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INTRODUCTION

In this chapter we provide a brief and concise review of foundational topics that are of
broad interest and usefulness in wireless communication engineering technologies.
The notation used throughout is introduced in Section 1.1, and the basics of electrical
circuits and signals are reviewed in Section 1.2, including fundamentals of circuit
analysis, voltage or current as signals, alternating current, phasors, impedance, and
matched loads. This provides a basis for our review of signals and systems in Sec-
tion 1.3, which includes properties of linear time-invariant systems, Fourier analysis
and frequency-domain concepts, representations of bandpass signals, and modeling
of random signals. Then in Section 1.4, we focus on signals and systems concepts
specifically for communications systems. The reader is expected to have come across
much of the material in this chapter in a typical undergraduate electrical engineering
program. Therefore, this chapter is written in review form; it is not meant for a student
who is encountering all this material for the first time.

Similarly, reviews of foundational topics are provided in Chapters 2, 6, and 10 for
the following areas:

• Chapter 2: review of selected topics in electromagnetics, transmission lines, and
testing, as a foundation for radio frequency (RF), antennas, and propagation

• Chapter 6: review of selected topics in digital signal processing, digital com-
muncations over wireless links, the cellular concept, spread spectrum, and
othogonal frequency-division multiflexing (OFDM), as a foundation for wireless
access technologies

Fundamentals of Wireless Communication Engineering Technologies, First Edition. K. Daniel Wong.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

3



4 INTRODUCTION

• Chapter 10: review of selected topics in fundamental networking concepts,
Internet protocol (IP) networking, and teletraffic analysis, as a foundation for
network and service architectures

Compared to the present chapter, the topics in Chapters 2, 6, and 10 are generally
more specific to particular areas. Also, we selectively develop some of the topics in
those chapters in more detail than we do in this chapter.

1.1 NOTATION

In this section we discuss the conventions we use in this book for mathematical
notation. A list of symbols is provided in Appendix D.

R and C represent the real and complex numbers, respectively. Membership in a
set is represented by ∈ (e.g., x ∈ R means that x is a real number). For x ∈ C, we
write � {x} and � {x} for the real and imaginary parts of x, respectively.

log represents base-10 logarithms unless otherwise indicated (e.g., log2 for base-2
logarithms), or where an expression is valid for all bases.

Scalars, which may be real or even complex valued, are generally represented
by italic type (e.g., x, y), whereas vectors and matrices will be represented by bold
type (e.g., G, H). We represent a complex conjugate of a complex number, say an
impedance Z, by Z∗. We represent the magnitude of a complex number x by |x|.
Thus, |x|2 = xx∗.

For x ∈ R, �x� is the largest integer n such that n < x. For example, �5.67� = 5
and �−1.2� = −2.

If G is a matrix, GT represents its transpose.
When we refer to a matrix, vector, or polynomial as being over something (e.g., over

the integers), we mean that the components (or coefficients, in the case of polynomials)
are numbers or objects of that sort.

If x(t) is a random signal, we use < x(t) > to refer to the time average and x(t) to
refer to the ensemble average.

1.2 FOUNDATIONS

Interconnections of electrical elements (resistors, capacitors, inductors, switches, volt-
age and current sources) are often called a circuit. Sometimes, the term network is
used if we want “circuit” to apply only to the more specific case of where there is a
closed loop for current flow. In Section 1.2.1 we review briefly this type of electri-
cal network or circuit. Note that this use of “network” should not be confused with
the very popular usage in the fields of computer science and telecommunications,
where we refer to computer networks and telecommunications networks (see Chap-
ters 9 to 12 for further discussion). In Chapter 2 we will see how transmission lines
(Section 2.3.3) can be modeled as circuit elements and so can be part of electrical
networks and circuits.
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In electronic networks and circuits, we also have components with gain and/or
directionality, such as semiconductor devices, which are known as active components
(as opposed to passive components, which have neither gain nor directionality). These
are outside the scope of this book, except for our discussion on RF engineering in
Chapter 3. Even there, we don’t discuss the physics of the devices or compare different
device technologies. Instead, we take a “signals and systems” perspective on RF, and
consider effects such as noise and the implications of nonlinearities in the active
components.

1.2.1 Basic Circuits

Charge, Q, is quantified in coulombs. Current is charge in motion:

I = dQ

dt
amperes (1.1)

The direction of current flow can be indicated by an arrow next to a wire. For conve-
nience, I can take a negative value if current is flowing in the direction opposite from
that indicated by the arrow.

Voltage is the difference in electric potential:

V = RI volts (1.2)

Like current, there is a direction associated with voltage. It is typically denoted by
+ and −. + is at higher potential than −, and voltage drops going from + to −. For
convenience, V can take a negative value if a voltage drop is in the direction opposite
from that indicated by + and −

• Power:

P = V 2

R
, P = I2R watts (1.3)

• Resistors in series:

R = R1 + R2 + · · · + Rn (1.4)

• Resistors in parallel:

R = R1R2 · · · Rn

R1 + R2 + · · · + Rn

(1.5)

1.2.2 Capacitors and Inductors

A capacitor may be conceived of in the form of two parallel plates. For a capacitor
with capacitance C farads, a voltage V applied across its plates results in charges +Q

and −Q accumulating on the two plates.

Q = CV (1.6)
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I = dQ

dt
= C

dV

dt
(1.7)

A capacitor acts as an open circuit under direct-current (dc) conditions.

• Capacitors in series:

C = C1C2 · · · Cn

C1 + C2 + · · · + Cn

(1.8)

• Capacitors in parallel:

C = C1 + C2 + · · · + Cn (1.9)

An inductor is often in the form of a coil of wire. For an inductor with inductance
L henries, a change in current of dI/dt induces a voltage V across the inductor:

V = L
dI

dt
(1.10)

An inductor acts as a short circuit under dc conditions.

• Inductors in series:

L = L1 + L2 + · · · + Ln (1.11)

• Inductors in parallel:

L = L1L2 · · · Ln

L1 + L2 + · · · + Ln

(1.12)

As hinted at by (1.3), an ideal capacitor or ideal inductor has no resistance and
does not dissipate any power as heat. However, a practical model for a real inductor
has an ideal resistor in series with an ideal inductor, and they are both in parallel with
an ideal capacitor.

1.2.3 Circuit Analysis Fundamentals

A node in a circuit is any place where two or more circuit elements are connected. A
complete loop or closed path is a continuous path through a circuit that begins and
ends at the same node.

Kirchhoff’s Current Law. The sum of all the currents entering is zero. This requires
at least one current to have a negative sign if one or more of the others is positive.
Alternatively, we say that the sum of all the current entering a node is equal to the
sum of all the current leaving a node.
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Kirchhoff’s Voltage Law. The sum of all the voltage drops around any complete
loop (or closed path) is zero. This requires at least one voltage drop to have a negative
sign if one or more of the others is positive.

1.2.3.1 Equivalent Circuits Often, a subcircuit is connected to the rest of the
circuit through a pair of terminals, and we are interested to know what the voltage and
current are across these terminals, not how the subcircuit is actually implemented.
Norton and Thévenin equivalent circuits can be used for this purpose, for any circuit
comprising linear elements. A Thévenin equivalent circuit comprises a single voltage
source, VT , in series with a single resistor, RT . A Norton equivalent circuit comprises a
single current source, IN , in parallel with a single resistor, RN . A Thévenin equivalent
circuit can be converted to a Norton equivalent circuit, or vice versa, by a simple source
transformation.

1.2.4 Voltage or Current as Signals

A voltage or current can be interpreted as a signal (e.g., for communications purposes).
We usually write t explicitly to emphasize that it is a function of t [e.g., v(t) or i(t)
for a voltage signal or current signal, respectively].

If x(t) is a signal, we say that x(t) is

• An energy signal if

0 <

∫ ∞

−∞
x2(t) dt < ∞ (1.13)

• A power signal if

0 < lim
T→∞

1

T

∫ ∞

−∞
x2(t) dt < ∞ (1.14)

A periodic signal is a signal for which a T ∈ R can be found such that

x(t) = x(t + T ) for −∞ < t < ∞ (1.15)

and the smallest such T is called the period of the signal.
The duration of a signal is the time interval from when its begins to be nonnegligible

to when its stops being nonnegligible.† Thus, a signal can be of finite duration or of
infinite duration.

Sinusoidal Signals. Any sinusoid that is a function of a single variable (say, the
time variable, t; later, in Section 2.1.1.4, we see sinusoids that are functions of both

†We say nonnegligible rather than nonzero to exclude trivial blips outside the duration of the signal.
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temporal and spatial variables) can be written as

A cos(ωt + φ) = A cos(2πft + φ) = A sin(2πft + φ + π/2) = A∠φ (1.16)

where A is amplitude (A ∈ R), ω is angular frequency (radians/second), f is fre-
quency (cycles/second, i.e., hertz or s−1), φ is phase angle, and where the last equality
shows that the shorthand notation A∠φ can be used when f and the sinusoidal
reference time are known implicitly. The period T is

T = 1

f
= 2π

ω
(1.17)

Continuous-Wave Modulation Signals. A continuous-wave modulation signal is a
sinusoidal signal that is modulated (changed) in a certain way based on the information
being communicated. Most communications signals are based on continuous-wave
modulation, and we expand on this important topic in Section 1.4.

Special Signals. A fundamental building block in continuous-time representation
of digital signals is the rectangular pulse signal, a rectangular function given by

�(t) =
{

1 for |t| ≤ 1/2

0 for |t| > 1/2
(1.18)

The triangle signal is also commonly used, but not as frequently. It is denoted by

�(t) =
{

1 − |t| for |t| ≤ 1

0 for |t| > 1
(1.19)

�(t) and �(t) are shown in Figure 1.1.
The sinc signal is given by

sinc(t) =
{

(sin πt)/πt for |t| /= 0

1 for t = 0
(1.20)

Although it may be described informally as (sin πt)/πt, (sin πt)/πt is actually unde-
fined at t = 0, whereas sinc(t) is 1 at t = 0. The sinc function is commonly seen in
communications because it is the Fourier transform of the rectangular pulse signal.
Note that in some fields (e.g., mathematics), sinc(t) may be defined as (sin t)/t, but

0

2
1

2
1−

)(tΠ

t

1

0

11−

)(tΛ

t

1

FIGURE 1.1 �(t ) and �(t ) functions.
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FIGURE 1.2 Sinc function.

here we stick with our definition, which is standard for communications and signal
processing. The sinc function is shown in Figure 1.2.

Decibels. It is sometimes convenient to use a log scale when the range of amplitudes
can vary by many orders of magnitude, such as in communications systems where
the signals have amplitudes and powers that can vary by many orders of magnitude.
The standard way to use a log scale in this case is by the use of decibels, defined for
any signal voltage or current signal x(t) as

10 log x2(t) = 20 log x(t) (1.21)

If the signal s(t) is known to be a power rather than a voltage or current, we don’t
have to convert it to a power, so we just take 10 log s(t). If the power quantity is
in watts, it is sometimes written as dBW, whereas if it is in milliwatts, it is written
as dBm. This can avoid ambiguity in cases where we just specify a dimensionless
quantity A, in decibels, as 10 log A.

1.2.5 Alternating Current

With alternating current (ac) the voltage sources or current sources generate time-
varying signals. Then (1.3) refers only to the instantaneous power, which depends
on the instantaneous value of the signal. It is often also helpful, perhaps more so, to
consider the average power. Let v(t) = V0 cos 2πft, where V0 is the maximum voltage
(and correspondingly, let I0 be the maximum current), then the average power Pav is

Pav = V 2
0

2R
, Pav = I2

0R

2
(1.22)
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Equation (1.22) can be obtained either by averaging the instantaneous power directly
over one cycle, or through the concept of rms voltage and rms current. The rms voltage
is defined for any periodic signal (not just sinusoidally periodic) as

Vrms =
√

1

T

∫ T

0
v2(t) dt (1.23)

Then we have (again, for any periodic signal, not just sinusoidally periodic)

Pav = V 2
rms

R
, Pav = I2

rmsR (1.24)

which looks similar to (1.3). For sinusoidally time-varying signals, we have further,

Vrms = V0√
2

, Irms = I0√
2

(1.25)

1.2.6 Phasors

When working with sinusoidal signals, it is often convenient to work with the phasor
representation of the signals. Of the three quantities amplitude, phase, and frequency,
the phasor representation includes only the amplitude and phase; the frequency is
implicit.

Starting from our sinusoid in (1.16) and applying Euler’s identity (A.1), we obtain

A cos(2πft + φ) = A�
{

ej(2πft+φ)
}

= �
{

Aej(2πft+φ)
}

(1.26)

We just drop the ej2πft and omit mentioning that we need to take the real part, and
we have a phasor,

Aejφ (1.27)

Alternatively, we can write the equivalent,

A(cos φ + j sin φ) (1.28)

which is also called a phasor. In either case, we see that a phasor is a complex
number representation of the original sinusoid, and that it is easy to get back the
original sinusoid by multiplying by ej2πft and taking the real part. A hint of the power
and convenience of working with phasor representations can be seen by considering
differentiation and integration of phasors. Differentiation and integration with respect
to t are easily seen to be simple multiplication and division, respectively, by j2πf .

Rotating Phasors. Sometimes it helps to think of a phasor not just as a static point
in the complex plane, but as a rotating entity, where the rotation is at frequency f

revolutions (around the complex plane) per second, or w radians per second. This is
consistent with the ej2πft term that is implicit in phasors. The direction of rotation is
as illustrated in Figure 1.3.



FOUNDATIONS 11

direction of rotation 
for positive 

θ

θjAe direction of rotation 
for negative 

fc

fc

θjAe
resultant

(a) (c)(b)

FIGURE 1.3 (a) Phasor in the complex plane; (b) rotating phasors and their direction of
rotation; (c) vector addition of phasors.

Expressing Familiar Relationships in Terms of Phasors. Returning to familiar
relationships such as (1.2) or (1.3), we find no difference if v(t), i(t) are in phasor
representation; however, for capacitors and inductors we have

I = j2πfCV and V = j2πfLI (1.29)

Thus, if we think in terms of rotating phasors, then from (1.29) we see that with a
capacitor, I rotates 90◦ ahead of V , so it leads V (and V lags I), whereas with an
inductor, V leads I (I lags V ).

Meanwhile, Kirchhoff’s laws take the same form for phasors as they do for non-
phasors, so they can continue to be used. Thévenin and Norton equivalent circuits can
also be used, generalized to work with impedance, a concept that we discuss next.

1.2.7 Impedance

From (1.29) it can be seen that in phasor representation, resistance, inductance, and
capacitance all have the same form:

V = ZI (1.30)

Thus, the concept of impedance, Z, emerges, where Z is R for resistance, j2πfL for
inductance, and 1/j2πfC for capacitance, and Z is considered to be in ohms. The
complex part of Z is also known as reactance.

Impedance is a very useful concept. For example, Thévenin’s and Norton’s equiv-
alent circuits work in the same way with phasors, except that impedance is substituted
for resistance.

1.2.8 Matched Loads

For a linear circuit represented by a Thévenin equivalent voltage VT and Thévenin
equivalent impedance ZT , the maximum power is delivered to a load ZL when

ZL = Z∗
T (1.31)
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(NB: It is the complex conjugate of ZT , not ZT itself, in the equation.) This result
can be obtained by writing the expression for power in terms of ZL and ZT , taking
partial derivatives with respect to the load resistance and load reactance, and setting
both to 0.

1.3 SIGNALS AND SYSTEMS

Similarly, suppose that we have a system (e.g., a circuit) that takes an input x(t)
and produces an output y(t). Let −→ represent the operation of the system [e.g.,
x(t) −→ y(t)]. Suppose that we have two different inputs, x1(t) and x2(t), such that
x1(t) −→ y1(t) and x2(t) −→ y2(t). Let a1 and a2 be any two scalars. The system is
linear if and only if

a1x1(t) + a2x2(t) −→ a1y1(t) + a2y2(t) (1.32)

The phenomenon represented by (1.32) can be interpreted as the superposition prop-
erty of linear systems. For example, given knowledge of the response of the system
to various sinusoidal inputs, we then know the response of the system to any linear
combination of sinusoidal signals. This makes Fourier analysis (Section 1.3.2) very
useful.

A system is time-invariant if and only if

x(t − t0) −→ y(t − t0) (1.33)

Systems that are both linear and time invariant are known as LTI (linear time-
invariant) systems.

A system is stable if bounded input signals result in bounded output signals.
A system is causal if any output does not come before the corresponding input.

1.3.1 Impulse Response, Convolution, and Filtering

An impulse (or unit impulse) signal is defined as

δ(t) =
{

1, t = 0

0, t /= 0
(1.34)

and also where ∫ ∞

−∞
δ(t) = 1 (1.35)

Strictly speaking, δ(t) is not a function, but to be mathematically rigorous requires
measure theory or the theory of generalized functions. δ(t) could also be thought of as

lim
T→∞ T� (tT ) (1.36)
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FIGURE 1.4 Mathematical model of an LTI system.

Thus, we often view it as the limiting case of a narrower and narrower pulse whose
area is 1.

All LTI systems can be characterized by their impulse response. The impulse
response, h(t), is the output when the input is an impulse signal; that is,

δ(t) −→ h(t) (1.37)

Convolution: The output of an LTI system with impulse response h(t), given an
input x(t), is

y(t) = h(t) ∗ x(t) =
∫ τ=∞

τ=−∞
x(τ)h(t − τ) dτ =

∫ τ=∞

τ=−∞
h(τ)x(t − τ) dτ (1.38)

This is shown as the output of the LTI system in Figure 1.4.
With (1.38) in mind, whenever we put a signal x(t) into an LTI system, we can

think in terms of the system as filtering the input to produce the output y(t), and h(t)
may be described as the impulse response of the filter. Although the term filter is
used in the RF and baseband parts of wireless transmitters and receivers, h(t) can
equally well represent the impulse response of a communications channel (e.g., a
wire, or wireless link), in which case we may then call it the channel response or
simply the channel.

1.3.1.1 Autocorrelation It is sometimes useful to quantify the similarity of a
signal at one point in time with itself at some other point in time. Autocorrelation is
a way to do this. If x(t) is a complex-valued energy signal (a real-valued signal is a
special case of a complex-valued signal, where the imaginary part is identically zero,
and the complex conjugate of the signal is equal to the signal itself), we define the
autocorrelation function, Rxx(τ), as

Rxx(τ) =
∫ ∞

−∞
x(t)x∗(t + τ) dt for −∞ < τ < ∞ (1.39)

For a complex-valued periodic power signal with period T0,

Rxx(τ) = 1

T0

∫ T0/2

−T0/2
x(t)x∗(t + τ) dt for −∞ < τ < ∞ (1.40)
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whereas for a complex-valued power signal, in general,

Rxx(τ) = lim
T→∞

1

T

∫ T/2

−T/2
x(t)x∗(t + τ) dt for −∞ < τ < ∞ (1.41)

1.3.2 Fourier Analysis

Fourier analysis refers to a collection of related techniques where:

• A signal can be broken down into sinusoidal components (analysis)
• A signal can be constructed from constituent sinusoidal components (synthesis)

This is very useful in the study of linear systems because the effects of such
a system on a large class of signals can be studied by considering the effects of the
system on sinusoidal inputs using the superposition principle. (NB: The term analysis
here can be used to refer either to just the breaking down of a signal into sinusoidal
components, or in the larger sense to refer to the entire collection of these related
techniques.)

Various Fourier transforms are used in analysis, and inverse transforms are used
in synthesis, depending on the types of signals involved. For most practical pur-
poses, there is a one-to-one relationship between a time-domain signal and its Fourier
transform, and thus we can think of the Fourier transform of a signal as being a dif-
ferent representation of the signal. We usually think of there being two domains, the
time domain and the frequency domain. The (forward) transform typically transforms
a time-domain representation of a signal into a frequency-domain representation,
whereas the inverse transform transforms a frequency-domain representation of a
signal into a time-domain representation.

1.3.2.1 (Continuous) Fourier Transform The (continuous) Fourier trans-
form of a signal x(t) is given by

X(f ) =
∫ ∞

−∞
x(t)e−j2πft dt (1.42)

where j = √−1, and the inverse Fourier transform is given by

x(t) =
∫ ∞

−∞
X(f )ej2πft df (1.43)

Table 1.1 gives some basic Fourier transforms.

1.3.2.2 Fourier Series For periodic signals x(t) with period T , the Fourier series
(exponential form) coefficients are the set {cn}, where n ranges over all the integers,
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TABLE 1.1 Fourier Transform Pairsa

Time Domain, x(t) Frequency Domain, X(f )

δ(t) 1
1 δ(f )
δ(t − t0) e−j2πft0

e±j2πf0 t δ(f ∓ f0)

cos 2πf0t
1

2
[δ(f − f0) + δ(f + f0)]

sin 2πf0t
1

2j
[δ(f − f0) − δ(f + f0)]

u(t) =
{

1 for t > 0
0 for t < 0

1

2
δ(f ) + 1

j2πf

e−atu(t), a > 0
1

a + j2πf

te−atu(t), a > 0
1

(a + j2πf )2

e−a|t|, a > 0
2a

a2 + (2πf )2

�

(
t

T

)
T sinc fT

B sinc Bt �

(
f

B

)
�

(
t

T

)
T sinc2fT

∞∑
k=−∞

δ(t − kT )
1

T

∞∑
n=−∞

δ

(
f − n

T

)
a�(t) and �(t) are the rectangle and triangle functions defined in

Section 1.2.4.
∑∞

k=−∞ δ(t − kT ) is also known as an impulse train.

and cn is given by

cn = 1

T

∫ T/2

−T/2
x(t)e−j2πf0nt dt (1.44)

where f0 = 1/T , and the Fourier series representation of x(t) is given by

x(t) =
∞∑

n=−∞
cne

j2πf0nt (1.45)

1.3.2.3 Relationships Between the Transforms The (continuous) Fourier
transform can be viewed as a limiting case of Fourier series as the period T goes
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to ∞, and the signal thus becomes aperiodic. Since f0 = 1/T , let f = nf0 = n/T .
Using (1.44), then

lim
T→∞ cnT = lim

T→∞

∫ T/2

−T/2
x(t)e−j2πnt/T dt

=
∫ ∞

−∞
x(t)e−j2πft dt

= X(f ) (1.46)

Since 1/T goes to zero in the limit, we can write 1/T as 	f . 	f → 0 as T → ∞.
Then (1.45) can be written as

x(t) =
∞∑

n=−∞
T

1

T
cne

j2πf0nt

=
∞∑

n=−∞
(cnT )ej2πnf0t

1

T

=
∞∑

n=−∞
(cnT )ej2πn(	f )t	f (1.47)

lim
	f→0

x(t) =
∫ ∞

−∞
X(f )ej2πft df (1.48)

where we used the substitution from (1.46) in the last step.

1.3.2.4 Properties of the Fourier Transform Table 1.2 lists some useful
properties of Fourier transforms. Combining properties from the table with known
Fourier transform pairs from Table 1.1 lets us compute many Fourier transforms and
inverse transforms without needing to perform the integrals (1.42) or (1.43).

TABLE 1.2 Properties of the Fourier Transform

Concept Time Domain, x(t) Frequency Domain, X(f )

Scaling x(at)
1

|a|X
(

f

a

)
Time shifting x(t − t0) X(f )e−j2πft0

Frequency shifting x(t)ej2πf0 t X(f − f0)

Modulation x(t) cos(j2πf0t + φ)
1

2

(
X(f − f0)ejφ + X(f + f0)e−jφ

)
Differentiation

dnx

dtn
(j2πf )nX(f )

Convolution x(t) ∗ y(t) X(f )Y (f )
Multiplication x(t)y(t) X(f ) ∗ Y (f )
Conjugation x∗(t) X∗(−f )
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1.3.3 Frequency-Domain Concepts

Some frequency-domain concepts are fundamental for understanding communica-
tions systems. A miscellany of comments on the frequency domain:

• In the rotating phasor viewpoint, ej2πf0t is a phasor rotating at f0 cycles per
cycle. But F[ej2πf0t] = δ(f − f0). Thus, frequency-domain components of the
form δ(f − f0) for any f0 can be viewed as rotating phasors.

• Negative frequencies can be viewed as rotating phasors rotating clockwise,
whereas positive frequencies rotate counterclockwise.

• For LTI systems, Y (f ) = X(f )H(f ), where Y (f ), X(f ), and H(f ) are the
Fourier transforms of the output signal, input signal, and impulse response,
respectively. See Figure 1.4.

1.3.3.1 Power Spectral Density Power spectral density (PSD) is a way to see
how the signal power is distributed in the frequency domain. We have seen that a
periodic signal can be written in terms of Fourier series [as in (1.45)]. Similarly, the
PSD Sx(f ) of periodic signals can be expressed in terms of Fourier series:

Sx(f ) = 1

T

∞∑
n=−∞

|cn|2δ
(
t − n

T

)
(1.49)

where cn are the Fourier series coefficients as given by (1.44).
For nonperiodic power signals x(t), let xT (t) be derived from x(t) by

xT (t) = x(t)�(t/T ) (1.50)

Then xT (t) is an energy signal with a Fourier transform XT (f ) and an energy spectral
density |XT (f )|2. Then the power spectral density of x(t) can be defined as

Sx(f ) = lim
T→∞

1

T
|XT (f )|2 (1.51)

Alternatively, we can apply the Wiener–Kinchine theorem, which states that

Sx(f ) =
∫ ∞

−∞
Rxx(τ)e−j2πfτ dτ (1.52)

In other words, the PSD is simply the Fourier transform of the autocorrelation function.
It can be shown that (1.51) and (1.52) and equivalent. Either one can be used to define
the PSD and the other can be shown to be equivalent. Whereas (1.51) highlights the
connection with the Fourier transform of the signal, (1.52) highlights the connection
with its autocorrelation function.

Note that the Wiener–Kinchine theorem applies whether or not x(t) is periodic.
Thus, in the case that x(t) is periodic with period T , clearly also Rxx(τ) is periodic
with the same period. Let R′

xx(t) be equal to Rxx(t) within one period, 0 ≤ t ≤ T , and
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zero elsewhere, and let S′
x(f ) be the power spectrum of R′

xx(t). Note that

Rxx(t) =
∞∑

k=−∞
R′

xx(t − kT )

=
∞∑

k=−∞
R′

xx(t) ∗ δ(t − kT )

= R′
xx(t) ∗

∞∑
k=−∞

δ(t − kT ) (1.53)

Then

Sx(f ) = F (Rxx(τ))

= F
(

R′
xx(t) ∗

∞∑
k=−∞

δ(t − kT )

)

= F
(
R′

xx(t)
)
F

( ∞∑
k=−∞

δ(t − kT )

)

= S′
x(f )

1

T

∞∑
n=−∞

δ
(
f − n

T

)
(1.54)

One-Sided vs. Two-Sided PSD. The PSD that we have been discussing so far is the
two-sided PSD, which has both positive and negative frequencies. It reflects the fact
the a real sinusoid (e.g., a cosine wave) is the sum of two complex sinusoids rotating
in opposite directions at the same frequency (thus, at a positive and a negative fre-
quency). The one-sided PSD is a variation that has no negative frequency components
and whose positive frequency components are exactly twice those of the two-sided
PSD. The one-sided PSD is useful in some cases: for example, for calculations of
noise power.

1.3.3.2 Signal Bandwidth Just as in the time domain, we have a notion of
duration of a signal (Section 1.2.4), in the frequency domain we have an analogous
notion of bandwidth. A first-attempt definition of bandwidth might be the interval
or range of frequencies from when the signal begins to be nonnegligible to when it
stops being nonnegligible (as we sweep from lower to higher frequencies). This is
imprecise but can be quantified in various ways, such as:

• 3-dB bandwidth or half-power bandwidth
• Noise-equivalent bandwidth (see Section 3.2.3.2)

Often, it is not so much a question of finding the correct way of defining bandwidth
but of finding a useful way of defining bandwidth for a particular situation.
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Bandwidth is fundamentally related to channel capacity in the following celebrated
formula:

C = B log

(
1 + S

N

)
(1.55)

The base of the logarithm determines the units of capacity. In particular, for capacity
in bits/second,

C = B log2

(
1 + S

N

)
(1.56)

To obtain capacity in bits/second, we use (1.56) with B in hertz and S/N on a linear
scale (not decibels).

This concept of capacity is known as Shannon capacity. Later (e.g., in Section
6.3.2) we will see other concepts of capacity.

1.3.4 Bandpass Signals and Related Notions

Because bandpass signals have most of their spectral content around a carrier
frequency, say fc, they can be written in an envelope-and-phase representation:

xb(t) = A(t) cos[2πfct + φ(t)] (1.57)

where A(t) and φ(t) are a slowly varying envelope and phase, respectively.
Most communications signals while in the communications medium are

continuous-wave modulation signals, which tend to be bandpass in nature.

1.3.4.1 In-phase/Quadrature Description A bandpass signal xb(t) can be
written in envelope-and-phase form, as we have just seen. We can expand the cosine
term using (A.8), and we have

xb(t) = A(t)
[
cos(2πfct) cos φ(t) − sin(2πfct) sin φ(t)

]
= xi(t) cos(2πfct) − xq(t) sin(2πfct) (1.58)

where xi(t) = A(t) cos φ(t) is the in-phase component, and xq(t) = A(t) sin φ(t) is
the quadrature component. Later, in Section 6.1.8.1, we prove that the in-phase and
quadrature components are orthogonal, so can be used to transmit independent bits
without interfering with each other.

If we let Xi(f ) = F[xi(t)], Xq(f ) = F[xq(t)], and Xb(f ) = F[xb(t)], then

Xb(f ) = 1

2

[
Xi(f + fc) + Xi(f − fc)

] − j

2

[
Xq(f + fc) − Xq(f − fc)

]
(1.59)

1.3.4.2 Lowpass Equivalents There is another useful representation of band-
pass signals, known as the lowpass equivalent or complex envelope representation.
Going from the envelope-and-phase representation to lowpass equivalent is analogous
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to going from a rotating phasor to a (nonrotating) phasor; thus we have

xlp(t) = A(t)ejφ(t) (1.60)

which is analogous to (1.27). An alternative definition given in some other books is

xlp(t) = 1

2
A(t)ejφ(t) (1.61)

which differs by a factor of 1/2. [This is just a matter of convention, and we will stick
with (1.60).]

The lowpass equivalent signal is related to the in-phase and quadrature represen-
tation by

xlp(t) = xi(t) + jxq(t) (1.62)

and we also have

xb(t) = �
[
xlp(t)ej2πfct

]
(1.63)

In the frequency domain, the lowpass equivalent is the positive-frequency part of the
bandpass signal, translated down to dc (zero frequency):

Xlp(f ) = [
Xi(f ) + jXq(f )

]
= 2Xb(f + fc)u(f + fc) (1.64)

where u(f ) is the step function (0 for f < 0, and 1 for f ≥ 0).
Interestingly, we can represent filters or transfer functions with lowpass equiva-

lents, too, so we have

Ylp(f ) = Hlp(f )Xlp(f ) (1.65)

where

Hlp(f ) = Hb(f + fc)u(f + fc) (1.66)

1.3.5 Random Signals

In well-designed communications systems, the signals arriving at a receiver appear
random. Thus, it is important to have the tools to analyze random signals. We assume
that the reader has knowledge of basic probability theory, including probability dis-
tribution or density, cumulative distribution function, and expectations [4].

Then a random variable can be defined as mapping from a sample space into a
range of possible values. A sample space can be thought of as the set of all outcomes
of an experiment. We denote the sample space by 
 and let ω be a variable that can
represent each possible outcome in the sample space. For example, we consider a
coin-flipping experiment with outcome either heads or tails, and we define a random
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variable by

X(ω) =
{

1 if ω = heads

2 if ω = tails
(1.67)

where the domain of ω is the set {heads, tails}. If P(heads) = 2/3 and P(tails) =
1/3, then P(X = 1) = 2/3 and P(X = 2) = 1/3. The average (also called mean, or
expected value) of X is (2/3)(1) + (1/3)(2) = 4/3. Note that when we write just X,
we have omitted the ω for notational simplicity.

1.3.5.1 Stochastic Processes Now we consider cases where instead of just
mapping each point in the sample space, ω, to a value, we map each ω to a function. To
emphasize that the mapping is to a function, and that this is therefore not the same as
a normal random variable, it is called a stochastic process or random process. It could
also be called a random function, but that could be confused with random variable,
so it may be best to stick with random variable in general and stochastic process in
cases where the mapping is to a function. Depending on the application, we may think
of a stochastic process as a random signal.

For example, a stochastic process could be defined by a sinusoid with a random
phase (e.g., a phase that is uniformly distributed between 0 and 2π):

x(t, ω) = cos(2πft + φ) (1.68)

where φ(ω) is a random variable distributed uniformly between 0 and 2π (and where
we usually omit writing the ω, for convenience). Stochastic processes in wireless
communications usually involve a time variable, t, and/or one or more spatial variables
(e.g., x, y, z), so we can write f (x, y, z, t, ω) or just f (x, y, z, t) if it is understood to
represent a stochastic process.

The entire set of functions, as ω varies over the entire sample space, is called
an ensemble. For any particular outcome, ω = ωi, x(t) is a specific realization (also
known as sample) of the random process. For any given fixed t = t0, x(t0) is a random
variable, X0, that represents the ensemble at that point in time (and hence a stochastic
process can be viewed as an uncountably infinite set of random variables). Each
of these random variables has a density function fX0 (x0) from which its first-order
statistics can be obtained. For example, we can obtain the mean

∫
xfX0 (x) dx, the

variance, and so on. The relationship between random variables associated with two
different times t0 and t1 is often of interest. For example, let their joint distribution
be written as fX0,X1 (x0, x1); then, if

fX0,X1 (x0, x1) = fX0 (x0)fX1 (x1) (1.69)

the two random variables are said to be independent or uncorrelated. The second-
order statistics may be obtained from the joint distribution. This can be extended
to the joint distribution of three or more points in time, so we have the nth-order
statistics.
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As an example of these ideas, assume that at a radio receiver we have a signal r(t)
that consists of a deterministic signal s(t) in the presence of additive white Gaussian
noise (AWGN), n(t). If we model the AWGN in the usual way, r(t) is a stochastic
process:

r(t) = s(t) + n(t) (1.70)

Because of the nature of AWGN, n(t1) and n(t2) are uncorrelated for any t1 /= t2.
Furthermore, since AWGN is Gaussian distributed, the first-order statistics depend
on only two parameters (i.e., the mean and variance). Since n(t) = 0 for all t, we just
need to know the variance, σ2(t1), σ2(t2), and so on. Must we have σ2(t1) = σ2(t2) for
t1 /= t2? We discuss this in Section 1.3.5.4. Here, we have just seen that a deterministic
communications signal that is corrupted by AWGN can be modeled as a stochastic
process.

1.3.5.2 Time Averaging vs. Ensemble Averaging Averages are still useful
for many applications, but since in this case we now have multiple variables over
which an average may be taken, it often helps to specify to which average we are
referring. If we are working with a specific realization of the random signal, we can
take the time average. For a periodic signal (in time, t) with period T0,

< x(t) >= 1

T0

∫ T0

0
x(t) dt (1.71)

If it is not a periodic signal, we may still consider a time average as given by

< x(t) >= lim
T→∞

∫ T/2

−T/2

x(t)

T
dt (1.72)

Besides the time average, we also have the ensemble average, over the entire ensemble,
resulting in a function (unlike the time average, which results in a value). For a discrete
probability distribution this may be written as

x(t) =
∑

px,tx (1.73)

where px,t is the probability of event x(t) at time t. The ensemble average for a
continuous probability distribution can be written as

x(t) =
∫

fXt (x)x dx (1.74)

In this book we generally use < · > to denote time averaging or spatial averaging,
and · to denote ensemble averaging.

1.3.5.3 Autocorrelation As we saw in Section 1.3.1.1, for deterministic
signals the autocorrelation is a measure of the similarity of a signal with itself.
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The autocorrelation function of a stochastic process x(t) is

Rxx(t1, t2) = x(t1)x(t2) (1.75)

Unlike the case of deterministic signals, this is an ensemble average and in general is
a function of two variables representing two moments of time rather than just a time
difference. In general, it requires knowledge of the joint distribution of x(t1) and x(t2).
Soon we will see that these differences go away when x(t) is an ergodic process.

1.3.5.4 Stationarity, Ergodicity, and Other Properties Going back to
example (1.70), we saw that n(t) was uncorrelated at any two different times. How-
ever, do the mean and variance have to be constant for all time? Clearly, they do not.
In that radio receiver example, suppose that the temperature is rising. To make things
simple, we suppose that the temperature is rising monotonically as t increases. Then,
as we will see in Section 3.2, Johnson–Nyquist noise in the receiver is increasing
monotonically with time. Thus,

σ2(t1) < σ2(t2) for t1 < t2

If, instead,

σ2(t1) = σ2(t2) for all t1 /= t2

there is a sense in which the stochastic process n(t) is stationary—its variance doesn’t
depend on time.

The concept of stationarity has to do with questions of how the statistics
of the signal change with time. For example, consider a random signal at m

time instances, t1, t2, . . . , tm. Suppose that we consider the joint distribution
fXt1 ,Xt2 ,...,Xtm

(x1, x2, . . . , xm). Then a stochastic process is considered strict-sense
stationary (SSS) if it is invariant to time translations for all sets t1, t2, . . . , tm, that is,

fXt1+τ ,Xt2+τ ,...,Xtm+τ (x1, x2, . . . , xm) = fXt1 ,Xt2 ,...,Xtm
(x1, x2, . . . , xm) (1.76)

A weaker sense of stationarity is often seen in communications applications. A
stochastic process is weak-sense stationary (WSS) if

1. The mean value is independent of time.

2. The autocorrelation depends only on the time difference t2 − t1 (i.e., it is a
function of τ = t2 − t1), so it may be written as Rxx(τ) [or Rx(τ) or simply
R(τ)] to keep this property explicit.

The class of WSS processes is larger than and includes the complete class of
SSS processes. Similarly, there is another property, ergodicity, such that the class of
SSS processes includes the complete class of ergodic processes. A random process
is ergodic if it is SSS and if all ensemble averages are equal to the corresponding
time averages. In other words, for ergodic processes, time averaging and ensemble
averaging are equivalent.
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Autocorrelation Revisited. For random processes that are WSS (including SSS and
ergodic processes), the autocorrelation becomes R(τ), where τ is the time difference.
Thus, (1.75) becomes

Rxx(τ) = x(t)x(t + τ) (1.77)

which is similar to (1.39).
Furthermore, for ergodic processes, we can even do a time average, so the auto-

correlation then converges to the case of the autocorrelation of a deterministic signal
(in the case of the ergodic process, we just pick any sample function and obtain the
autocorrelation from it as though it were a deterministic function).

1.3.5.5 Worked Example: Random Binary Signal Consider a random
binary wave, x(t), where every symbol lasts for Ts seconds, and independently of
all other symbols, it takes the values A or −A with equal probability. Let the first
symbol transition after t = 0 be at Ttrans. Clearly, 0 < Ttrans < Ts. We let Ttrans be
distributed uniformly between 0 and Ts.

The mean at any point in time t is

E[x(t)] = A(0.5) + (−A)(0.5) = 0 (1.78)

The variance at any point in time t is

σ2 = E[x2(t)] − (E[x(t)])2 = A2 − 0 = A2 (1.79)

To figure out if it is WSS, we still need to see if the autocorrelation is dependent only
on τ = t2 − t1. We analyze the two autocorrelation cases:

• If |t2 − t1| > Ts, then Rxx(t1, t2) = 0 by the independence of each symbol from
every other symbol.

• If |t2 − t1| < Ts, it depends on whether t1 and t2 lie in the same symbol (in which
case we get σ2) or in adjacent symbols (in which case we get zero).

What is the probability, Pa, that t1 and t2 lie in adjacent symbols? Let t′1 = t1 − kTs

and t′2 = t2 − kTs, where k is the unique integer such that we get both 0 ≤ t′1 < Ts

and 0 ≤ t′2 < Ts. Then, Pa = P(Ttrans lies between t′1 and t′2) = |t2 − t1|/Ts.

E[x(t1)x(t2)] = A2 (1 − Pa) = A2
(

1 − |t2 − t1|
Ts

)
= A2

(
1 − |τ|

Ts

)
(1.80)

Hence, it is WSS. And using the triangle function notation, we can write the complete
autocorrelation function compactly as

Rxx(τ) = A2� (τ/Ts) (1.81)

This is shown in Figure 1.5.
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A2

tTs− Ts

FIGURE 1.5 Autocorrelation function of the random binary signal.

1.3.5.6 Power Spectral Density of Random Signals For a random signal
to have a meaningful power spectral density, it should be wide-sense stationary.

Each realization of the random signal would have its own power spectral density,
different from other realizations of the same random process. It turns out that the
(ensemble) average of the power spectral densities of each of the realizations, loosely
speaking, is the most useful analog to the power spectral density of a deterministic
signal. To be precise, the following procedure can be used on a random signal, x(t),
to estimate its PSD, Sx(f ). Let us denote the estimate by S̃x(f ).

1. Observe x(t) over a period of time, say, 0 to T ; let xT (t) be the truncated version
of x(t), as specified in (1.50), and let XT (f ) be the Fourier transform of xT (t).
Then its energy spectral density may be computed as |XT (f )|2.

2. Observe many samples xT (t) repeatedly, and compute their corresponding
Fourier transforms XT (f ) and energy spectral densities, |XT (f )|2.

3. Compute S̃x(f ) by computing the ensemble average (1/T ) |XT (f )|2.

One may wonder how to do step 2 in practice. Assuming that x(t) is ergodic, then
(1/T ) |XT (f )|2 is equivalent to time averaging, so we get a better and better estimate
S̃x(f ) by obtaining xT (t) over many intervals of T from the same sample function,
and then computing

S̃x(f ) =
〈

1

T
|XT (f )|2

〉
(1.82)

This procedure is based on the following definition of the PSD for random signals:

Sx(f ) = lim
T→∞

1

T
|XT (f )|2 (1.83)

which is analogous to (1.51).
Also, as with deterministic signals, the Wiener–Kinchine theorem applies, so

Sx(f ) =
∫ ∞

−∞
Rxx(τ)e−j2πfτ dτ (1.84)

which can be shown to be equivalent to (1.83).
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FIGURE 1.6 Filtering and the PSD.

1.3.5.7 Worked Example: PSD of a Random Binary Signal Consider the
random binary signal from Section 1.3.5.5. What is the power spectral density of the
signal? What happens as Ts approaches zero?

We use the autocorrelation function, as in (1.81), and take the Fourier transform
to obtain

Sx(f ) = A2Ts sinc2(fTs) (1.85)

As Ts gets smaller and smaller, the autocorrelation function approaches an impulse
function. At the same time, the first lobe of the PSD is between −1/Ts and 1/Ts,
so the it becomes very broad and flat, giving it the appearance of the classic
“white noise.”

1.3.5.8 LTI Filtering of WSS Random Signals Once we can show that a
random signal is WSS, the PSD behaves “like” the PSD of a deterministic signal in
some ways; for example, when passing through a filter we have (Figure 1.6)

Sy(f ) = |H(f )|2Sx(f ) (1.86)

where Sx(f ) and Sy(f ) are the PSDs of the input and output signals, respectively, and
H(f ) is the LTI system/channel that filters the input signal.

For example, if Sx(f ) is flat (as with white noise), Sy(f ) takes on the shape of
H(f ). In communications, a canonical signal might be a “random” signal around a
carrier frequency fc, with additive white Gaussian noise (AWGN) but with interfering
signals at other frequencies, so we pass through a filter (e.g., an RF filter in an RF
receiver) to reduce the magnitude of the interferers.

1.3.5.9 Gaussian Processes A Gaussian process is one where the distribution
fXt (x) is Gaussian and all the distributions fXt1 ,Xt2 ,...,Xtm

(x1, x2, . . . , xm) for all sets
t1, t2, . . . , tm are joint Gaussian distributions.

For a Gaussian process, if it is WSS, it is also SSS.

1.3.5.10 Optimal Detection in Receivers An important example of the use
of random signals to model communications signals is the model of the signal received
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FIGURE 1.7 Matched filter followed by symbol rate filtering.

at a digital communications receiver. We give examples of modulation schemes used
in digital (and analog) systems in Section 1.4. But here we review some fundamental
results on optimal detection.

Matched Filters. We consider the part of a demodulator after the frequency down-
translation, such that the signal is at baseband. Here we have a receiving filter followed
by a sampler, and we want to optimize the receiving filter. For the case of an AWGN
channel, we can use facts about random signals [such as (1.86)] to prove that the
optimal filter is the matched filter. By optimal we are referring to the ability of the
filter to provide the largest signal-to-noise ratio at the output of the sampler at time
t = T , where the signal waveform is from t = 0 to T .

If the signal waveform is s(t), the matched filter is s(T − t) [or more generally,
a scalar multiple of s(T − t)].

The proof is outside the scope of this book but can be found in textbooks on digital
communications. The matched filter is shown in Figure 1.7, where r(t) is the received
signal, and the sampling after the matched filtering is at the symbol rate, to decide
each symbol transmitted.

Correlation Receivers. Also known as correlators, correlation receivers provide
the same decision statistic that matched filters provide (Exercise 1.5 asks you to show
this). If r(t) is the received signal and the transmitted waveform is s(t), the correlation
receiver obtains ∫ T

0
r(t)s(t) dt (1.87)

1.4 SIGNALING IN COMMUNICATIONS SYSTEMS

Most communications systems use continuous-wave modulation as a fundamental
building block. An exception is certain types of ultrawideband systems, discussed
in Section 17.4.2. In continuous-wave modulation, a sinusoid is modified in certain
ways to convey information. The unmodulated sinusoid is also known as the carrier.
The earliest communications systems used analog modulation of the carrier.

These days, with source data so often in digital form (e.g., from a computer),
it makes sense to communicate digitally also. Besides, digital communication has
advantages over analog communication in how it allows error correction, encryp-
tion, and other processing to be performed. In dealing with noise and other channel
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impairments, digital signals can be recovered (with bit error rates on the order of 10−3

to 10−6, depending on the channel and system design), whereas analog signals are
only degraded.

Generally, we would like digital communications with:

• Low bandwidth signals—so that it takes less “space” in the frequency spectrum,
allowing more room for other signals

• Low-complexity devices—to reduce costs, power consumption, and so on.
• Low probability of errors

The trade-offs between these goals is the focus of much continuing research and
development.

If we denote the carrier frequency by fc and the bandwidth of the signal by B,
the design constraints of antennas and amplifiers are such that they work best if
B � fc, so this is usually what we find in communications systems. Furthermore, fc

needs to be within the allocated frequency band(s) (as allocated by regulators such
as Federal Communications Commission in the United States; see Section 17.4) for
the particular communication system. The signals at these high frequencies are often
called RF (radio-frequency) signals and must be handled with care with special RF
circuits; this is called RF engineering (more on this in Chapter 3).

1.4.1 Analog Modulation

Amplitude modulation (AM) is given by

Ac(1 + μx(t)) cos 2πfct (1.88)

where the information signal x(t) is normalized to |x(t)| ≤ 1 and μ is the modulation
index. To avoid signal distortion from overmodulation, μ is often set as μ < 1. When
μ < 1, a simple envelope detector can be used to recover x(t). AM is easy to detect, but
has two drawbacks: (1) The unmodulated carrier portion of the signal, Ac, represents
wasted power that doesn’t convey the signal; and (2) Letting Bb and Bt be the baseband
and transmitted bandwidths, respectively, then for AM, Bt = 2Bb, so there is wasted
bandwidth in a sense. Schemes such as DSB and SSB attempt to reduce wasted power
and/or wasted bandwidth.

Double-sideband modulation (DSB), also known as double-sideband suppressed-
carrier modulation to contrast it with AM, is AM where the unmodulated carrier is
not transmitted, so we just have

Acx(t) cos 2πfct (1.89)

Although DSB is more power efficient than AM, simple envelope detection unfor-
tunately cannot be used with DSB. As in AM, Bt = 2Bb.

Single-sideband modulation (SSB) achieves Bt = Bb by removing either the upper
or lower sideband of the transmitted signal. Like DSB, it suppresses the carrier to
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avoid wasting power. Denote the Hilbert transform of x(t) by x̃(t); then

x̃(t) = x(t) ∗ 1

πt

and we can write an SSB signal as

Ac [x(t) cos ωct ± x̃(t) sin ωct] (1.90)

where the plus or minus sign depends on whether we want the lower sideband or
upper sideband.

Frequency modulation (FM), unlike linear modulation schemes such as AM, is a
nonlinear modulation scheme in which the frequency of the carrier is modulated by
the message.

1.4.2 Digital Modulation

To transmit digital information, the basic modulation schemes transmit blocks of
k = log2 M bits at a time. Thus, there are M = 2k different finite-energy waveforms
used to represent the M possible combinations of the bits. Generally, we want these
waveforms to be as “far apart” from each other as possible within certain energy
constraints. The symbol rate or signaling rate is the rate at which new symbols are
transmitted, and it is denoted R. The data rate is often denoted by Rb bits/second (also
written bps), and it is also called the baud rate. Clearly, Rb = kR. The symbol period
Ts is the inverse of the symbol rate, and is the time spent transmitting each symbol
before it is time for the next symbol.

A bandlimited channel with bandwidth B can support only up to the Nyquist rate
of signaling, RNyquist = 2B. Thus, the signaling rate is constrained by

R ≤ RNyquist = 2B (1.91)

Digital modulation schemes, especially when the modulation is of the phase or
frequency of the carrier, are often referred to as shift keying [e.g., amplitude shift key-
ing (ASK), phase shift keying (PSK), and frequency shift keying (FSK)]. Use of the
word keying in this context may have come from the concept of Morse code keys for
telegraph but is useful for distinguishing digital modulation from analog modulation
(e.g., FSK refers to a frequency-modulated digital signal, whereas FM refers to the
traditional analog modulation signal that goes by that name). Nevertheless, the dis-
tinction is not always retained [e.g., a popular family of digital modulation schemes
often goes by the name QAM (rather than QASK)].

1.4.2.1 Pulse Shaping A digital modulator takes a simple continuous-time rep-
resentation of our digital signal and outputs a continuous-time version of our signal,
as will be seen in Section 1.4.2.2. How do we prepare our discrete-time digital data
to enter a digital modulator? One way of converting from discrete time to continu-
ous time is to let our data be represented by different baseband pulses for different
values. For example, using a basic “rectangle” function, a 1 might be represented as
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p(t) = π(t/Ts) and a 0 by −p(t) = −π(t/Ts) going into the digital modulator; this
type of signaling, where one pulse is the exact negative of the other, is called binary
antipodal signaling.

A problem with using a simple rectangle function in this way is that the spectral
occupancy of the signals coming out of the digital modulator would be high—the
Fourier transform of the rectangle function is the sinc function, which has relatively
large spectral sidebands. Thus, it would be inefficient for use in bandwidth-critical
systems such as wireless systems. Thus, it is important to use other pulse-shaping
functions, p(t), that can shape the spectral characteristics to use available spectrum
more efficiently. However, not just any p(t) can be used, because it also needs to
be chosen to avoid adding intersymbol interference unnecessarily between nearby
symbols. For example, if we (foolishly) used p(t) = π(t/2Ts), every symbol would
“spill over” into the preceding and/or subsequent symbol (in time) and interfere with
them. There is a Nyquist criterion for p(t) to avoid intersymbol interference that can be
found in digital communications textbooks. Within the constraints of this criterion,
the raised cosine pulse, illustrated in Figure 1.8, has emerged as a popular choice
for p(t). The frequency and time domains are shown in the subplots at the top and
bottom of the figure, respectively. In the frequency domain we see the raised cosine
shape from which the function gets its name. The roll-off factor, α, is a parameter that
determines how sudden or gradual the “roll-off” of the pulse is. In one extreme, α = 0,
we have a “brick wall” shape in frequency and the familiar sinc function in time (the
light solid line on the plots). At the other extreme, α = 1, we have the most roll-off,
so, the bandwidth expands to twice as much as the α = 0 case, as can be seen in the
top subplot, with the thick solid line. The case of α = 0.5 is also plotted in dashed
lines in both subplots, and it can be seen to be between the two extremes. For smaller
α, the signal occupies less bandwidth, but the time sidelobes are higher, potentially
resulting in more intersymbol interference and errors in practical receivers. For larger
α, the signal occupies more bandwidth but has smaller time sidelobes. In practice,
to achieve the raised cosine transfer function, a matching pair of square-root raised
cosine filters are used in the transmitter and receiver, since the receiver would have
a matched filter (Section 1.3.5.10). The product of the two square-root raised cosine
filters (in the frequency domain) gives the raised cosine shape at the output of the
matched filter in the receiver.

1.4.2.2 Digital Modulation Schemes We show examples of common digital
modulation schemes. We write examples of these waveforms using lowpass equivalent
representation (Section 1.3.4.2) for convenience. In all cases, p(t) is the pulse-shaping
function.

Pulse amplitude modulation (PAM) uses waveforms of the form

Amp(t) for m = 1, 2, . . . , M (1.92)

For optimal spacing, the Am are arranged in a line with equal spacing between
consecutive points.
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FIGURE 1.8 Family of raised cosine pulses.

To conserve bandwidth, SSB PAM may be used:

Am[p(t) + jp̃(t)] for m = 1, 2, . . . , M (1.93)

Quadrature amplitude modulation (QAM), where different bits are put in the
in-phase (Ai,m) and quadrature (Aq,m) streams, can be written

(Ai,m + jAq,m)p(t) for m = 1, 2, . . . , M/2 (1.94)

Normally, wireless systems would use a form of QAM [e.g., 4-QAM (often just called
QAM for short), 16-QAM, 32-QAM, 64-QAM] rather than PAM. Between QAM and
PAM, QAM is more efficient because PAM does not exploit the quadrature dimension
to transmit information. (For a review of the in-phase and quadrature concept, and to
see why different bits can be put in in-phase and quadrature, refer to Sections 1.3.4.1
and 6.1.8.1.) The values Ai,m and Aq,m for m = 1, 2, . . . , M/2 are chosen to be as
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FIGURE 1.9 Signal constellations for various digital modulation schemes.

far apart from one another (in signal space) as they can be, given an average power
constraint. This is because the farther apart they are, the lower the bit error rates.
Examples of 4-QAM and 16-QAM are shown in Figure 1.9.

Phase shift keying (PSK) uses waveforms of different phases to represent the
different bit combinations:

ejθmp(t) for m = 1, 2, . . . , M (1.95)

Binary PSK (BPSK) is PSK with m = 1, quadrature PSK (QPSK) is PSK with m = 2,
and 8-PSK is PSK with m = 3. QPSK is very popular in wireless systems because it
is more efficient than BPSK. 8-PSK is seen in EDGE (Section 8.1.3), for example.
QPSK and 8-PSK are shown in Figure 1.9.

1.4.2.3 Signal Constellations A good way to visualize the waveforms in a
digital modulation scheme is through the signal constellation diagram. We have seen
that the (lowpass equivalent of the) M possible waveforms in general (except for
modulation schemes like PAM) lie in the complex plane. We can therefore plot all
the points in the complex plane, and the result is known as the signal constellation,
some examples of which are shown in Figure 1.9. Notice that the signal constellation
of 4-QAM happens to be the same as that of QPSK.

When we discuss wireless access technologies, we elaborate on selected aspects
of digital modulation (Section 6.2), especially those having to do with design choices
typically encountered in wireless systems.

1.4.3 Synchronization

In a digital receiver, two main types of synchronization are needed at the physical
layer (there may also be other types of synchronization at higher layers, e.g., frame
synchronization, multimedia synchronization, etc.):

• Carrier phase synchronization
• Symbol timing synchronization and recovery
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Carrier phase synchronization is about figuring out, and recovering, a carrier signal
frequency and phase. Symbol timing synchronization and recovery is about figuring
out the locations (in time) of the temporal boundaries between symbols. It is also
known as clock recovery.

EXERCISES

1.1 The form of the Fourier series given in Section 1.3.2 is the exponential form.
Show how this is equivalent to the trigonometric form

x(t) = a0 +
∞∑

n=1

an cos 2πf0nt + bn sin 2πf0nt (1.96)

Express cn in terms of an and bn.

1.2 Instead of the random binary waveform we saw in Section 1.3.5.5, we have
a random digital waveform. So it takes not just two values, 1 and −1, but a
range of values over a distribution: say, a Gaussian distribution with mean 0 and
variance σ2. Find the autocorrelation function of the random digital waveform.
How does it compare with the autocorrelation function of the random binary
waveform given by (1.81)?

1.3 Suppose we have a signal x(t) that is multiplied by a sinusoid, resulting in
the signal y(t) = x(t) cos 2πft. Assume that x(t) is independent of the sinusoid
but could otherwise be a (deterministic or random) signal with autocorrelation
function Rxx(τ). Show that the autocorrelation of y(t) is given by

Ryy(τ) = Rxx(τ)

(
1

2
cos 2πft

)
(1.97)

1.4 Continuing from Exercise 1.3, what is the effect on the power spectral density of
multiplication by a sinusoid? In other words, express the power spectral density
of y(t) in terms of the power spectral density of x(t). This is a fundamental and
useful result, since it means that we can up-convert and down-convert signals
to and from carrier frequencies, and the autocorrelation function and power
spectral density behave in this predictable way.

1.5 Show that a matched filter followed by sampling at t = T produces the same
output as a correlation receiver.
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