
+---------+--------+
| Sweden  | Yellow |
+---------+--------+

SELECT c.color, c.is_primary
FROM   colors c
LEFT OUTER JOIN  flags f USING (color)
WHERE f.country IS NULL;

+-------+------------+
| color | is_primary |
+-------+------------+
| Black | no         |
| Green | yes        |
+-------+------------+

As you have noticed in these queries, the syntax is not just OUTER JOIN, but it also includes the key-
word LEFT. You should also note that OUTER is an optional keyword and it is generally a best prac-
tice to reduce the SQL syntax to just use LEFT JOIN.

An OUTER JOIN is used for two primary reasons. The fi rst is when a set of data 
values may be unknown yet you want to retrieve a full set of rows that match 
part of your criteria. The second reason is when a normalized database does not 
enforce referential integrity. In the preceding example, it’s logical that colors 
may exist and are not a fl ag color. It is not logical that fl ag colors do not exist 
in the colors table. In this situation the use of an OUTER JOIN is identifying data 
that constitutes a lack of data integrity.

RIGHT JOIN

If you were wondering if there was a companion RIGHT OUTER JOIN syntax, there is. It is possible 
to return the same results as shown in the preceding example using a RIGHT JOIN as shown in 
Listing 1-23.

563120c01.indd   24563120c01.indd   24 2/18/10   9:08:16 AM2/18/10   9:08:16 AM



Using MySQL Joins ❘ 25

LISTING 1-23:  right-join.sql

SELECT c.color, c.is_primary
FROM   colors c
LEFT JOIN  flags f USING (color)
WHERE f.country IS NULL;

…can be written as

SELECT c.color, c.is_primary
FROM   flags f
RIGHT JOIN colors c USING (color)
WHERE f.country IS NULL;

+-------+------------+
| color | is_primary |
+-------+------------+
| Black | no         |
| Green | yes        |
+-------+------------+

LEFT JOIN

It is generally considered a good practice to write queries as LEFT JOIN, and to be consistent 
throughout all your SQL statements for your application.

In review of these two join examples you can conclude the following conditions:

A join using  ➤ INNER JOIN can be considered a mandatory condition, where a row in the left-
side table must match a corresponding row in the right-side table.

A join using  ➤ OUTER JOIN can be considered an optional condition, where a row in the LEFT 
or RIGHT table as specifi ed may or may not correspond to a row in the associated table.

Other JOIN Syntax

MySQL provides a number of other varieties of joins. For the CROSS JOIN in MySQL this is consid-
ered identical in operation to an INNER JOIN.

MySQL provides a STRAIGHT_JOIN, which is considered equivalent to the JOIN command. However, 
this acts more as a hint to the MySQL optimizer to determine processing tables in a given order. 
The NATURAL [LEFT|RIGHT] JOIN is similar to the corresponding [INNER|LEFT|RIGHT] JOIN; 
however, all matching column names between both tables are implied. In the previous INNER JOIN 
example with both the ON and USING syntax, you could have simply written:

LISTING 1-24:  natural-join.sql

SELECT f.color, c.is_primary, c.is_dark, c.is_rainbow
FROM   flags f
NATURAL JOIN colors c
WHERE  f.country=’USA’;

563120c01.indd   25563120c01.indd   25 2/18/10   9:08:16 AM2/18/10   9:08:16 AM



26 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

The NATURAL JOIN can be dangerous because the columns are not specifi ed, additional join columns 
may actually exist in your database design intentionally or unintentionally, and your table structures 
may change over time; the results of the query may in fact result in different rows returned. For 
more information on joins you can review the MySQL Reference Manual, which includes several 
different sections:

Join Syntax  ➤ http://dev.mysql.com/doc/refman/5.1/en/join.html 

Left Join and Right Join Optimization  ➤ http://dev.mysql.com/doc/refman/5.1/en/left-

join-optimization.html

Outer Join Simplifi cation  ➤ http://dev.mysql.com/doc/refman/5.1/en/outer-join-

simplification.html

Join Types Index  ➤ http://dev.mysql.com/doc/refman/5.1/en/dynindex-jointype.html

UPDATE and DELETE JOIN Syntax

Joins are not limited to SELECT statements in MySQL. You can use a join in MySQL UPDATE and 
DELETE statements as well. Listing 1-25 shows an example.

LISTING 1-25:  update.sql

UPDATE flags INNER JOIN colors USING (color)
SET    flags.color = UPPER(color)
WHERE  colors.is_dark = ‘yes’;

SELECT color
FROM   flags
WHERE  country = ‘USA’;

+-------+
| color |
+-------+
| BLUE  |
| Red   |
| White |
+-------+

Case Sensitivity

MySQL by default performs case-insensitive comparison for string columns in a table join ON, 
USING, or WHERE comparison. This differs from other popular relational databases. In this case 
‘USA’ is equal to ‘usa’, for example. It is possible via either defi ning your table column with a 
case-sensitive collation or using a specifi c prequalifi er to implement case-sensitive comparison. 
Listing 1-26 shows an example.

LISTING 1-26:  case-sensitivity.sql

SELECT ‘USA’ = ‘USA’, ‘USA’ = ‘Usa’, ‘USA’ = ‘usa’,
       ‘USA’ = ‘usa’ COLLATE latin1_general_cs AS different;

563120c01.indd   26563120c01.indd   26 2/18/10   9:08:16 AM2/18/10   9:08:16 AM



Using MySQL Joins ❘ 27

+---------------+---------------+---------------+-----------+
| ‘USA’ = ‘USA’ | ‘USA’ = ‘Usa’ | ‘USA’ = ‘usa’ | different |
+---------------+---------------+---------------+-----------+
|             1 |             1 |             1 |         0 |
+---------------+---------------+---------------+-----------+

Complex Joins

Although the basics of joins in MySQL have been described, to become a real expert is to under-
stand the possibilities of joins. It is possible to write rather obfuscated SQL statements including 
subqueries and derived tables. However, the disadvantage is the lack of readability and maintain-
ability of your SQL. Listing 1-27 is a simple multi-table join that combines joining to the same table 
multiple times, and combines INNER JOIN and LEFT JOIN syntax to return the population, state, 
and capital of all countries that have at least Red, White, and Blue in the fl ag:

LISTING 1-27:  complex-join.sql

SELECT f1.country, c.population, 
       IFNULL(ci.city,’Not Recorded’) AS city, s.abbr, s.state
FROM   flags f1
INNER JOIN flags f2 ON f1.country = f2.country
INNER JOIN flags f3 ON f1.country = f3.country
INNER JOIN countries c ON f1.country = c.country
LEFT JOIN cities ci ON f1.country = ci.country AND ci.is_country_capital = ‘yes’
LEFT JOIN states s  ON f1.country = s.country AND ci.state = s.state
WHERE f1.color = ‘Red’
AND   f2.color = ‘White’
AND   f3.color = ‘Blue’;

+-----------+------------+---------------+------+-------+
| country   | population | city          | abbr | state |
+-----------+------------+---------------+------+-------+
| Australia |   21888000 | Not Recorded  | NULL | NULL  |
| USA       |  307222000 | Washington DC | NULL | NULL  |
+-----------+------------+---------------+------+-------+

In this example, if you were to replace the LEFT JOIN with an INNER JOIN, the results of the data 
would change accordingly based on the recorded data.

When it is possible to write complex joins, in MySQL the combination of joins, 
subqueries, and derived tables can result in SQL statements that do not perform 
optimally. There must always be a balance between returning a result set in a 
single query and performance of the statement. Although writing multiple state-
ments in MySQL, combined with the use of temporary tables, may introduce 
more SQL code, this may be more optimal for the speed of your web site.

563120c01.indd   27563120c01.indd   27 2/18/10   9:08:16 AM2/18/10   9:08:16 AM



28 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

MYSQL UNIONS

A UNION statement is used to combine the results of more than one SELECT statement into the results 
for one SQL query. For a valid UNION statement, all SELECT statements must have the same number 
of columns, and these columns must be of the same data type for each column in the SELECT state-
ment. MySQL supports the UNION and UNION ALL constructs for joining SELECT results.

When learning to use UNION, you can fi rst consider writing individual SELECT statements. All indi-
vidual SELECT statements within a UNION statement are valid SELECT statements, except for the 
ORDER BY clause, which can be defi ned only once in a UNION statement and is used to order the 
results of all combined queries. Listing 1-28 shows an example.

LISTING 1-28:  union.sql

SELECT f.country
FROM    flags f
INNER JOIN colors c USING (color)
WHERE c.is_dark = ‘yes’
UNION
SELECT f.country
FROM    flags f
INNER JOIN colors c USING (color)
WHERE c.is_primary = ‘yes’;

+-----------+
| country   |
+-----------+
| Australia |
| Sweden    |
| USA       |
| Canada    |
| Japan     |
+-----------+

The UNION also supports the additional keywords ALL or DISTINCT. By default, the UNION syntax 
returns a unique set of rows for all SELECT sets, removing any duplicates. The ALL syntax, how-
ever, returns all rows from each SELECT statement combined, and the DISTINCT syntax returns all 
DISTINCT rows for each SELECT. Listing 1-29 shows an example of this.

LISTING 1-29:  union-all.sql

SELECT f.country, ‘Dark’
FROM    flags f
INNER JOIN colors c USING (color)
WHERE c.is_dark = ‘yes’
UNION ALL
SELECT f.country, ‘Primary’
FROM    flags f
INNER JOIN colors c USING (color)

563120c01.indd   28563120c01.indd   28 2/18/10   9:08:17 AM2/18/10   9:08:17 AM



MySQL Unions ❘ 29

WHERE c.is_primary = ‘yes’;

+-----------+---------+
| country   | Dark    |
+-----------+---------+
| Australia | Dark    |
| Sweden    | Dark    |
| USA       | Dark    |
| Australia | Primary |
| Sweden    | Primary |
| USA       | Primary |
| Australia | Primary |
| Canada    | Primary |
| Japan     | Primary |
| USA       | Primary |
| Australia | Primary |
| Canada    | Primary |
| Japan     | Primary |
| USA       | Primary |
+-----------+---------+

In Listing 1-30 you will see a different set of results using the DISTINCT keyword.

LISTING 1-30:  union-distinct.sql

SELECT f.country, ‘Dark’
FROM    flags f
INNER JOIN colors c USING (color)
WHERE c.is_dark = ‘yes’
UNION DISTINCT
SELECT f.country, ‘Primary’
FROM    flags f
INNER JOIN colors c USING (color)
WHERE c.is_primary = ‘yes’;

+-----------+---------+
| country   | Dark    |
+-----------+---------+
| Australia | Dark    |
| Sweden    | Dark    |
| USA       | Dark    |
| Australia | Primary |
| Sweden    | Primary |
| USA       | Primary |
| Canada    | Primary |
| Japan     | Primary |
+-----------+---------+

MySQL does not support the INTERSECT or MINUS syntax that are additional 
UNION related constructs that can be found in other relational database prod-
ucts. Refer to http://dev.mysql.com/doc/refman/5.1/en/union.html for 
more information.

563120c01.indd   29563120c01.indd   29 2/18/10   9:08:17 AM2/18/10   9:08:17 AM



30 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

GROUP BY IN MYSQL QUERIES

The GROUP BY syntax allows for the aggregation of rows selected and the use of scalar functions. In 
MySQL, it is possible to use scalar functions without a GROUP BY and produce what can be con-
sidered inconsistent results. Listing 1-31 shows an example.

LISTING 1-31:  count-no-group.sql

SELECT country, COUNT(*)
FROM   flags;
+-----------+----------+
| country   | COUNT(*) |
+-----------+----------+
| Australia |       12 |
+-----------+----------+

MySQL provides the expected ANSI SQL syntax requiring a GROUP BY statement to contain all 
non-scalar function columns with the use of sql_mode. Listing 1-32 shows an example of this.

LISTING 1-32:  count-group.sql

SET SESSION sql_mode=ONLY_FULL_GROUP_BY;

SELECT country, COUNT(*)
FROM   flags;
ERROR 1140 (42000): Mixing of GROUP columns (MIN(),MAX(),COUNT(),...) 
   with no GROUP columns is illegal if there is no GROUP BY clause

SELECT country, COUNT(*) AS color_count
FROM   flags
GROUP  BY country;
+-----------+-------------+
| country   | color_count |
+-----------+-------------+
| Australia |           3 |
| Canada    |           2 |
| Japan     |           2 |
| Sweden    |           2 |
| USA       |           3 |
+-----------+-------------+

One scalar function exists that does not return a numeric value; this is the GROUP_CONCAT() func-
tion shown in Listing 1-33.

LISTING 1-33:  count-group-concat.sql

SELECT country, GROUP_CONCAT(color) AS colors
FROM   flags
GROUP BY country;

563120c01.indd   30563120c01.indd   30 2/18/10   9:08:17 AM2/18/10   9:08:17 AM



GROUP BY in MySQL Queries ❘ 31

+-----------+----------------+
| country   | colors         |
+-----------+----------------+
| Australia | Blue,Red,White |
| Canada    | Red,White      |
| Japan     | Red,White      |
| Sweden    | Blue,Yellow    |
| USA       | Blue,Red,White |
+-----------+----------------+

SELECT country, GROUP_CONCAT(color) AS colors, COUNT(*) AS color_count
FROM   flags
GROUP BY country;
+-----------+----------------+-------------+
| country   | colors         | color_count |
+-----------+----------------+-------------+
| Australia | Blue,Red,White |           3 |
| Canada    | Red,White      |           2 |
| Japan     | Red,White      |           2 |
| Sweden    | Blue,Yellow    |           2 |
| USA       | Blue,Red,White |           3 |
+-----------+----------------+-------------+
5 rows in set (0.00 sec)

WITH ROLLUP

A feature of the GROUP BY syntax is the additional keywords WITH ROLLUP. With this syntax, the 
rows returned include aggregated rows for each GROUP BY column. This is represented by NULL. The 
output in Listing 1-34 shows a single-column and two-column example:

LISTING 1-34:  count-with-rollup.sql

SELECT country, COUNT(*) AS color_count
FROM   flags
GROUP  BY country WITH ROLLUP;
+-----------+-------------+
| country   | color_count |
+-----------+-------------+
| Australia |           3 |
| Canada    |           2 |
| Japan     |           2 |
| Sweden    |           2 |
| USA       |           3 |
| NULL      |          12 |
+-----------+-------------+

SELECT c.color, c.is_dark, COUNT(*)
FROM    colors c, flags f
WHERE c.color = f.color
GROUP BY c.color, c.is_dark WITH ROLLUP;
+-------+---------+----------+
| color | is_dark | COUNT(*) |

563120c01.indd   31563120c01.indd   31 2/18/10   9:08:17 AM2/18/10   9:08:17 AM



32 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

+-------+---------+----------+
| Blue  | yes     |        3 |
| Blue  | NULL    |        3 |
| Red   | no      |        4 |
| Red   | NULL    |        4 |
| White | no      |        4 |
| White | NULL    |        4 |
| NULL  | NULL    |       11 |
+-------+---------+----------+

HAVING

To restrict the list of aggregated rows returned when using GROUP BY for any scalar functions, you use 
the HAVING clause to defi ne the condition and not the WHERE clause. Listing 1-35 shows an example.

LISTING 1-35:  having.sql

SELECT country, GROUP_CONCAT(color) AS colors
FROM   flags
GROUP BY country
HAVING COUNT(*) = 2;

+---------+-------------+
| country | colors      |
+---------+-------------+
| Canada  | Red,White   |
| Japan   | Red,White   |
| Sweden  | Blue,Yellow |
+---------+-------------+

You can use scalar functions that are not defi ned in the SELECT clause as shown in the preceding 
example. Unlike ORDER BY you must specify the name of the column; the numeric column order is 
not a permitted syntax.

LOGICAL OPERATIONS AND FLOW CONTROL IN MYSQL

MySQL has three states for any logic, TRUE, FALSE, or NULL:

mysql> SELECT TRUE,FALSE,NULL;
+------+-------+------+
| TRUE | FALSE | NULL |
+------+-------+------+
|    1 |     0 | NULL |
+------+-------+------+

Comparison operations such as =, <>, IS, IS NOT, IN, ISNULL, and so on will result in one of these 
three states:

mysql> SELECT ‘A’ IS NOT NULL, ‘A’ IS NULL, NULL = NULL, NULL IS NULL;
+-----------------+-------------+-------------+--------------+
| ‘A’ IS NOT NULL | ‘A’ IS NULL | NULL = NULL | NULL IS NULL |

563120c01.indd   32563120c01.indd   32 2/18/10   9:08:17 AM2/18/10   9:08:17 AM



Logical Operations and Flow Control in MySQL ❘ 33

+-----------------+-------------+-------------+--------------+
|               1 |           0 |        NULL |            1 |
+-----------------+-------------+-------------+--------------+

MySQL always returns 1 for a TRUE state, and any non-zero value evaluates to TRUE.

mysql> SELECT 5 IS TRUE, 0 IS FALSE, 10 IS NOT NULL;
+-----------+------------+----------------+
| 5 IS TRUE | 0 IS FALSE | 10 IS NOT NULL |
+-----------+------------+----------------+
|         1 |          1 |              1 |
+-----------+------------+----------------+

Logic Operators

MySQL has four logic control operators: AND, OR, NOT, and XOR. Three of these operators also have 
shorthand notations: && (AND), || (OR), ! (NOT). These shorthand notations should not be con-
fused with the Bit operators, which are single characters of & and |.

mysql> SELECT TRUE AND TRUE, TRUE AND FALSE, TRUE AND NULL, NULL AND NULL;
+---------------+----------------+---------------+---------------+
| TRUE AND TRUE | TRUE AND FALSE | TRUE AND NULL | NULL AND NULL |
+---------------+----------------+---------------+---------------+
|             1 |              0 |          NULL |          NULL |
+---------------+----------------+---------------+---------------+

mysql> SELECT TRUE OR TRUE, TRUE OR FALSE, TRUE OR NULL, NULL OR NULL;
+--------------+---------------+--------------+--------------+
| TRUE OR TRUE | TRUE OR FALSE | TRUE OR NULL | NULL OR NULL |
+--------------+---------------+--------------+--------------+
|            1 |             1 |            1 |         NULL |
+--------------+---------------+--------------+--------------+

mysql> SELECT TRUE XOR TRUE, TRUE XOR FALSE, TRUE XOR NULL, NULL XOR NULL;
+---------------+----------------+---------------+---------------+
| TRUE XOR TRUE | TRUE XOR FALSE | TRUE XOR NULL | NULL XOR NULL |
+---------------+----------------+---------------+---------------+
|             0 |              1 |          NULL |          NULL |
+---------------+----------------+---------------+---------------+

Unlike AND, OR, and XOR, the NOT operator does not evaluate two values; it simply returns the inverse 
of the provided value:

mysql> SELECT NOT TRUE, NOT FALSE, NOT NULL;
+----------+-----------+----------+
| NOT TRUE | NOT FALSE | NOT NULL |
+----------+-----------+----------+
|        0 |         1 |     NULL |
+----------+-----------+----------+

You can change the || shorthand operator of MySQL using sql_mode=PIPES_AS_CONCAT, which 
will give unexpected results as shown in Listing 1-36.

563120c01.indd   33563120c01.indd   33 2/18/10   9:08:17 AM2/18/10   9:08:17 AM



34 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

LISTING 1-36:  logic-operators.sql

mysql> SELECT TRUE OR FALSE, TRUE || FALSE;
+---------------+---------------+
| TRUE OR FALSE | TRUE || FALSE |
+---------------+---------------+
|             1 |             1 |
+---------------+---------------+

mysql> SET SESSION sql_mode=PIPES_AS_CONCAT;
mysql> SELECT TRUE OR FALSE, TRUE || FALSE;
+---------------+---------------+
| TRUE OR FALSE | TRUE || FALSE |
+---------------+---------------+
|             1 | 10            |
+---------------+---------------+

Flow Control

MySQL provides four functions for control fl ow: IF(), CASE, IFNULL(), and NULLIF(). The IF() 
function provides the syntax of a ternary operator with two possible outcomes for a given condition:

mysql> SELECT IF (2 > 1,’2 is greater than 1’,’2 is not greater than 1’) AS answer;
+---------------------+
| answer              |
+---------------------+
| 2 is greater than 1 |
+---------------------+

The MySQL CASE statement operates in similar fashion to the PHP switch syntax where a single 
given condition of multiple options results in a true assignment. The CASE statement also includes a 
special default case when no conditions equate to a TRUE value.

mysql> SET @value=CONVERT(RAND()* 10, UNSIGNED INTEGER);

mysql> SELECT @value,
    -> CASE
    ->   WHEN @value < 3 THEN ‘Value is < 3’
    ->   WHEN @value > 6 THEN ‘Value is > 6’
    ->   WHEN @value = 3 OR @value = 6 THEN ‘Value is 3 or 6’
    ->   ELSE ‘Value is 4 or 5’
    ->   END;

+--------+------------------+
|      3 | Value is 3 or 6  |
+--------+------------------+

Though it is possible to perform complex fl ow control functions via SQL, the 
MySQL database is designed for storing and retrieving data. Where possible, com-
plex rules should be written in the application layer to enable greater performance.

563120c01.indd   34563120c01.indd   34 2/18/10   9:08:17 AM2/18/10   9:08:17 AM



Maintaining Relational Integrity ❘ 35

The remaining two functions IFNULL() and NULLIF() support conditional expressions for handling 
NULL. IFNULL() returns NULL if the provided expression equates to NULL, or the value of the expres-
sion. NULLIF() returns a NULL result if the two expressions result in a TRUE condition. Listing 1-37 
shows an example of this.

LISTING 1-37:  fl ow-control.sql

mysql> SELECT IFNULL(NULL,’Value is NULL’) AS result1, 
              IFNULL(1 > 2, ‘NULL result’) AS result2;
+---------------+---------+
| result1       | result2 |
+---------------+---------+
| Value is NULL | 0       |
+---------------+---------+

mysql> SELECT NULLIF(TRUE,TRUE) AS istrue,
              NULLIF(TRUE,FALSE) AS isfalse,
              NULLIF(TRUE,NULL) AS isnull;
+--------+---------+--------+
| istrue | isfalse | isnull |
+--------+---------+--------+
|   NULL |       1 |      1 |
+--------+---------+--------+

MAINTAINING RELATIONAL INTEGRITY

Although many developers consider relational integrity as using foreign keys to maintain referen-
tial integrity of your data, i.e. the Consistency part of the ACID properties, relational integrity in 
MySQL is available via a variety of means and at various different levels. These can be specifi ed 
at the table structure level syntax of CREATE TABLE, ALTER TABLE or at the MySQL SESSION or 
GLOBAL VARIABLES level. MySQL can also provide a level of integrity that is storage engine specifi c.

Constraints

A constraint restricts the type of value that is stored in a given table column. There are various 
options for single column values including NOT NULL, UNSIGNED, ENUM, and SET. A UNIQUE KEY con-
straint applies to one or more columns of a single table. A FOREIGN KEY constraint involves a man-
datory relationship between two tables.

NOT NULL

To ensure a column must contain a value, you can specify the NOT NULL constraint. It is important 
that the use of DEFAULT is not specifi ed to enforce NOT NULL constraints. The DEFAULT attribute, as 
the name suggests, provides a default value when one is not specifi ed. With a column defi nition of 
col1 CHAR(5) NOT NULL DEFAULT ‘’, when col1 is not specifi ed in an INSERT statement, an error 
is not returned for not specifying a mandatory column. Instead a blank value ‘’ —  not to be con-
fused with a NULL value —  is inserted into the column. This is even more confusing when the col-
umn is defi ned as nullable. In this instance, you have NULL and ‘’ as possible values. These are not 

563120c01.indd   35563120c01.indd   35 2/18/10   9:08:17 AM2/18/10   9:08:17 AM



36 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

equal and this leads to confusion in your application. Should they be equal? When searching col1 
LIKE NULL you would also need to include OR col1 = ‘’.

UNSIGNED

When an integer column only requires a non-negative number, the specifi cation of the UNSIGNED 
constraint will ensure the column can only contain 0 or a positive value. For example:

LISTING 1-38:  unsigned.sql

mysql> DROP TABLE IF EXISTS example;
mysql> CREATE TABLE example (
    ->   int_signed      INT NOT NULL,
    ->   int_unsigned    INT UNSIGNED NOT NULL
    -> ) ENGINE=InnoDB DEFAULT CHARSET latin1;

mysql> INSERT INTO example (int_signed, int_unsigned) VALUES ( 1, 1);
mysql> INSERT INTO example (int_signed, int_unsigned) VALUES ( 0, 0);
mysql> INSERT INTO example (int_signed, int_unsigned) VALUES ( -1, 1);
mysql> INSERT INTO example (int_signed, int_unsigned) VALUES ( 1, -1);

ERROR 1264 (22003): Out of range value for column ‘int_unsigned’ at row 1

mysql> SELECT * FROM example;

+------------+--------------+
| int_signed | int_unsigned |
+------------+--------------+
|          1 |            1 |
|          0 |            0 |
|         -1 |            1 |
+------------+--------------+

ENUM and SET

The ENUM data column and supporting SET column data types enable you to enforce integrity by 
enabling only a specifi c set of possible values. This can be of benefi t when only a set range of values 
are possible for a column. Listing 1-39 shows an example.

LISTING 1-39:  enum.sql

mysql> CREATE TABLE example (
    ->  currency  ENUM(‘USD’,’CAD’,’AUD’) NOT NULL
    -> ) ENGINE=InnoDB DEFAULT CHARSET latin1;

mysql> INSERT INTO example (currency) VALUES (‘AUD’);
mysql> INSERT INTO example (currency) VALUES (‘EUR’);

563120c01.indd   36563120c01.indd   36 2/18/10   9:08:17 AM2/18/10   9:08:17 AM



Maintaining Relational Integrity ❘ 37

ERROR 1265 (01000): Data truncated for column ‘currency’ at row 1

mysql> SELECT * FROM example;
+----------+
| currency |
+----------+
| AUD      |
+----------+

The SET data type operates similarly to ENUM except that one or more of the defi ned values are per-
mitted as a valid value. The disadvantage of using ENUM or SET is that a DDL statement is required 
to change the range of possible values.

UNIQUE KEY

The UNIQUE KEY constraint ensures that all values in a given column are actually unique. A UNIQUE 
KEY constraint may also involve more than one column. It is possible for a UNIQUE KEY constraint to 
contain a nullable column, because NULL is considered a unique value. Listing 1-40 shows an example.

LISTING 1-40:  unique-key.sql

mysql> CREATE TABLE example (
    ->  int_unique           INT UNSIGNED NOT NULL,
    ->  int_nullable_unique  INT UNSIGNED NULL,
    ->  UNIQUE KEY (int_unique),
    ->  UNIQUE KEY(int_nullable_unique)
    -> ) ENGINE=InnoDB DEFAULT CHARSET latin1;

mysql> INSERT INTO example (int_unique, int_nullable_unique) VALUES (1, 1);
mysql> INSERT INTO example (int_unique, int_nullable_unique) VALUES (2, NULL);
mysql> INSERT INTO example (int_unique, int_nullable_unique) VALUES (3, NULL);
mysql> INSERT INTO example (int_unique, int_nullable_unique) VALUES (1, NULL);
ERROR 1062 (23000): Duplicate entry ‘1’ for key ‘int_unique’

mysql> INSERT INTO example (int_unique, int_nullable_unique) VALUES (4, 1);
ERROR 1062 (23000): Duplicate entry ‘1’ for key ‘int_nullable_unique’

mysql> SELECT * FROM example;
+------------+---------------------+
| int_unique | int_nullable_unique |
+------------+---------------------+
|          2 |                NULL |
|          3 |                NULL |
|          1 |                   1 |
+------------+---------------------+

FOREIGN KEY

Developers will generally consider foreign keys as the basis of relational integrity; however, as 
shown in this chapter, other important factors exist for maintaining integrity. Foreign keys can 

563120c01.indd   37563120c01.indd   37 2/18/10   9:08:17 AM2/18/10   9:08:17 AM



38 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

ensure the Consistency portion of ACID compliance. Though it is possible to use manual procedures 
to maintain data integrity, this is a less than an ideal approach.

In the current production MySQL 5.1, foreign keys are supported only with the InnoDB storage 
engine. Some additional third-party storage engines do support foreign keys. Refer to Chapter 3 for 
additional information.

The MySQL Reference Manual defi nes the syntax for a FOREIGN KEY that can be used in CREATE 
TABLE or ALTER TABLE as:

[CONSTRAINT [symbol]] FOREIGN KEY
    [index_name] (index_col_name, ...)
    REFERENCES tbl_name (index_col_name,...)
    [ON DELETE reference_option]
    [ON UPDATE reference_option]

reference_option:
    RESTRICT | CASCADE | SET NULL | NO ACTION

As you’ve seen from earlier join examples, the countries table contains an invalid color. If you had 
defi ned the tables using foreign keys, you would not have experienced this data integrity problem. 
This provides a code example of what is necessary to correct bad data. First, you should attempt to 
create the missing foreign key integrity constraint as shown in Listing 1-41.

LISTING 1-41:  foreign-key-alter.sql

mysql> ALTER TABLE flags
    -> ADD FOREIGN KEY (color)
    -> REFERENCES colors (color)
    -> ON DELETE CASCADE;
ERROR 1452 (23000): Cannot add or update a child row:a foreign key constraint fails
 (‘chapter1’.’#sql-86f_1928bd’, CONSTRAINT ‘#sql-86f_1928bd_ibfk_1’ FOREIGN KEY
 (‘color’) REFERENCES ‘colors’ (‘color’) ON DELETE CASCADE)

Due to the error, you now need to identify the problem data in either the parent or child table. You 
could identify with a subquery or, as shown previously, an outer join to retrieve the invalid data. We 
know because of the small sample data that the color Yellow is the cause of the failure. Do you:

Delete the offending row that contains the invalid data? This would then in turn produce  ➤

invalid consistent data for the Swedish fl ag.

Delete all fl ag data for Sweden? This would delete potentially valid data that you may use or  ➤

that may be valuable elsewhere.

Add the missing data to the colors base table? ➤

These are important design decisions that affect how your application will run. In Listing 1-42, we 
make the decision to use the last option and add the missing color Yellow to the colors table to suc-
cessfully add the foreign key.

563120c01.indd   38563120c01.indd   38 2/18/10   9:08:17 AM2/18/10   9:08:17 AM



Maintaining Relational Integrity ❘ 39

LISTING 1-42:  foreign-key-yellow.sql

mysql> INSERT INTO colors (color,is_primary,is_dark,is_rainbow) 
                   VALUES (‘Yellow’,’no’,’no’,’yes’);

mysql> ALTER TABLE flags 
       ADD FOREIGN KEY (color) 
       REFERENCES colors (color) 
       ON DELETE CASCADE;

mysql> SELECT * 
       FROM colors 
       WHERE color=’Yellow’;
+--------+------------+---------+------------+
| color  | is_primary | is_dark | is_rainbow |
+--------+------------+---------+------------+
| Yellow | no         | no      | yes        |
+--------+------------+---------+------------+

mysql> SELECT * 
       FROM flags 
       WHERE country IN (SELECT country 
                         FROM flags 
                         WHERE color=’Yellow’);
+---------+--------+
| country | color  |
+---------+--------+
| Sweden  | Blue   |
| Sweden  | Yellow |
+---------+--------+

You have now defi ned a FOREIGN KEY between the colors table and the fl ags table where the 
color for the fl ag must exist in the colors tables. You have also defi ned this rule to have a cascade 
DELETE rule, which states that if you delete a color, you will also delete all rows that use this color. 
Listing 1-43 shows an example:

LISTING 1-43:  foreign-key-delete.sql

mysql> DELETE FROM colors WHERE color=’Yellow’;
mysql> SELECT * FROM flags WHERE color=’Yellow’;
Empty set (0.00 sec)

mysql> SELECT * 
       FROM flags 
       WHERE country IN (SELECT country 
                         FROM flags 
                         WHERE color=’Yellow’);

mysql> SELECT * 

563120c01.indd   39563120c01.indd   39 2/18/10   9:08:18 AM2/18/10   9:08:18 AM



40 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

       FROM flags 
       WHERE country = ‘Sweden’;
+---------+-------+
| country | color |
+---------+-------+
| Sweden  | Blue  |
+---------+-------+

Although the FOREIGN KEY constraint has ensured data integrity at the row level, it has not per-
formed the type of integrity you would expect. The use of the FOREIGN KEY constraint will not 
ensure the level of application integrity you ideally wish to have.

Defi ning your foreign key defi nitions is a very important architectural design 
decision that should be performed before you add any data. It is far easier to 
remove a constraint later than to add it later.

A further benefi t of InnoDB foreign key constraints is the requirement that both columns in the 
from table and the to table must use an identical data type. This improves the data integrity of the 
database.

You can fi nd additional information on foreign keys in InnoDB at http://dev.mysql.com/doc/
refman/5.0/en/innodb-foreign-key-constraints.html.

It is possible for foreign key constraints to be disabled within MySQL with the SET foreign_key_
checks = 0|1 option. This can further confuse the integrity of your database because permission to 
manipulate data via a DML statement can be overridden via the SET command at both the SESSION 
or GLOBAL level.

When using cascading foreign key constraints and the REPLACE command, your 
database may exhibit unexpected behavior or performance. The REPLACE com-
mand is generally understood and described as an UPDATE for the matching row. 
If no row is found then the INSERT command inserts the row. In implementa-
tion, however, REPLACE is actually a DELETE of the existing row, and then an 
INSERT of the new row. Be aware of this execution path of REPLACE when add-
ing constraints that use cascading syntax.

Using Server SQL Modes

Introduced fi rst in 4.1 and enhanced in 5.0, the Server SQL mode provides various features includ-
ing different types of relational integrity. MySQL, by default, is very lax with data integrity and this 
can have unexpected results. For example, look at Listing 1-44.

563120c01.indd   40563120c01.indd   40 2/18/10   9:08:18 AM2/18/10   9:08:18 AM



Maintaining Relational Integrity ❘ 41

LISTING 1-44:  no-sql-mode.sql

mysql> CREATE TABLE example (
    ->  i TINYINT UNSIGNED NOT NULL,
    ->  c CHAR(2) NULL
    -> ) ENGINE=InnoDB DEFAULT CHARSET latin1;

mysql> INSERT INTO example (i) VALUES (0), (-1),(255), (9000);
Query OK, 4 rows affected, 2 warnings (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+--------------------------------------------+
| Level   | Code | Message                                    |
+---------+------+--------------------------------------------+
| Warning | 1264 | Out of range value for column ‘i’ at row 2 |
| Warning | 1264 | Out of range value for column ‘i’ at row 4 |
+---------+------+--------------------------------------------+
2 rows in set (0.00 sec)

mysql> INSERT INTO example (c) VALUES (‘A’),(‘BB’),(‘CCC’);
Query OK, 3 rows affected, 2 warnings (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+----------------------------------------+
| Level   | Code | Message                                |
+---------+------+----------------------------------------+
| Warning | 1364 | Field ‘i’ doesn’t have a default value |
| Warning | 1265 | Data truncated for column ‘c’ at row 3 |
+---------+------+----------------------------------------+
2 rows in set (0.00 sec)

mysql> SELECT * FROM example;
+-----+------+
| i   | c    |
+-----+------+
|   0 | NULL |
|   0 | NULL |
| 255 | NULL |
| 255 | NULL |
|   0 | A    |
|   0 | BB   |
|   0 | CC   |
+-----+------+
7 rows in set (0.00 sec)

In these preceding SQL statements you fi nd numerous actual errors in the data, yet no errors actu-
ally occurred.

MySQL issues only warnings, and most application developers actually ignore these warnings, never 
executing a SHOW WARNINGS to identify these silent data truncations. You expected to insert a value 
of 9,000; however, only 255 was stored. You expected to insert a string of three characters, yet only 
two characters were recorded. You didn’t specify a value for a NOT NULL column, yet a default value 
was recorded.

563120c01.indd   41563120c01.indd   41 2/18/10   9:08:18 AM2/18/10   9:08:18 AM



42 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

The solution is to use a strict SQL mode available since MySQL 5.0. MySQL provides two strict 
types: STRICT_ALL_TABLES and STRICT_TRANS_TABLES. For the purposes of ensuring data integrity 
for all tables, this section only discusses STRICT_ALL_TABLES. When you re-run the previous SQL 
statements, you see the code in Listing 1-45:

LISTING 1-45:  sql-mode-traditional.sql

mysql> TRUNCATE TABLE example;
Query OK, 0 rows affected (0.00 sec)

mysql> SET SESSION sql_mode=’TRADITIONAL’;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO example (i) VALUES (0), (-1),(255), (9000);
ERROR 1264 (22003): Out of range value for column ‘i’ at row 2
mysql> INSERT INTO example (c) VALUES (‘A’),(‘BB’),(‘CCC’);
ERROR 1364 (HY000): Field ‘i’ doesn’t have a default value
mysql> SELECT * FROM example;
Empty set (0.00 sec)

mysql> INSERT INTO example (i) VALUES (0);
mysql> INSERT INTO example (i) VALUES (-1);
ERROR 1264 (22003): Out of range value for column ‘i’ at row 1
mysql> INSERT INTO example (i) VALUES (255);
mysql> INSERT INTO example (i) VALUES (9000);
ERROR 1264 (22003): Out of range value for column ‘i’ at row 1
mysql> INSERT INTO example (c) VALUES (‘A’);
ERROR 1364 (HY000): Field ‘i’ doesn’t have a default value
mysql> INSERT INTO example (i,c) VALUES (1,’A’);
mysql> INSERT INTO example (i,c) VALUES (1,’BB’);
mysql> INSERT INTO example (i,c) VALUES (1,’CCC’);
ERROR 1406 (22001): Data too long for column ‘c’ at row 1
mysql> SELECT * FROM example;
+-----+------+
| i   | c    |
+-----+------+
|   0 | NULL |
| 255 | NULL |
|   1 | A    |
|   1 | BB   |
+-----+------+
4 rows in set (0.00 sec)

You will notice now the expected errors of a more traditional relational database system. You will 
also notice that the multiple INSERT VALUES statements fail unconditionally. It is possible to alter 
this behavior by using a nontransactional storage engine such as MyISAM and further confuse the 
possible lack of data integrity. Listing 1-46 shows an example.

LISTING 1-46:  sql-mode-traditional-myisam.sql

mysql> ALTER TABLE example ENGINE=MyISAM;
mysql> TRUNCATE TABLE example;

563120c01.indd   42563120c01.indd   42 2/18/10   9:08:18 AM2/18/10   9:08:18 AM



Maintaining Relational Integrity ❘ 43

mysql> SET SESSION sql_mode=’TRADITIONAL’;
mysql> INSERT INTO example (i) VALUES (0), (-1),(255), (9000);
ERROR 1264 (22003): Out of range value for column ‘i’ at row 2
mysql> INSERT INTO example (i,c) VALUES (1,’A’),(1,’BB’),(1,’CCC’);
ERROR 1406 (22001): Data too long for column ‘c’ at row 3
mysql> SELECT * FROM example;
+---+------+
| i | c    |
+---+------+
| 0 | NULL |
| 1 | A    |
| 1 | BB   |
+---+------+
3 rows in set (0.00 sec)

sql_mode=TRADITIONAL

The use of sql_mode is essential in application development to providing an acceptable level of 
data integrity. Systems should ideally be defi ned with a minimum of sql_mode=TRADITIONAL. The 
MySQL Reference Manual provides the following description for TRADITIONAL.

“Make MySQL behave like a ‘traditional’ SQL database system. A simple 
description of this mode is ‘give an error instead of a warning’ when inserting an 
incorrect value into a column.

Equivalent to STRICT_TRANS_TABLES, STRICT_ALL_TABLES, NO_
ZERO_IN_DATE, NO_ZERO_DATE, ERROR_FOR_DIVISION_BY_
ZERO, NO_AUTO_CREATE_USER.”

TRADITIONAL provides additional modes including important data integrity for date values.

It is important that changing the sql_mode for an application requires appropri-
ate testing. It is dangerous to change sql_mode on a production system because 
functionality that may have operated previously may now operate differently.

sql_mode=NO_ENGINE_SUBSTITUTION

When using relational integrity that is engine specifi c, such as the InnoDB FOREIGN KEY constraint, it 
is important that a table is created with the intended storage engine as specifi ed with the CREATE TABLE 
statement. Unfortunately, MySQL does not enforce this by default. Listing 1-47 shows an example.

LISTING 1-47:  sql-mode-engine-myisam.sql

mysql> CREATE TABLE example (
    ->   col1 INT UNSIGNED NOT NULL,
    ->   col2 INT UNSIGNED NOT NULL

563120c01.indd   43563120c01.indd   43 2/18/10   9:08:18 AM2/18/10   9:08:18 AM



44 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

    -> ) ENGINE=InnoDB DEFAULT CHARSET latin1;
Query OK, 0 rows affected, 2 warnings (0.01 sec)

mysql> SHOW WARNINGS;
+---------+------+-------------------------------------------------+
| Level   | Code | Message                                         |
+---------+------+-------------------------------------------------+
| Warning | 1286 | Unknown table engine ‘InnoDB’                   |
| Warning | 1266 | Using storage engine MyISAM for table ‘example’ |
+---------+------+-------------------------------------------------+
2 rows in set (0.00 sec)

mysql> SHOW CREATE TABLE example\G
*************************** 1. row ***************************
       Table: example
Create Table: CREATE TABLE `example` (
  `col1` int(10) unsigned NOT NULL,
  `col2` int(10) unsigned NOT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

The table has been successfully created, yet the created storage of MyISAM is 
not the specifi ed storage engine of InnoDB.

To ensure this does not occur, you need to use the sql_mode in Listing 1-48.

LISTING 1-48:  sql-mode-engine-error.sql

mysql> SET SESSION sql_mode=’NO_ENGINE_SUBSTITUTION’;

mysql> CREATE TABLE example (
    ->   col1 INT UNSIGNED NOT NULL,
    ->   col2 INT UNSIGNED NOT NULL
    -> ) ENGINE=InnoDB DEFAULT CHARSET latin1;
ERROR 1286 (42000): Unknown table engine ‘InnoDB’

Storage Engine Integrity

The ARCHIVE storage engine provides a unique feature that can be considered a level of integrity. In 
Listing 1-49, DELETE and UPDATE are not supported and they return an error:

LISTING 1-49:  archive-engine.sql

mysql> CREATE TABLE example (
    ->   pk INT UNSIGNED NOT NULL AUTO_INCREMENT,
    ->   col2 VARCHAR(10) NOT NULL,
    ->   PRIMARY KEY(pk)

563120c01.indd   44563120c01.indd   44 2/18/10   9:08:18 AM2/18/10   9:08:18 AM



Subqueries in MySQL ❘ 45

    -> ) ENGINE=ARCHIVE DEFAULT CHARSET latin1;

mysql> INSERT INTO example (col2) VALUES (‘a’),(‘b’),(‘c’);

mysql> UPDATE example SET col2=’x’ WHERE pk=1;
ERROR 1031 (HY000): Table storage engine for ‘example’ doesn’t have this option

mysql> DELETE FROM example  WHERE pk=1;
ERROR 1031 (HY000): Table storage engine for ‘example’ doesn’t have this option

What MySQL Does Not Tell You

You should also be aware that MySQL may perform silent column changes when you create a table 
in MySQL. Though subtle, it is important that you know about these changes because they may 
refl ect an impact on relational integrity. The following is a summary of several important points; 
however, you should always refer to the MySQL manual for a complete list of version specifi c 
changes: http://dev.mysql.com/doc/refman/5.1/en/silent-column-changes.html.

VARCHAR ➤  columns specifi ed less than four characters are silently converted to CHAR.

All  ➤ TIMESTAMP columns are converted to NOT NULL.

String columns defi ned with a binary  ➤ CHARACTER SET are converted to the corresponding 
binary data type; for example, VARCHAR is converted to VARBINARY.

What’s Missing?

MySQL does not support any check constraints on columns, for example the popular Oracle syntax 
that can restrict the range of values that can be recorded in a column:

CONSTRAINT country_id  CHECK (country_id BETWEEN 100 and 999)

SUBQUERIES IN MYSQL

The subquery is a powerful means of retrieving additional data in a single MySQL SELECT state-
ment. With subqueries, it is possible to introduce other sets of information for varying purposes. 
The following examples show three different and popular forms of subqueries.

Subquery

A true subquery, also known as dependent query, is a standalone SELECT statement that you can 
execute independently to produce a set of results that are then used with the parent query. In this 
form, the subquery is executed fi rst, and the results are used for comparison with the parent query.

LISTING 1-50:  subquery.sql

SELECT color
FROM colors

563120c01.indd   45563120c01.indd   45 2/18/10   9:08:18 AM2/18/10   9:08:18 AM



46 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

WHERE color IN
 (SELECT color
  FROM flags);

+-------+
| color |
+-------+
| Blue  |
| Red   |
| White |
+-------+

Correlated Subquery

A correlated subquery performs a join between the parent query and the subquery resulting in a 
dependency during the process of retrieving results. In this situation, both sets of data must be 
determined independently, then compared to return the matching results:

LISTING 1-51:  correlated-sub-query.sql

SELECT DISTINCT f.color
FROM flags f
WHERE EXISTS
 (SELECT 1
  FROM colors c
  WHERE c.color = f.color);

+-------+
| color |
+-------+
| Blue  |
| Red   |
| White |
+-------+

Derived Table

Though SELECT statements shown in this chapter have used tables and columns, it is possible for any 
table or column within a SELECT statement to actually be the result of a SELECT statement. This is 
known as a derived table.

You can use a SELECT statement to create a derived table that acts in the position as a normal table. 
For example:

LISTING 1-52:  derived-table.sql

SELECT r.color, r.countries, c.is_dark, c.is_primary
FROM colors c,
     (SELECT color, GROUP_CONCAT(country) AS countries
      FROM   flags

563120c01.indd   46563120c01.indd   46 2/18/10   9:08:18 AM2/18/10   9:08:18 AM



Subqueries in MySQL ❘ 47

      GROUP BY color) r
      WHERE c.color = r.color;
+-------+----------------------------+---------+------------+
| color | countries                  | is_dark | is_primary |
+-------+----------------------------+---------+------------+
| Blue  | Australia,Sweden,USA       | yes     | yes        |
| Red   | Australia,Canada,Japan,USA | no      | yes        |
| White | Australia,Canada,Japan,USA | no      | yes        |
+-------+----------------------------+---------+------------+

An earlier example used a GROUP BY statement to return a concatenated list of colors per country. 
This can also be retrieved using a column-based derived table as shown in Listing 1-53.

LISTING 1-53:  derived-column.sql

SELECT DISTINCT f.country,
      (SELECT GROUP_CONCAT(color) 
       FROM flags f2 
       WHERE f2.country = f.country) AS colors
FROM   flags f;

+-----------+----------------+
| country   | colors         |
+-----------+----------------+
| Australia | Blue,Red,White |
| Sweden    | Blue,Yellow    |
| USA       | Blue,Red,White |
| Canada    | Red,White      |
| Japan     | Red,White      |
+-----------+----------------+

You can fi nd a great example of the complexity of SQL and derived tables in the Blog Post by Shlomi 
Noach at http://code.openark.org/blog/mysql/sql-pie-chart.

Complex Sub Queries

Listing 1-54 is a 66-line SQL statement that includes combined examples of UNION, GROUP BY, IF() 
and CASE() fl ow control, and multiple subqueries including table and column derived tables:

LISTING 1-54:  complex-sql.sql

SELECT
  group_concat(
    IF(round(sqrt(pow(col_number/@stretch-0.5-(@size-1)/2, 2) + 
       pow(row_number-(@size-1)/2, 2))) BETWEEN @radius*2/3 AND @radius,
    (SELECT SUBSTRING(@colors, name_order, 1) FROM
      (
      SELECT
        name_order,
        name_column,
        value_column,

563120c01.indd   47563120c01.indd   47 2/18/10   9:08:18 AM2/18/10   9:08:18 AM



48 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

        accumulating_value,
        accumulating_value/@accumulating_value AS accumulating_value_ratio,
        @aggregated_data := CONCAT(@aggregated_data, name_column, ‘: ‘, 
           value_column, ‘ (‘, ROUND(100*value_column/@accumulating_value), ‘%)’,
           ‘|’) AS aggregated_name_column,
        2*PI()*accumulating_value/@accumulating_value AS accumulating_value_radians
      FROM (
        SELECT
          name_column,
          value_column,
          @name_order := @name_order+1 AS name_order,
          @accumulating_value := @accumulating_value+value_column 
            AS accumulating_value
        FROM (
          <strong>SELECT name AS name_column, value AS value_column 
             FROM sample_values2 LIMIT 4</strong>
          ) select_values,
          (SELECT @name_order := 0) select_name_order,
          (SELECT @accumulating_value := 0) select_accumulating_value,
          (SELECT @aggregated_data := ‘’) select_aggregated_name_column
        ) select_accumulating_values
      ) select_for_radians
    WHERE accumulating_value_radians &gt;= radians LIMIT 1
    ), ‘ ‘)
    order by col_number separator ‘’) as pie
FROM (
  SELECT
    t1.value AS col_number,
    t2.value AS row_number,
    @dx := (t1.value/@stretch - (@size-1)/2) AS dx,
    @dy := ((@size-1)/2 - t2.value) AS dy,
    @abs_radians := IF(@dx = 0, PI()/2, (atan(abs(@dy/@dx)))) AS abs_radians,
    CASE
      WHEN SIGN(@dy) &gt;= 0 AND SIGN(@dx) &gt;= 0 THEN @abs_radians
      WHEN SIGN(@dy) &gt;= 0 AND SIGN(@dx) &lt;= 0 THEN PI()-@abs_radians
      WHEN SIGN(@dy) &lt;= 0 AND SIGN(@dx) &lt;= 0 THEN PI()+@abs_radians
      WHEN SIGN(@dy) &lt;= 0 AND SIGN(@dx) &gt;= 0 THEN 2*PI()-@abs_radians
    END AS radians
  FROM
    tinyint_asc t1,
    tinyint_asc t2,
    (select @size := 23) sel_size,
    (select @radius := (@size/2 - 1)) sel_radius,
    (select @stretch := 4) sel_stretch,
    (select @colors := ‘#;o:X”@+-=123456789abcdef’) sel_colors
  WHERE
    t1.value &lt; @size*@stretch
    AND t2.value &lt; @size) select_combinations
  GROUP BY row_number
UNION ALL
  SELECT
    CONCAT(
      REPEAT(SUBSTRING(@colors, value, 1), 2),
      ‘  ‘,
      SUBSTRING_INDEX(SUBSTRING_INDEX(@aggregated_data, ‘|’, value), ‘|’, -1)
    )

563120c01.indd   48563120c01.indd   48 2/18/10   9:08:19 AM2/18/10   9:08:19 AM



Using Regular Expressions ❘ 49

  FROM
    tinyint_asc
  WHERE
    value BETWEEN 1 AND @name_order
;

Subqueries in MySQL were fi rst available in version 5.0. In prior versions, the 
use of joins was necessary and in many instances they were able to achieve the 
same result.

USING REGULAR EXPRESSIONS

Regular expressions become indispensable as soon as application requirements include validation or 
parsing of complicated text data. This book does a lot of that and it all builds on the foundations in 
this chapter. It is vital for a developer to have a good working knowledge of the regular expression 
language in order to increase productivity and to save time by avoiding the need to write special-
purpose text parsers.

This section starts with general practices regarding regular expressions and then fi nishes with some 
examples. The expressions in the book can sometimes be complicated and diffi cult to read. This is 
one of the downsides of using regular expressions, but when they are used properly they can replace 
hundreds of lines of traditional text-parsing code and will outperform native PHP on long or com-
plex strings.

General Patterns

Regular expressions in PHP start and end with a boundary character. This is usually a slash but 
it can be any character as long as it is the fi rst character of the expression. Regular expressions in 
MySQL, by contrast, do not have a boundary character. For ease of reading, this book uses slash as 
a boundary character for all regular expressions unless they appear directly in a MySQL query. It is 
also common to use a hash character as a boundary in PHP. When an expression has many slashes 
the hash effectively avoids the need to escape every single non-terminal slash. In web applications 
this approach is very useful for URIs. These two lines are both functionally identical and valid regu-
lar expressions:

/yin\/yang/i
#yin/yang#i

In all cases a regular expression will match the pattern inside the boundaries. Modifi ers can be 
placed after the closing boundary to alter the behavior of the regular expression. In the previous 
example, the modifi er “i” is used to make the expression case-insensitive.

The pattern can range from simple (a tiny set of possible strings) to complex (an infi nite number of 
possible matches). Complex regular expressions should always be commented to avoid confusion 
down the road. It is not uncommon for developers to come across a regular expression and ask, 
“What is that supposed to be doing?” even if they wrote it themselves just a few days earlier.

563120c01.indd   49563120c01.indd   49 2/18/10   9:08:19 AM2/18/10   9:08:19 AM



50 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

Matching a Range of Characters

Regular expressions are often used to match a string where a fi nite character set is expected to occur 
(or not occur). This is where regular expressions save a lot of time. Enclosing a set of characters in 
square brackets [like this] will match any of the characters in the set. The example in the preced-
ing sentence will match the letters l, i, k, e, t, h, and s as well as a space (ASCII 0x20). Putting a 
caret (̂ ) after the opening bracket will give you any character that is not one of those seven. Using a 
dash inside the brackets can specify ranges, for example: a valid username contains only letters A-Z, 
numbers, dashes, and underscores. There are also several short codes for predefi ned and frequently 
used character sets. These two regular expressions both match the username:

/^[A-Za-z0-9_\-]{3,15}$/
/^[\w\-]{3,15}$/

By design, those regular expressions will also ensure that the username is between three and fi fteen 
characters long as indicated by the braces. They force the regular expression to match that many 
instances of the pattern preceding them. The brackets, combined with the numbers inside of them, 
are called a quantifi er.

This is the fi rst time in the book that \w is used. \w will match word characters 
in a regular expression. So [A-Za-z0-9_] can be simplifi ed into just \w. Two 
other useful and related shorthand characters are:

\s ➤  matches whitespace characters such as spaces, line feeds, and carriage 
returns: [ \t\n\r]

\d ➤  matches digits: [0-9]

Using the uppercase version of a shorthand character will negate it. For exam-
ple: \S will match any character that is not whitespace.

Even slightly changing the regular expression alters the meaning dramatically. Changing the braces 
to {3,} instead of {3,15} will match usernames that are at least three characters long but can be any 
length. Likewise, changing it to {3} will only allow usernames that are exactly three characters long.

The expression is anchored by a caret at the front and a dollar sign at the end. This ensures that the 
entire string is matched. Remove both of them and the resulting regular expression would match 
any substring that has at least three consecutive characters and matches the pattern (allowing bogus 
usernames). Removing the dollar sign will match any string that starts with at least three of the 
allowed characters. The inverse is true if just the caret sign is removed.

A more complex task would be to match an email address. Matching an email address is useful 
for dumb validation of input. The application can ensure that the user at least tried to enter valid 
data (but not that the data is actually valid). RFC 5322 documents the proper format for an email 
address. The task can be as easy as /\w@\w/ or very diffi cult.

The email address is divided into a local-part and a domain-part. The local-part can contain almost 
any printable ASCII character. It excludes all brackets except curly brackets. It also excludes the 

563120c01.indd   50563120c01.indd   50 2/18/10   9:08:19 AM2/18/10   9:08:19 AM



Using Regular Expressions ❘ 51

@ sign, colon, semicolon, and commas, with the exception being if the local-part is surrounded by 
quotes, it can contain the excluded characters. These fi rst two addresses have valid local-parts and 
the third does not (note the commas):

Boston.MA@example.com
“Boston,MA”@example.com
Boston,MA@example.com

The quote syntax is rarely seen and the RFC for the Simple Mail Transfer Protocol (RFC 5321) 
warns against it in section 4.2.1. Two possible regular expressions for the local-part of the domain 
(with and without quotes) look like this:

/”[\w!#$%&’*+\/=?^`{|}~.@()[\]\\;:,<>-]+”/
/[\w!#$%&’*+\/=?^`{|}~.-]+/

The plus sign is a quantifi er that tells the regular expression engine to look for one or more of the 
previous expressions. Using an asterisk as a quantifi er tells the engine to look for zero or more.

The domain-part has more strict rules to follow (and thus is a little easier to validate against). The 
domain can be any number of subdomains separated by dots. The subdomain can contain alpha-
numeric characters and dashes as long as it doesn’t start or end with a dash. The domain can also 
be an IP address enclosed in square brackets. The resulting regular expressions for the domain 
portion might look like this:

/([A-Za-z0-9-]+\.)+[A-Za-z0-9-]+/
/\[([0-9]{1,3}\.){3}[0-9]{1,3}\]/

Complex groups can be enclosed in parentheses like they are in the previous example for matching a 
valid IP address. The expression will match the fi rst three octets followed by a dot and then the fi nal 
octet (which does not have a trailing dot).

Now that all the pieces are there they need to be put together using alternation. Using the pipe char-
acter to separate parts of the regular expression tells the engine that it can accept any of the parts as 
input. You can group alternations together using parentheses. The almost fi nal regular expression 
looks like this:

/^(
  “[\w!#$%&’*+\/=?^`{|}~.@()[\]\\;:,<>-]+”
| [\w!#$%&’*+\/=?^`{|}~.-]+
) @ (
  ([A-Za-z0-9-]+\.)+[A-Za-z0-9-]+
| \[([0-9]{1,3}\.){3}[0-9]{1,3}\]
)$/x

The x modifi er in the preceding example can be used to indicate that whitespace should be ignored. 
It is useful for making long expressions easier to read by making them span multiple lines.

The regular expressions for both parts have glaring errors. The local-part allows for a dot at the 
beginning and the end as well as consecutive dots, and the domain-part of the regular expression 
allows for hyphens at the beginning and end of subdomains, none of which is allowed by the RFC. 
Those errors need to be fi xed for the regular expression to be accurate.

563120c01.indd   51563120c01.indd   51 2/18/10   9:08:19 AM2/18/10   9:08:19 AM



52 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

Expert Regular Expressions

The errors in the email expression can be fi xed using simple regular expression syntax to detect a 
more limited character set for the beginning and end. Ironically that will produce a more compli-
cated and diffi cult to read expression. Instead, lookarounds can be used.

Lookaheads and Lookbehinds

Lookaheads and lookbehinds (collectively called lookarounds) can be used to assert the presence or 
absence of characters in a string. In the email example they can be used to assert that the fi rst char-
acter in the local-part is not a dot and neither is the last character. They are each special types of 
groups. When the start of a group (opening parenthesis) is followed by a question mark, it indicates 
to the engine that the type for that group will follow. There are many types of groups, all of which 
are covered in this chapter.

Lookaheads use an equal sign and lookbehinds use a less-than sign followed by an equal sign. Using 
both, the engine can match the letter b that is immediately preceded by a and followed by c:

/(?<=a)b(?=c)/

Lookaheads and lookbehinds can also be negated using an exclamation point instead of an equal 
sign. The preceding regular expression can easily be modifi ed to be the letter b that is not preceded 
by a or followed by c:

/(?<!a)b(?!c)/

The entire string will not match if any negative lookahead or negative lookbe-
hind matches. So abx and xbc both fail to match. A slightly more complicated 
regular expression that succeeds for both those strings but still fails for abc 
would be:

 /(?<!a)b|b(?!c)/

All lookarounds are zero-width, which means that they do not count toward the match. This can be 
useful for string replacement where you do not want the beginning or end of a string to be replaced. 
They can then be used to help out with the email problem as well. The problem can be simplifi ed 
by ignoring the complexity of the local-part for now and saying that the expression only needs to 
match a word containing dots that does not start or end with a dot. The expression [\w.]+ will 
match alphanumeric characters and dots. A negative lookahead and a negative lookbehind can be 
used together so that it doesn’t match words that start or end with a dot:

/^(?!\.)[\w.]+(?<!\.)$/

Caution must be taken when using the dot character. It does not need to be escaped inside the 
character set, but outside it must be. Removing the slash before the fi rst or last dot will read “not 
ending/beginning with any character,” which is clearly not desirable. Changing the last exclama-
tion point to an equal sign will only match strings that do end in a dot. Using negative lookarounds 

563120c01.indd   52563120c01.indd   52 2/18/10   9:08:19 AM2/18/10   9:08:19 AM



Using Regular Expressions ❘ 53

to catch leading and trailing dots in the local-part and hyphens in the domain-part lead to a new 
completed regular expression:

/^(
  “[\w!#$%&’*+\/=?^`{|}~.@()[\]\\;:,<>-]+”
| (?!\.)[\w!#$%&’*+\/=?^`{|}~.-]+(?<!\.)
) @ (
  ((?!-)[\w-]+(?<!-)\.)+(?!-)[\w-]+(?<!-)
| \[([0-9]{1,3}\.){3}[0-9]{1,3}\]
)$/x

The new expression will match any valid email address and will fail on an address that does not fol-
low the rules outlined in the RFCs. Lookarounds are just one type of group. There is an entirely dif-
ferent type called capture groups that is also very common.

Capturing Data

Regular expressions have the ability to capture data. Starting a group without providing a type 
(a parenthesis that is not followed by unescaped question mark) will cause that group to be cap-
tured. Data from the capture group can be referenced both from inside the regular expression and 
PHP. When referenced from within the same expression it is referred to as a back-reference. Back-
references can be achieved by using \# where # is the number of the captured groups. You can use 
back-references to match both a single and double-quoted string with the same regular expression:

/(‘|”)[^\1]*?\1/

The back-references (\1) ensure that the end quote is of the same type as the opening quote and 
that the quoted string can contain other quotes as long as they are not the same type. It is impor-
tant that the asterisk is made lazy using the question mark. Otherwise if there are multiple quoted 
strings inside the subject, the expression will match it as if it contains only one giant quoted string.

Any quantifi er can be made lazy using the question mark (even the question 
mark quantifi er itself). The question mark serves several purposes in regular 
expressions:

To mark the previous character, group, or character class as optional. ➤

To mark the previous quantifi er as lazy. A lazy quantifi er will quit matching  ➤

as soon as it can. It will continue on to the next part of the regular expres-
sion if it can. In contrast, a greedy quantifi er (no question mark) will keep 
matching as long as it can.

To indicate the type of a group (if placed immediately after the opening  ➤

parenthesis).

Most programmers are accustomed to escaping quotes inside a quoted string to prevent the string 
from terminating. The previous regular expression does not behave properly in that situation. 

563120c01.indd   53563120c01.indd   53 2/18/10   9:08:19 AM2/18/10   9:08:19 AM



54 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

By using a negative lookbehind and alternation the top example string can be matched using the 
bottom regular expression:

“Hello \”my\” world”
/(‘|”)([^\1]|\\\1)*?(?<!\\)\1/

The alternation ensures that the engine behaves as intended when it encounters a backslash followed 
by the quote type. The negative lookbehind then ensures that the expression keeps looking for a 
closing quote instead of terminating lazily when it fi nds the fi rst inner quote.

Sometimes it is undesirable to capture data. In those cases it can be avoided by putting ?: at the begin-
ning of the group. The colon turns it into a non-capturing group. Non-capturing groups are extremely 
useful for keeping the number of back-references available down to a minimum and makes writing 
code much easier and cleaner. Sometimes it is desirable to have a lot of back-references. In these cases 
it is useful to name them so as to avoid confusion (“Is that group \4 or is it \5?”).

Naming a capture group is as easy as putting P<name_here> after the question mark. A named 
group can then be back-referenced using (?=name_here) in the expression. A simple example pat-
tern will discover Pseudo-Shakespearean questions in the subject text. The regular expression on the 
fi rst line will match all subsequent subjects:

/(?P<word>(?:\w+\s?)+) or not (?P=word)\?$/i
To be or not to be?
PHP or not PHP?
Sleep or not sleep?

Named capture groups are used later in this chapter when writing a PHP script that verifi es an email 
address. For now it is useful to go over documenting regular expressions.

Documenting Regular Expressions

Regular expressions can also be commented. The comment syntax is rarely used in this book. An 
alternative method is to use PHP comments above the regular expression. However, it is a good 
practice to comment individual alternations and subpatterns when the code contains complex regu-
lar expressions (like the email expression).

Comments are a special type of non-capturing group that starts with a ?#. A comment can very eas-
ily be added into any expression but they are easiest to read in expressions where the x modifi er is 
used and whitespace can be utilized liberally. A comment inside a regular expression will look like 
this:

(?# comment goes here)

The completed email regular expression from before is altered to include comments when it is used 
in the next section and in the code examples that accompany this book.

Putting It All Together in PHP

PHP uses Perl-style regular expressions via its preg_ family of functions. PHP has also supported 
POSIX-style regular expressions via ereg_; however, those functions are deprecated in PHP 5.3 and 
should not be used anymore.

563120c01.indd   54563120c01.indd   54 2/18/10   9:08:19 AM2/18/10   9:08:19 AM



Using Regular Expressions ❘ 55

The PHP example in this section completely validates an email address. It supports two types of val-
idation: lazy and complete. The lazy method simply returns true if the regular expression matches 
and if the string appears to be a valid email. However, that only serves to make using a fake email 
more diffi cult but not impossible. The complete method also checks DNS to make sure the domain 
name exists and then uses SMTP to connect to the Mail Transfer Agent (MTA) and make sure the 
user exists.

Each DNS zone for a domain can contain one or more Mail Exchange (MX) records that tell mail 
clients and transfer agents what server to connect to in order to send and retrieve mail. RFC 2810 
states that a domain can receive email even if no MX records are found or valid for it. In that case, the 
mail client will attempt to connect to the hostname itself. PHP has a handy function called getmxrr() 
that will get the MX records. Prior to PHP 5.3 the function would only work on UNIX/Linux-based 
systems. As of PHP 5.3 it will also work on Windows without any messy hacks. The getMX() method 
looks like this:

private function getMX( $hostname ) {
  $hosts = array();
  $weights = array();
  getmxrr( $hostname, $hosts, $weights );
  $results = array();
  foreach ( $hosts as $i => $host )
    $results[ $host ] = $weights[$i];
  arsort($results, SORT_NUMERIC);
  $results[$hostname] = 0;
  return $results;
}

As mentioned earlier, RFC 2810 states that the domain itself is a valid location to look for an 
email server, so the code appends the domain to the end of the result array but gives it zero weight 
and adds it after the sort so that it will be lighter (lower priority) than any MX records that were 
returned from the DNS server.

The second method takes the MX records and tries to connect to them on port 25 (SMTP) in order 
until one succeeds. If it reaches the end of the list and still doesn’t have a valid connection, either 
the host —  and therefore the entire email address —  is bogus or the server is down. This example 
assumes the server should be up and returns false under the case where it is unreachable.

The new method called openSMTPSocket() takes a host name, uses it to call getMX(), loops 
through all the hosts, and returns a valid socket pointer if it can:

private function openSMTPSocket( $hostname ) {
  $hosts = $this->getMX($hostname);
  foreach ( $hosts as $host => $weight ) {
    if ( $sock = @fsockopen($host, self::SMTP_PORT,
         $errno, $errstr, self::CONN_TIMEOUT) ) {
      stream_set_timeout($sock, self::READ_TIMEOUT);
      return $sock;
    }
  }
  return null;
}

563120c01.indd   55563120c01.indd   55 2/18/10   9:08:19 AM2/18/10   9:08:19 AM



56 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

With a valid socket pointer the example can then say “hello” to the MTA (telling it what host you 
are looking for in case there is more than one host on that server) and then ask if the email is valid. 
If it is valid it returns true. In all cases, it closes the socket handle when it is done with it:

private function validateUser( $hostname, $user ) {
  if ( $sock = $this->openSMTPSocket($hostname) ) {
    $this->smtpSend(“HELO $hostname”);
    $this->smtpSend(“MAIL FROM: <$user@$hostname>”);
    $resp = $this->smtpSend(“RCPT TO: <$user@$hostname>”);

    $valid = (preg_match(‘/250|45(1|2)\s/’) == 1);
    fclose($fp);
    return $valid;
  } else {
    return false;
  }
}

private function smtpSend( $sock, $data ) {
  fwrite($sock, “$data\r\n”)
  return fgets($sock, 1024);
}

The email address may be defi nitively valid (response 250) or gray-listed (responses 451 and 451) on 
the MTA. The method uses a regular expression to test the response and returns true in any of those 
cases. In a completed application it makes sense to return a confi dence score instead of a Boolean. 
The score may be zero if the regular expression doesn’t match or the MTA returns negative when 
asking if the user exists. It may be one if the MTA verifi es the user and the user is not gray-listed, 
and 0.25 and 0.75 might be used for “the SMTP server is unreachable” and “the user is gray-listed,” 
respectively. That way an application can choose to only allow a user to register if the score is 0.5 or 
higher.

The fi nal piece of the puzzle is the class that holds it all together —  the rest of the email address 
verifi cation class looks like the code in Listing 1-55.

LISTING 1-55:  EmailValidator.class.php

<?php

class EmailValidator {
  const CONN_TIMEOUT = 10;
  const READ_TIMEOUT = 5;
  const SMTP_PORT = 25;
  private $email;

  public function __construct( $email ) { $this->email = $email; }

  private function getParts() {
    $regex = <<<__REGEX__
/^(?P<user>
  “[\w!#$%&’*+\/=?^`{|}~.@()[\]\\;:,<>-]+” (?# quoted username )
| (?!\.)[\w!#$%&’*+\/=?^`{|}~.-]+(?<!\.)   (?# non-quoted username )

563120c01.indd   56563120c01.indd   56 2/18/10   9:08:19 AM2/18/10   9:08:19 AM



Using Regular Expressions ❘ 57

) @ (?P<host>
  (?:(?!-)[\w-]+(?<!-)\.)+(?!-)[\w-]+(?<!-) (?# host )
| \[([0-9]{1,3}\.){3}[0-9]{1,3}\] (?# host IP address )
)$/x
__REGEX__;

    return ( preg_match($regex, $this->email, $matches) ? $matches : null);
  }

  public function isValid( $lazy ) {
    static $valid = null;

    if ( $lazy ) return ( $this->getParts() != null );
    if ( $valid !== null ) return $valid;
    $valid = false;

    if ( $parts = $this->getParts() ) {
      $valid = $this->validateUser( $parts[‘host’], $parts[‘user’] );
    }
    return $valid;
  }

  private function validateUser( $hostname, $user ) { ... }
  private function openSMTPSocket( $hostname ) { ... }
  private function smtpSend( $sock, $data ) { ... }
  private function getMX( $hostname ) { ... }
};
?>

It is common for ISPs to block outgoing connections on port 25. This tactic 
forces the customer to use the ISP’s mail relay and makes it easier to thwart 
people who are trying to use the network for spam. Unfortunately, it also means 
that if the example application in this section is being run on a home network 
it is likely that the port will be blocked and the application will always return 
false for every email address. The only two solutions are to get the ISP to 
unblock the port (much more likely on hosting providers than consumer ISPs) 
or run the PHP from a computer living on a different ISP’s network.

Lazy validation (regular expression only) will always work regardless of the 
ISP’s fi rewall settings but does not have as high a confi dence factor.

The email regular expression changed slightly between the previous section and this. It now cap-
tures the hostname and user in named groups so that they can be easily referenced by PHP. It also 
makes the host pattern non-capturing so the matches don’t end up with extra data that isn’t needed. 
Passing a third parameter to preg_match() captures the matches and capture groups in an array. 
The output of the $matches array on the input andrew@example.com looks like this:

Array
(
    [0] => Array

563120c01.indd   57563120c01.indd   57 2/18/10   9:08:19 AM2/18/10   9:08:19 AM



58 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

        (
            [0] => andrew@example.com
            [user] => andrew
            [1] => andrew
            [host] => example.com
            [2] => example.com
        )

)

Notice how the numbered matches are still kept in the result so each named group can be referenced 
two different ways. It also means that changing a group from unnamed to named will not affect the 
ordering of the unnamed groups. The fi rst index (index zero) always equals the entire match string. The 
email testing class is now complete; however, it is just one of the uses for regular expressions in PHP.

Replacing Strings

The email regular expression can also be used to replace all valid emails in a string with an HTML 
link to send a mail to the user. To make things more interesting the next example replaces each email 
address username with a mailto link and each domain with a link directly to the domain. Assume 
that $emailRegex is fi lled with the entire email regular expression from the previous example but 
with the anchors removed so it can match a partial string:

preg_replace( $emailRegex,
              ‘<a href=”mailto:\1”>\1</a>@<a href=”http://\2”>\2</a>’
              $testString );

This example shows a simple replacement. For more complex replacements a callback function can 
be used to replace the string with a computed value. Callback functions are used extensively in later 
chapters. Listing 1-56 is a utility class can be used to replace all email addresses in a given text with 
obfuscated links that can then be clicked to open the email client but won’t give away the email to 
data miners:

LISTING 1-56:  EmailLinker.php

<?php
class EmailLinker {

   public function getJavascript() {
     return <<<__JS__
<script type=”text/javascript” language=”javascript”>
function mailDecode( url ) {
  var script=document.createElement(‘script’);
  script.src = ‘?mail=’+url;
  document.body.appendChild(script);
}
</script>
__JS__;
  }

  public function redirectIfNeeded() {
    if ( array_key_exists(‘mail’, $_GET) ) {

563120c01.indd   58563120c01.indd   58 2/18/10   9:08:20 AM2/18/10   9:08:20 AM



Using Regular Expressions ❘ 59

      header(“Location: mailto:”.base64_decode($_GET[‘mail’]));
      exit;
    }
  }

  private function emailReplaceCallback( $matches ) {
    $encoded = base64_encode($matches[0]);
    return ‘<a href=”?mail=’.urlencode($encoded).’”’.
           ‘ onclick=”mailDecode(\’’.$encoded.’\’); return false;”>’.
           ‘email ‘.$matches[‘user’].’</a>’;
  }

  public function link( $text ) {
    $emailRegex = <<<__REGEX__
/(?P<user>
  “[\w!#$%&’*+\/=?^`{|}~.@()[\]\\;:,<>-]+” (?# quoted username )
| (?!\.)[\w!#$%&’*+\/=?^`{|}~.-]+(?<!\.)   (?# non-quoted username )
) @ (?P<host>
  (?:(?!-)[\w-]+(?<!-)\.)+(?!-)[\w-]+(?<!-) (?# host )
| \[([0-9]{1,3}\.){3}[0-9]{1,3}\] (?# host IP address )
)/x
__REGEX__;

    return preg_replace_callback($emailRegex,
             array($this,’emailReplaceCallback’), $text );
  }
}
?>

The preg_replace() callback line and the callback function that is used are both highlighted. The 
class has corresponding JavaScript that can be retrieved using getJavascript() and echoed into 
the header of the document. The class will work without the JavaScript, but it works much bet-
ter with it. It also relies on the method redirectIfNeeded() being called before any output. The 
redirect will detect if the user clicked an email link and will send the user to the properly formatted 
mailto: URL.

The resulting text does not include the email address anywhere in it but still allows users to be 
emailed. It is not completely secure: if spammers or malicious users went through the trouble of Base 
64 decoding the string or following the link they could get the users’ email addresses. But it does 
prevent all but the most sophisticated email data mining techniques to the point where a data miner 
would have to write a script specifi cally for this example.

PHP has been the primary focus for regular expressions up to this point. It is also possible to perform 
basic regular expression matches in MySQL in order to fi lter the data before it even gets to the PHP.

Regular Expressions in MySQL

MySQL has extremely limited support for the now familiar Perl-style regular expressions. It uses a 
modifi ed POSIX format so support is limited to basic character classes, alternations, anchors, and 
quantifi ers. Lookarounds, back-references, and capture groups are not allowed. However, regular 
expressions in MySQL can be useful for matching simple strings and for narrowing down a result 
set for later culling in PHP.

563120c01.indd   59563120c01.indd   59 2/18/10   9:08:20 AM2/18/10   9:08:20 AM



60 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

Regular expressions in MySQL are referenced using the REGEXP and REGEXP BINARY operations. 
The latter is case-sensitive whereas the former is not. Expression can also be negated using the NOT 
operation. For example, a links table can be queried for all links that point to example.com or its 
subdomains:

SELECT  *
  FROM  `links`
  WHERE `url` REGEXP ‘https?://([a-z0-9-]*\.)*example\.com’;

MySQL doesn’t have the escaped characters that many other regular expression engines have. 
Instead it has special keywords that can be used in the expression to match a range of characters. 
Table 1-2 shows the MySQL character classes and their PHP equivalents.

TABLE 1-2:  MySQL Character Classes with PHP Equivalents

MYSQL (POSIX) PHP LONG FORM (EITHER)

[:alpha:] [A-Za-z]

[:alnum:] [A-Za-z0-9]

[:blank:] [ \t\r\n]

[:cntrl:] [\x00-\x1F\x7F]

[:digit:] \d [0-9]

[:graph:] [\x21-\x7E]

[:lower:] [a-z]

[:print:] [\x20-\x7E]

[:punct:] [!”#$%&’()*+,\-./:;<=>?@[\\\]^_`{|}~]

[:space:] \s [ \t\r\n\v\f]

[:upper:] [A-Z]

[:xdigit:] [A-Fa-f0-9]

It is worth noting that [:print:] will match any character that can be printed to the screen and 
that [:graph:] is identical except that it will not match a space character (because space is not 
graphical).

The special character classes can be combined with other characters or classes. Because the sub-
domain of the previous regular expression consists of alphanumeric characters or hyphens it can 
be rewritten as:

SELECT  *
  FROM  `links`
  WHERE `url` REGEXP ‘https?://([:alnum:-]*\.)*example\.com’;

563120c01.indd   60563120c01.indd   60 2/18/10   9:08:20 AM2/18/10   9:08:20 AM



Using Regular Expressions ❘ 61

The word boundary shorthand (\b) is replaced in MySQL by two character classes. One matches 
the end of a word and the other matches the beginning. Like \b they are both zero-width. To match 
all messages in a forum that contain the word HTML but not XHTML, a simple regular expression 
could be used:

SELECT * FROM `forum` WHERE `body` REGEXP ‘[[:<:]]HTML[[:>:]]’

The regular expression functionality built into MySQL is suffi cient under almost all circumstances. 
However, if a PHP program ends up doing a lot of post-fi ltering of the result set based on the output 
of a complex regular expression, it may be time to extend MySQL.

Using LIB_MYSQLUDF_PREG

The LIB_MYSQLUDF_PREG library is a set of MySQL User Defi ned Functions that allow Perl-
compatible regular expressions (same as PHP) to be executed in a MySQL query. Besides allowing 
for back-references and lookarounds it also allows capture groups to be selected by the query.

The library must be installed from source. Chapter 7 on MySQL UDFs provides more details on 
installing from source code. If you are already familiar with the typical build process, it can be 
installed in three lines:

./configure
make
make installdb

It requires the libpcre headers and MySQL to be on the system. If they are installed in unusual loca-
tions there are a few extra steps. The location of either can be easily specifi ed manually:

./configure --with-pcre=/path/to/libpcre --with-mysql=/path/to/mysql/config

Almost anything that PHP is capable of can also be done in MySQL once the library is installed.

Capturing Data

It is often useful to capture part of a complex string in a data set. One example is to query the data-
base for a list of all domains that have registered users and return the number of users from each. 
There is no need for a complicated email matching expression like the one used in previous examples 
because the application can assume that if the email made its way into the database, it is already 
valid. The query looks like this:

SELECT
  PREG_CAPTURE(‘/@([^@]+)$/’ , `email`, 1) AS `domain`,
  COUNT(*) AS `count`
FROM `users`
GROUP BY `domain`

However, if the application does this often for the same string it is a sign that a new column should 
be added to the table. Because a column cannot be returned as an array, the PREG_CAPTURE function 
takes a third parameter that is the group to return. If PREG_CAPTURE is replaced by PREG_POSITION, 
then instead of the domain it will return the index of the start of the fi rst group. In MySQL the index is 
one-based so when querying for the position of the fi rst character it is index 1, not 0. The default for the 
group parameter is 0, which returns the entire match, 1 returns the fi rst match, and so on, like in PHP.

563120c01.indd   61563120c01.indd   61 2/18/10   9:08:20 AM2/18/10   9:08:20 AM



62 ❘ CHAPTER 1  TECHNIQUES EVERY EXPERT PROGRAMMER NEEDS TO KNOW

String Replacement

When selecting from or updating a table, it is useful to modify an existing column. For example, the 
application may need to display a sample report that blanks out certain information such as revenue 
numbers. MySQL can replace the data at query time instead of having to loop through the entire 
data set in PHP when displaying it:

SELECT
  PREG_REPLACE(‘/\$[:digit:]*(\.[:digit:]+)?/’,
               ‘[subscriber-only]’, `body`)
  AS `body`
FROM `reports`;

String replacements are also useful when doing updates to a table. Because the library supports 
back-references it is easy to make complex replacements.

Filtering a Query Based on a Regular Expression

The built-in MySQL regular expression functionality is primarily useful for returning a Boolean or 
fi ltering an entire result set. LIB_MYSQLUDF_PREG can do that too.

One alias for REGEXP in MySQL is RLIKE. Similarly, the UDF includes a function PREG_RLIKE that 
returns 1 if the pattern matched and 0 if there isn’t any match. The behavior is identical to the built-
in MySQL functionality except that it allows for more complex Perl-compatible regular expressions. 
The syntax is also slightly different because the latter is a UDF. The following two queries have 
identical output:

SELECT  *
  FROM  `links`
  WHERE `url` REGEXP ‘https?://([:alnum:-]*\.)*example\.com’;

SELECT  *
  FROM  `links`
  WHERE PREG_RLIKE(‘https?://([\w-]*\.)*example\.com’,`url`);

Regular expressions are slower than other methods of string matching because they need to compile 
the expression in order to match against it and each position in the string may take several passes to 
look for a match. For those reasons a developer should always opt to use basic string matching such 
as LIKE to fi lter results. However, when more complex string matching and replacements are needed 
Regular Expressions are the only way to go.

SUMMARY

This chapter covered both PHP and MySQL essentials for the expert developer.

It covered the object-oriented design approach now available in PHP including a number of key 
design patterns. It is impossible to master PHP without fi rst having a complete understanding of 
class instantiation, interfaces, class methods, and constants.

563120c01.indd   62563120c01.indd   62 2/18/10   9:08:20 AM2/18/10   9:08:20 AM



Summary ❘ 63

This chapter also went over the foundations of MySQL. Being able to use MySQL joins is essential 
in a normalized relational database design where data is maintained in multiple tables. Combined 
with the ability to aggregate and group results, and leverage subqueries and derived tables, you can 
master all the power and fl exibility that MySQL has to offer in retrieving your information.

Though MySQL provides options for fl ow control and logic within SQL, as a developer you should 
always determine what is best performed at the database level and what is best performed within 
your PHP code.

The chapter concluded with regular expressions —  the cornerstone of string manipulation —  and 
parsing in any programming language, including PHP and MySQL.

563120c01.indd   63563120c01.indd   63 2/18/10   9:08:20 AM2/18/10   9:08:20 AM



563120c01.indd   64563120c01.indd   64 2/18/10   9:08:20 AM2/18/10   9:08:20 AM


