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  CHAPTER 1 

Lysophosphatidic Acid ( LPA ) Receptor 
Signaling  
  HOPE     MIRENDIL  ,     MU - EN     LIN  , and     JEROLD     CHUN       

    1.1.    INTRODUCTION 

  Lysophosphatidic acid  ( LPA ) is a simple phospholipid that has been shown to 
act as a potent lipid - signaling molecule. LPA acts through defi ned G protein -
 coupled receptors (GPCRs) in many developmental and adult processes 
involving most, if not all, vertebrate organ systems. All LPA molecules contain 
a phosphate head group attached to a glycerol backbone that is attached to a 
single aliphatic chain of varied length and saturation, typically ester-linked 
(with other linkages existing, e.g., alkyl - LPA) (Fig.  1.1 ). LPA species are 
present in all eukaryotic tissues at relatively low concentrations that include 
both structural as well as signaling pools, the latter of which can evoke myriad 
physiological responses in a wide variety of cell types  (1 – 4) .   

 LPA was long known as a minor component of membrane phospholipid 
metabolism  (5, 6) . Hints of LPA ’ s possible actions as a bioactive lipid were 
suggested in reports dating from the early 1960s that examined smooth muscle 
effects including infl uences on blood pressure  (7, 8) . The chemically defi ned 
LPA species involved emerged years later with LPA ’ s isolation from soybeans 
 (9) . This chemical identity raised mechanistic questions on how it might func-
tion, and many theories were proposed that included physical perturbation of 
the membrane  (10) , calcium chelation  (11) , second messenger signaling  (12) , 
intracellular receptors  (13) , and cell surface receptors  (14) . These competing 
theories to explain the effects of extracellularly applied LPA as well as other 
lysophospholipids were clarifi ed upon identifi cation of the fi rst lysophospho-
lipid receptor: a GPCR from the brain initially named  “ ventricular zone gene -
 1 ”  because of its expression in the embryonic neuroproliferative layer of the 
cerebral cortex  (15)  and which is now known as LPA 1   (15, 16) . The cloning 
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2  LYSOPHOSPHATIDIC ACID (LPA) RECEPTOR SIGNALING

and functional identifi cation of this receptor gene led to the deorphanization 
of other putative receptor genes in the databases based upon their homology 
to one another  (17 – 19) . This collective group of orphan receptors was known 
by many different receptor names  (20) , the fi rst of which was  “  endothelial 

     Figure 1.1.     LPA synthesis. LPA is mainly produced from membrane phospholipids 
through the two major pathways shown. Other pathways do exist for the production of 
LPA, as well as several degradation pathways.  * 18:1 - LPA is the most commonly used 
laboratory reagent for activation of LPA receptors.  *  * 16:0 - LPA is reportedly the most 
abundant species in human plasma. LPE, lysophosphatidylethanolamine.  
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differentiation gene  ”  ( EDG ). This EDG group contained both LPA and sphin-
gosine 1 phosphate (S1P) receptors, which underscored the signifi cant homol-
ogy among LPA and S1P receptors. At the time of the initial identifi cation, 
S1P 1  had greatest homology to LPA 1  but was still an orphan receptor, while a 
homologous known receptor to LPA 1  was the cannabinoid receptor CB1 
(encoded by  CNR1 ) that itself interacts with endogenous lipid molecules 
anandamide and 2 - arachidonyl glycerol  (21, 22) . More recently, three some-
what divergent LPA GPCRs have been identifi ed (LPA 4 – 6 )  (23 – 27) , which 
belong to the P2Y purinergic receptor family (Fig.  1.2 ), providing evidence for 
the existence of dissimilar clusters of receptors mediating the effects of the 
same ligand. Other species of bioactive lysophospholipids are also currently 
being assessed for matching receptors, though none has been identifi ed as of 
yet  (28) . An additional dimension to LPA receptor interactions is the likeli-
hood that different chemical forms of LPA may bind preferentially to LPA 
receptor subtypes  (29) , although the extreme diffi culty of doing classical recep-
tor binding experiments with LPA has prevented direct assessments of this 
possibility, relying instead on secondary readouts of receptor activity that do 
support ligand selectivity. All six LPA receptors are type I, rhodopsin - like 
GPCRs with seven transmembrane domains. Each receptor can couple to one 
or more of four heterotrimeric G  α   proteins (G 12/13 , G q/11 , G i/o , and G s ) (Fig.  1.3 ), 
resulting in the activation of a wide range of downstream signaling pathways 
and resulting in diverse physiological and pathophysiological effects docu-
mented for LPA signaling.    

   1.2.     LPA  METABOLISM 

 LPA is produced both intracellularly and extracellularly from membrane 
phospholipids (Fig.  1.1 ). Intracellular LPA is thought to be structural  (6)  or an 
intermediate for phospholipid biosynthesis, so it is less likely that it functions 
as an extracellular pool of signaling molecules  (30) . Additional LPA - producing 
pathways also exist  (31) . The term LPA, at least in an extracellular signaling 
context, generally refers to 1 - acyl - 2 - hydroxy -  sn  - glycero - 3 - phosphate, but dis-
tinct chemical forms exist, such as 1 - alkyl -  or 2 - acyl - LPA  (32, 33) . The acyl 
chain length and degree of saturation generally depend on the precursor 
phospholipid, with the most abundant forms of LPA in plasma being 16:0 - , 
18:2 - , and 18:1 - LPA  (34) . The 18:1 - LPA form is perhaps the most commonly 
used LPA species in the laboratory for signaling studies.   

 The two major pathways involved in LPA production initiate either the 
sequential activity of  phospholipase D  ( PLD ) and phospholipase A 2  (PLA 2 ) 
or of PLA 2  and lysophospholipase D (also known as autotaxin, ATX) (Fig. 
 1.1 ). The fi rst pathway is mainly involved in cellular LPA production through 
cell membrane - derived phosphatidic acid hydrolysis, and the second pathway 
is mainly involved in extracellular LPA production in bodily fl uids such as 
plasma  (35) . In 1986, it was reported by Tokumura et al. that LPA is produced 
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in submillimolar concentrations from plasma incubated at 37 ° C for a long 
period of time  (36) . The enzyme responsible for this production of LPA was 
later identifi ed as the previously known gene  Enpp2 , which encodes the ATX 
protein and possesses lysoPLD activity  (37, 38) . There are at least two addi-
tional pathways that can produce intracellular LPA: acylation of glycerol - 3 -
 phosphate by  glycerophosphate acyltransferase  ( GPAT ) and phosphorylation 
of monoacylglycerol by monoacylglycerol kinase (MAG - kinase)  (39) . LPA 
degradation involves several different enzymes, including  LPA - acyltransferase  
( LPAAT ),  lipid phosphate phosphatase  ( LPP ), and various lysophospholi-
pases  (40) . LPA may be converted back to phosphatidic acid by LPAAT, 
hydrolyzed by LPP - 1,  - 2, and  - 3, or converted by lysophospholipases into 
glycerol - 3 - phosphate  (40, 41) . 

 Since LPA is present in low concentrations in all mammalian cells and tissues, 
it is important to identify biologically relevant concentrations (based upon the 
half maximal effective concentration [EC 50 ] and/or apparent  K  d  values of the 
six LPA receptors). Current LPA detection methods include enzymatic assays, 
thin - layer chromatography (TLC) – gas chromatography, high - performance 
liquid chromatography (HPLC)/tandem mass spectrometry, and liquid 
chromatography – tandem mass spectrometry (LC/MS/MS)  (42, 43) . LPA con-
centrations measured in the blood can range from 0.1    μ M in plasma to over 
10    μ M in serum, which is well over the apparent  K  d  of LPA 1 – 5   (31, 44, 45) .  

     Figure 1.3.     Signaling pathways activated by the six confi rmed LPA receptors. (See 
color insert.)  
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   1.3.    AUTOTAXIN 

 ATX is one of the best - studied enzymes associated with LPA signaling. The 
fi rst reported activity of ATX was as a cell motility - stimulating factor in human 
melanoma cells  (46) . The cell motility effect was originally attributed to ATX ’ s 
reported function as a nucleotide phosphodiesterase, since ATX shares struc-
tural similarities to the  nucleotide pyrophosphatase/phosphodiesterase  ( NPP ) 
family  (47) . However, the promigratory effects of ATX were blocked by the 
addition of pertussis toxin, a G  α i/o  inhibitor  (46) , and G  α i/o  couples to fi ve of 
the six identifi ed LPA receptors. It is now clear that the cell motility - stimulating 
activity of ATX is a result of autocrine signaling from the production of LPA 
and its action on LPA receptors  (30, 48, 49) . ATX is present in blood and shows 
fairly broad tissue expression, with relatively high levels of ATX expressed in 
the brain (especially the choroid plexus), kidney, and lymphoid organs, which 
leads to high levels of ATX in cerebrospinal fl uid and the  high endothelial 
venule s ( HEV s) in lymphoid organs  (50 – 52) . 

 The physiological importance of ATX was not fully appreciated until the 
creation of ATX knockout mice ( Enpp2  − / −    mutants).  Enpp2  − / −    mice die around 
embryonic day 9.5 with prominent vascular and neural tube defects  (53, 54) . 
These mutants also have specifi c defi cits in both yolk sac blood vessel for-
mation and large lysosome biogenesis in yolk sac visceral endoderm cells  (55) . 
 Enpp2  − / +    heterozygotes survive to adulthood but, importantly, have LPA 
plasma levels that are half that of wild - type mice. This confi rms that ATX 
activity is the major source of LPA in plasma and is essential for proper 
embryonic development. 

 ATX, through its production of LPA, is signifi cantly involved in vascular 
development. LPA was found to prevent disassembly of blood vessels in cul-
tured allantois explants  (54) , supporting a role for LPA signaling in mainte-
nance of existing vasculature in addition to assembly and maturation. LPA 
additionally acts as a vasoregulator in multiple species  (9)  and has been impli-
cated in the pathology of posthemorrhagic vasoconstriction  (56) . ATX expres-
sion is induced by  vascular endothelial growth factor  ( VEGF ), and induces 
both proliferation and migration of endothelial cells  (57 – 59) . LPA - induced 
endothelial cell migration in a Matrigel migration assay induced expression of 
matrix metalloproteinase - 2 (MMP - 2), which is a proteolytic enzyme involved 
in endothelial cell migration and matrix remodeling during angiogenesis  (60) . 
Because angiogenesis and tissue repair require a variety of bioactive media-
tors, such as growth factors and cytokines that are released from activated 
platelets, LPA has been implicated in these processes. LPA is known to be 
released from activated platelets  (34) , as well as able to induce platelet activa-
tion in a positive feedback loop  (61, 62) , and this LPA production induces 
mitogenic and migration effects on many of the cell types involved in angio-
genesis and tissue repair  (4, 58, 63, 64) . 

 Activation of platelets is also heavily associated with cardiovascular disease. 
LPA is involved in processes relevant to atherosclerosis during both the early 



AUTOTAXIN  7

and late stages of plaque formation involving endothelium dysfunction, mono-
cyte attraction and adhesion, LDL uptake, and proinfl ammatory cytokine 
release  (65 – 71) . LPA both increases the permeability of endothelial cells and 
rat mesenteric venules  (66, 72)  and recruits monocytes to the endothelium 
 (67) , implicating LPA in the invasion of reactive macrophages in atheroscle-
rosis. LPA was also found to accumulate in the thrombogenic, lipid - rich core 
of atherosclerotic plaques  (61, 73) . LPA ’ s involvement in atherosclerosis is 
receptor - dependent, involving both LPA 1  and LPA 2  signaling, and will be 
discussed in more detail in the succeeding sections. 

 One of the major causes of damage to cardiac myocytes during myocardial 
infarction is ischemia and hypoxia. While LPA clearly plays a role in ischemia 
and hypoxia, the exact nature of its effects require further clarifi cation. LPA 
levels are elevated under ischemic conditions  (66, 74) , and while LPA has 
been shown to protect hypoxia - induced apoptosis in cardiac myocytes and 
mesenchymal stem cells  (75, 76) , LPA 3  antagonists were reported to protect 
renal cells from hypoxia - induced apoptosis  (77)   in vitro . Treatment with an 
LPA analog, LXR - 1035, of a rat model of retinal ischemia/reperfusion injury 
resulted in decreased neural cell death and improved functional recovery  (78) . 
Yet in porcine cerebral microvascular and human umbilical vein endothelial 
cells, LPA was found to induce specifi cally oncotic cell death, which was repro-
duced in both brain explants and retinas  in vivo   (79) . An LPA 1  low - affi nity 
antagonist was able to prevent this oncotic cell death. Recently, it was shown, 
using an  ex vivo  cortical culturing system and cell culture, that the cellular 
neurodevelopmental effects of prolonged hypoxia are ameliorated through 
antagonism or genetic removal of LPA 1   (80) , mechanisms that were shown to 
extend at least in part to maternal hypoxic insult  in vivo . 

 ATX infl uences on LPA signaling are not only involved in platelet activa-
tion, but also function in an immunoregulatory capacity. ATX has been iden-
tifi ed as a modulator of lymphocyte traffi cking into secondary lymphoid 
organs, where ATX produced by  high endothelial cell s ( HEC s) may bind 
to activated lymphocytes  (52) . It is proposed that LPA induces the chemoki-
nesis of T cells via the local production of LPA from ATX bound on the 
lymphocyte cell surface. ATX activity is also induced in T cells treated with 
 lipopolysaccharide  ( LPS )  (81) , and LPA can induce Ca 2 +   signaling in adult B 
cells  (82) , which further implicate ATX and LPA in normal immune cell 
function.  

 The effects of LPA can also participate in immune misactivation relevant 
to various autoimmune diseases, where increases in LPA have been identifi ed 
in systemic sclerosis patients. Notably, fi broblasts from systemic sclerosis 
patients are hypersensitive to Cl  −   current activation during LPA exposure  (83, 
84) . LPA is also involved in arthritis, where a functional single - nucleotide 
polymorphism (SNP) in the promoter region of LPA 1  was shown to increase 
susceptibility to knee osteoarthritis, possibly via upregulation of LPA 1  expres-
sion  (85) . Rheumatoid arthritis patients also exhibited increases in ATX in 
synovial fl uid as well as elevated cytokine production in patient fi broblast - like 
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synoviocytes treated with LPA  (86) . These results support the proposal that 
ATX and LPA are involved in facilitating immune system functioning via 
modulation of lymphocyte traffi cking and sensitization of affected cells during 
autoimmunity. 

 LPA has also has been investigated as a modulator of constructive wound 
healing. Myriad factors are released from platelets following tissue trauma, 
including LPA. Treatment of  “ wounded ”  endothelial monolayers  in vitro  with 
LPA resulted in closure repair  (58) , and application of LPA to  in vivo  cutane-
ous wounds promoted enhanced repair processes  (87) . Moreover, fi broblast 
migration into the fi brin wound matrix is an essential step in the process of 
wound healing, and LPA has been shown to regulate migration of mouse 
embryonic fi broblasts (MEFs) through LPA 1  signaling  (49, 88) . 

 There is currently a wealth of data explicitly implicating ATX and LPA 
signaling in cancer progression. LPA signaling has been associated with many 
of the dysregulated processes involved in cancer development, including pro-
liferation, survival, metastasis, and promotion of angiogenesis (reviewed in 
References  3 and 89 – 91) . De Alvarez and Goodnell fi rst suggested the involve-
ment of LPA in cancer in 1964 when lysolecithin (known also as lysophospha-
tidylcholine, LPC), LPA ’ s precursor, was found to be signifi cantly increased in 
the serum of patients with ovarian cancer  (5) . Later, ATX was specifi cally 
identifi ed as a motility - stimulating factor for cancer cells  (46) , although ATX 
had yet to be identifi ed as having lysoPLD activity. Other early clues to LPA ’ s 
involvement in cancer included the observation that LPA enhanced invasive-
ness of lung cancer cells  in vitro   (92) . Myriad other cancer cell lines have 
shown responsivity to LPA in regards to enhanced proliferation, migration, 
and survival. These cell lines include ovarian, gastrointestinal, breast, prostate, 
mesothelioma, pancreatic, liver, and glioma  (93 – 102) . LPA levels are increased 
in the ascites and plasma of ovarian cancer patients  (93, 103) , and a variety of 
cancer cell lines  (99, 104, 105)  and primary tumor tissues have increased ATX 
expression  (106 – 110) . In breast cancer in particular, antagonists against ATX 
and LPA receptors prevent breast cancer cell (BCC) migration and promote 
tumor regression  in vivo   (106, 111, 112) . Increased ATX expression in breast 
cancer and melanoma cells has also been implicated in Taxol resistance 
(Bristol - Meyers Squibb, New York, New York)  (113) , and forced expression 
of ATX promotes bone metastasis through activation of osteoclasts  (114) , 
which highlights the importance of developing a better understanding of ATX 
and LPA signaling in cancer. Indeed, LPA receptor mutations and aberrant 
expression of receptors have been found in osteosarcoma, colon, lung, and 
liver cancer cells  (115 – 118) , further suggesting roles in aspects of cancer. In 
addition, many tumors require signifi cantly increased blood fl ow, and ATX/
LPA signaling promotes angiogenesis through VEGF and MMPs  (119 – 121) . 
There is interest and effort in developing ATX inhibitors as anticancer che-
motherapeutics  (122) , and a further understanding of how ATX and LPA 
affect processes like angiogenesis, metastasis, and cancer proliferation could 
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aid therapeutic modulation of ATX and LPA in understanding and treating 
cancer.  

   1.4.     LPA  RECEPTORS 

 The numerous reported physiological effects of LPA are primarily mediated 
through the six currently recognized LPA receptors, LPA 1 – 6 . These GPCRs 
couple to all four G  α   proteins (G 12/13 , G q/11 , G i/o , and G s ), which initiate a variety 
of signaling cascades. The interplay among different LPA receptors, primarily 
modulated by differential receptor subtypes in specifi c tissues, drives the many 
biological and pathological processes noted here as well as in subsequent 
chapters. 

   1.4.1.     LPA 1   

 LPA 1  was the fi rst receptor identifi ed for any lysophospholipid  (15)  and is the 
best studied of the six recognized LPA receptors.  LPAR1  (human chromo-
somal locus 9q31.3) encodes a 41 - kDa protein containing 364 amino acids with 
seven putative transmembrane domains. In mice, the  Lpar1  gene encodes fi ve 
exons with a conserved intron (shared among  Lpar1 - 3 ) interrupting trans-
membrane domain 6. There has been one reported variant of  Lpar1  (mrec1.3) 
that results in an 18 amino acid deletion of the N terminus  (123) , but the 
biological signifi cance of this variant has not been elucidated. LPA 1  is highly 
homologous to LPA 2 – 3 , sharing a  ∼ 50 – 60% amino acid sequence identity. While 
there are currently no crystal structures available for any of the LPA receptors, 
mutagenesis studies have identifi ed several residues in LPA 1 – 3  signaling. R3.28 
and K7.36A are both important for the effi cacy and potency of LPA 1 , while 
Q3.29 decreased ligand interaction and activation  (124) , based primarily on 
secondary readouts. 

 LPA 1  couples with three types of G  α   proteins: G i/o , G q/11 , and G 12/13  (Fig.  1.3 ). 
These form heterotrimeric G proteins that initiate signaling cascades through 
downstream molecules such as  mitogen - activated protein kinase  ( MAPK ), 
 phospholipase C  ( PLC ), Akt, and Rho. LPA 1  activation induces a variety of 
cellular responses, including altered cell – cell contact through serum response 
element activation, cell proliferation and survival, cell migration and cytoskel-
etal changes, Ca 2 +   mobilization, and adenylyl cyclase inhibition (reviewed in 
References  4 ,  20 , and  125 ). 

 Expression of  Lpar1 / LPAR1  is widely distributed in both adult mice and 
humans, including in the brain, uterus, testis, lung, small intestine, heart, 
stomach, kidney, spleen, thymus, placenta, and skeletal muscle  (17, 125, 126) . 
Expression of  Lpar1  is more spatially restricted during embryonic develop-
ment, but is enriched in parts of the brain, limb buds, craniofacial region, 
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somites, and genital tubercle  (127) . In the developing nervous system in par-
ticular,  Lpar1  expression is regulated both spatially and temporally (reviewed 
in References  4  and  125 . During embryogenesis,  central nervous system  ( CNS ) 
expression is enriched in the neocortical neurogenic region called the  ventricu-
lar zone  ( VZ ) and superfi cially in a layer that includes the marginal zone and 
meninges  (15) . The VZ disappears just prior to birth, at the end of cortical 
neogenesis, but  Lpar1  expression continues in oligodendrocytes, particularly 
within the white matter tracks of the postnatal brain and this expression coin-
cides with myelination. 

 Much of what is known regarding LPA signaling during neurodevelopment 
has been gleaned from the use of  Lpar1  − / −    mice. Of the four LPA receptor - null 
mouse lines that have been reported ( Lpar1 - 4  − / −   ),  Lpar1  − / −    mice are the only 
ones to demonstrate obvious neurodevelopmental defects. These mice show 
50% perinatal lethality because of a defect in suckling behavior  (128) , which 
could be attributable to olfactory defi cits. Surviving  Lpar1  − / −    mice have a sig-
nifi cantly reduced body size, craniofacial dysmorphism with blunted snouts, 
and increased apoptosis in sciatic nerve Schwann cells (SCs)  (129) . During 
colony expansion of the original  Lpar1  − / −    line, a variant arose spontaneously 
that was dubbed  “ M á laga ”  (maLPA 1 ) for its geographic location in Spain 
 (130) . The maLPA 1  variant exhibits more severe developmental brain defects 
than the  Lpar1  − / −    line, yet has negligible perinatal lethality. Defects in maLPA 1  
neurodevelopment include reduced proliferative populations, increased corti-
cal apoptosis, and premature expression of neuronal markers  (130) , as well as 
similar effects on adult hippocampal neurogenesis  (131) . 

 Most LPA receptors are expressed in the nervous system, and LPA is abun-
dantly present in the brain. LPA signaling can infl uence many neurodevelop-
mental processes, including cortical development and function  (130, 132) , 
growth and folding of the cerebral cortex  (133) , growth cone process retraction 
 (134 – 136) , cell survival  (133) , migration  (137) , adhesion  (129) , and prolifera-
tion  (128, 133) . LPA 1  signaling was fi rst reported to infl uence proliferation and 
differentiation of primary  neuroprogenitor cell s ( NPC s) and neurosphere cul-
tures  (128, 138, 139) . Nonmammalian models have also demonstrated LPA 1  
effects in the CNS, where analogs of both LPA 1  and LPA 2  were reported to 
regulate normal cortical actin assembly in  Xenopus  embryos  (140) . A number 
of  in vitro  experiments have demonstrated the effect of LPA stimulation on 
NPC cultures, as well as a variety of neuronal cell lines and primary neurons. 
These studies reported LPA - induced neurite retraction, growth cone collapse, 
and migration  (136, 137, 141 – 144) . 

 In addition to NPC and neuronal cell types, LPA 1  signaling is involved in 
the biology of glial cell types. Astrocytes are the most abundant type of glia 
and play a signifi cant role in developmental, functional, and pathological pro-
cesses. Astrocytes express LPA 1 – 5   (145)  and, upon treatment with LPA, initiate 
a wide range of effects  in vitro , including morphological changes and stabiliza-
tion of stress fi ber  (146, 147) . These responses are potentially relevant to 
neurodegeneration, where astrogliosis can be prominent. Injections of LPA 
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into the striatum can induce astrogliosis  (148) , although the receptors through 
which these processes are mediated are unidentifi ed as of yet. LPA 1  has been 
implicated in astrocyte proliferation, with the caveat that some controversy 
does surround this claim, possibly a result of disparate cell culture systems 
(reviewed in Reference  149 ). LPS -  or interleukin (IL) - 1B - primed astrocytes 
were reported to have a specifi c G  α i  migration response to LPA compared with 
their normal proliferative response via G  α 12/13   (150) . In addition, both LPA 1  
and LPA 2  signaling has been reported to increase neuronal differentiation 
through astrocytes primed with LPA  (151) . The effect of LPA 1  signaling in 
astrocytes awaits further study. 

 LPA 1  is also expressed in oligodendrocytes, the myelin - forming glial cells in 
CNS  (152 – 154) .  Lpar1  was shown to colocalize with  myelin basic protein  
( MBP ) and  proteolipid protein  ( PLP ), but not with  glial fi brillary acidic protein  
( GFAP )  (152, 153) . During development,  Lpar1  expression in oligodendrocytes 
appears shortly before maturation/myelination, suggesting an important role 
in controlling this process  (155) , although no effect of LPA on oligodendrocyte 
survival, maturation, myelination, and cytoskeleton organization was reported 
 in vitro   (155) . However, using the oligodendrocyte precursor cell line CG - 4, it 
was reported that oligodendrocytes respond differently to LPA during various 
developmental stages  (156) . A Rho – Rho - associated protein kinase (ROCK) 
pathway - dependent cell process retraction is only seen in oligodendrocyte 
precursors, not in differentiated oligodendrocytes  (156) . Similarly, LPA increases 
dendritic process network area and MBP expression in differentiating oligo-
dendrocytes  (157) . Therefore, it seems plausible that LPA regulates oligoden-
drocyte functions in a temporally specifi c manner, and further study will better 
defi ne the activities of LPA signaling in this CNS cell type. 

 SCs have also been implicated in LPA signaling in the nervous system. SCs 
are myelin - forming cells in the  peripheral nervous system  ( PNS ) that express 
LPA 1  and possibly LPA 2   (129, 158) . LPA increases SCs ’  survival in culture by 
activating LPA 1  and the downstream G i  – phosphatidylinositol 3 - kinase (PI3K) –
 Akt pathway  (159) .  In vivo  experiments also support this fi nding, showing that 
 Lpar1  − / −    mice have increased apoptosis of SCs in the sciatic nerves  (128) . In 
addition to SC survival, LPA also induces morphological changes and adhe-
sion.  In vitro , LPA induces wreath formation in SCs and appears to enhance 
focal adhesions, as well as promoting cell aggregation via N - cadherin - based 
cell – cell adhesion  (129) . These effects of LPA are greatly reduced in the 
 Lpar1  − / −    SCs, implicating LPA 1  signaling in these responses to LPA  (129) . LPA 
has also been reported to increase the expression of P0 protein in SCs through 
LPA 2  signaling, possibly contributing to SC differentiation  (160) . 

 SCs have been implicated in neuropathic pain, or peripheral neuropathy, 
which is associated with a primary trauma or infl ammation of the nervous 
system. Direct injections of LPA elicit a pain response, similar to that seen in 
neuropathic pain, through the overactivation of LPA 1 . This activation of LPA 1  
initiates the release of the pronociceptive factor substance P  (161, 162) , and 
direct intrathecal injection of LPA produced allodynia and hyperalgesia in 
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wild - type mice  (163)  that is prevented in  Lpar1  − / −    mice. Furthermore,  partial 
sciatic nerve ligation  ( PSNL ) nociception was completely blocked in  Lpar1  − / −    
mice, and the demyelination common to neuropathic pain pathology was 
abolished in C3 - treated mice, indicating Rho pathway involvement  (163) . In 
a following  ex vivo  study, LPA also induced demyelination in isolated dorsal 
root fi ber and decreased MBP expression  (164) . In addition, ATX was shown 
to induce neuropathic pain through the conversion of LPC to LPA  (165 – 167) . 
 Enpp2   + / −   mice, which have a 50% decrease in ATX activity and LPA concen-
trations, also have a 50% recovery from neuropathic pain induced by PSNL 
 (165) . LPA therefore appears to modulate important SC function through 
LPA 1  activation, and could serve as an important therapeutic target for myelin-
ating diseases, especially neuropathic pain. 

 A large body of accumulating evidence suggests that many psychological 
diseases have a neurodevelopmental origin. This evidence, in part, comes from 
a variety of studies linking prenatal risk factors, such as hypoxia, prenatal 
hemorrhaging, and immune activation, to the development of such neuropsy-
chiatric disorders as autism and schizophrenia  (168 – 171) . As previously noted, 
LPA, particularly through LPA 1 , is involved in both immune system function 
and hypoxia. The mechanism for the effects of hypoxia appear to involve LPA 1  
potentiation via the actions of the receptor kinase GRK2, linking LPA recep-
tor signaling during prenatal hypoxia to clinically relevant neurodevelopmen-
tal diseases, such as autism, schizophrenia, and epilepsy.  

 Most recently, a striking effect of LPA signaling on the developing brain was 
shown by Yung et al. in relation to  fetal (congenital, or prenatal forms of post-
hemorrhagic) hydrocephalus  ( FH )  (172) . FH is a neurodevelopmental disorder 
characterized by accumulation of cerebrospinal fl uid (CSF), an enlarged head, 
and neurological dysfunction. Prenatal injections of LPA induced many of the 
classical symptoms of FH in an LPA 1  receptor - dependent manner. In addition, 
one of the major risk factors for FH is prenatal intracranial hemorrhaging. In 
a mouse model of intracranial hemorrhage, which induces FH with about 50% 
penetrance,  Lpar1  − / −  /Lpar2  − / −    mice were protected from developing FH  (172) . 

 It is therefore plausible that excessive LPA exposure occurring in 
development — through hemorrhage or infection — may induce some of the 
developmental disturbances seen in neuropsychiatric diseases. Indeed, 
the removal of LPA 1  signaling during development can signifi cantly impact the 
neuropsychiatric profi le of mice.  Lpar1  − / −    mice exhibit prepulse inhibition defi -
cits, alterations in serotonin (5 - HT) neurotransmitter levels, and abnormalities 
in glutamatergic synapses  (132, 173, 174) , as well as a reduction in entorhinal 
cortex gamma oscillations and parvalbumin - positive neurons  (175) . maLPA1   − / −    
mice display defects in olfaction, pain sensing, exploration, anxiety, and memory 
retention, as well as many cortical developmental defects. All of these neural 
dysfunctions are reminiscent of the pathological and behavioral symptoms 
of those suffering from schizophrenia and schizophrenia animal models  (130, 
132, 176, 177) . In addition, expression of the LPA - synthesizing enzyme cytosolic 
PLA 2  is increased in schizophrenic patients and inhibition of cytosolic PLA 2  
in control populations induces defi cits in prepulse inhibition (reviewed in 
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Reference  178 ). There appears to be a balance of LPA availability and LPA 
receptor signaling that is relevant to aspects of schizophrenia. The removal of 
LPA 1  signaling is important to this balance, while perhaps the signaling of other 
LPA receptors may also contribute. maLPA1   − / −    mice also display craniofacial 
dysmorphism and defects in adult hippocampal neurogenesis, both of which are 
associated with autism  (128, 131) . LPA infusion has also been shown to enhance 
long - term spatial memory in mice  (179) . This wealth of data implicates LPA 
and LPA 1  receptor signaling in schizophrenia and possibly other neuropsychi-
atric diseases. 

 Obesity in both adults and children is a growing problem in the developed 
world. One of the most important regulators of fat deposition and accumulation 
is the ratio of adipocyte precursor cells to differentiated adipocytes. Numerous 
factors modulate the proliferation and differentiation of preadipocytes, includ-
ing LPA. LPA is released by adipocytes, but not preadipocytes, both  in vivo  and 
 in vitro   (180, 181) . This release was linked to the secretion of ATX during adi-
pocyte differentiation, leading to the proliferation and motility of preadipocytes 
 (182) . Genetically obese – diabetic  db/db  mice (type II diabetes), as well as 
glucose - intolerant obese human subjects, display preadipocyte proliferation in 
response to ATX release and LPA production  (182, 183) . LPA - induced glucose 
lowering was reported in normal mice as well as in streptozotocin - induced type 
I diabetic mice  (184) . However, LPA production was not altered in the type I 
diabetic mouse, unlike the type II diabetic mouse  (182) . In culture, preadipocyte 
proliferation in response to LPA was specifi cally dependent on LPA 1  signaling 
 (185) , possibly through extracelluar signal - regulated kinase 1/2 (Erk1/2) activa-
tion  (186) , while LPA 1  activation of PPAR γ 2 seems to inhibit the differentiation 
of preadipocytes  (187) , leading to a specifi c antiadipogenic response. Indeed, 
despite a lower body weight,  Lpar1  − / −    mice have higher adiposity than their 
wild - type littermates  (188)  even when controlled for excessive food consump-
tion  (189) .  Lpar1  − / −    adipose tissues contain more preadipocytes than could be 
differentiated in culture  (187) . Overall, these observations implicate ATX and 
LPA functions in adipose tissues, with possible therapeutic relevance. 

 LPA 1  signaling has also been linked to fi brosis  (88, 190) . Fibrosis, the for-
mation of excess fi brous connective tissues, is associated with a number of 
pathological conditions including pulmonary and  tubulointerstitial fi brosis  
( TIF ). Pulmonary fi brosis studies identifi ed increased LPA levels in the bron-
choalveolar lavage fl uid after bleomycin - induced lung injury, which were asso-
ciated with pulmonary fi brosis, vascular leakage, and mortality. These 
pathologies were signifi cantly reduced in  Lpar1  − / −    mice  (88) . Specifi cally, in the 
absence of LPA 1 , fi broblast recruitment and vascular leakage was decreased. 
LPA levels were also increased in the bronchoalveolar lavage fl uids in patients 
following segmental allergen challenge  (191) . Similar effects are also seen in 
renal fi brosis, albeit through a slightly different mechanism. LPA effects were 
examined in a TIF kidney fi brosis model using  unilateral urethral obstruction  
( UUO ). UUO fi brosis initiated increases in LPA 1  expression and decreases in 
LPA 3  expression, and LPA levels in conditioned media from kidney explants 
were also increased  (192) . LPA also induced  connective tissue growth factor  
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( CTGF ) expression in renal fi broblast cell lines. Renal fi brosis was markedly 
reduced in both  Lpar1  − / −    mice and following treatment with Ki16425, an LPA 1/3  
antagonist, in this model  (190) . Furthermore, LPA and ATX levels are also 
increased following hepatitis C - induced liver fi brosis, presumably through stel-
late cell and hepatocyte proliferation  (45) , which are the main contributors to 
extracellular matrix accumulation in the liver  (193, 194) .  

   1.4.2.     LPA 2   

 LPA 2  was fi rst identifi ed from a GenBank search for orphan GPCR genes 
because of its  ∼ 60% amino acid similarity to LPA 1 .  LPAR2  (located on chro-
mosome 19p12) encodes a 348 amino acid protein with a calculated molecular 
mass of  ∼ 39   kDa  (195) . Mutagenesis studies of LPA 2  have identifi ed two spe-
cifi c residues that decrease LPA 2  activation (Q3.29E and R5.38A)  (124) . 

  Lpar2/LPAR2  expression is relatively restricted in adult mice and humans, 
compared with  Lpar1/LPAR1 .  LPAR2  is highly expressed in the testis and 
leukocytes, and  Lpar2  is highly expressed in the kidney, uterus, and testis  (17, 
125) . More moderate levels of  LPAR2  are found in the prostate, spleen, 
thymus, and pancreas, and lower levels of  Lpar2  expression are found in the 
lung, stomach, spleen, thymus, brain (fetal and postnatal), and heart. Expres-
sion of  Lpar2  is much more diffuse than that of  Lpar1  during development, 
yet  Lpar2  is clearly present in the limb buds, craniofacial regions, Rathke ’ s 
pouch, and the embryonic brain  (127) . 

 LPA 2  couples with the same three types of G  α   proteins as does LPA 1 : G i/o , 
G q/11 , and G 12/13  (Fig.  1.3 ). These associated heterotrimeric G proteins initiate 
signaling cascades through downstream molecules such as Ras, MAPK, PI3K, 
Rac, PLC, diacylglycerol, and Rho (Fig.  1.2 )  (128) . LPA 2  activation is generally 
associated with cell survival and cell migration  (185, 188, 196 – 198) . It is inter-
esting to note that several reports have provided evidence that LPA 2  signals 
through other pathways than the three reported G  α   pathways. LPA 2  - initiated 
migration has been reported to be promoted through interactions with the 
focal adhesion molecule TRIP6  (199, 200) , and several PDZ domain proteins 
and zinc fi nger proteins have also been reported to interact with the carboxyl -
 terminal tail of LPA 2   (201) . In addition, LPA 2  - mediated signaling can inhibit 
epidermal growth factor - induced migration and invasion of pancreatic cancer 
cells through the G  α 12/13 /Rho pathway  (202) . These studies provide evidence 
that there is cross - regulation between classical G protein signaling cascades 
and other signaling pathways in LPA 2  signaling, increasing the range of signal-
ing effects mediated by LPA and a single receptor subtype. 

  Lpar2  − / −    mice are, for the most part, phenotypically normal, with normal 
prenatal and postnatal viability and expected Mendelian birth ratios. However, 
 Lpar1  − / −  /Lpar2  − / −    double mutants have an exacerbation of the low - frequency 
frontal hematomas present in  Lpar1  − / −    mice, and primary fi broblasts and 
embryonic cortical cells display signifi cantly reduced responses to exogenous 
LPA  in vitro   (133, 188) . This functional redundancy between LPA 1  and LPA 2  
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signaling is further illustrated through use of the double mutants in elucidating 
the receptor specifi city of neural and vascular phenotypes seen upon LPA 
exposure. 

 Like LPA 1 , LPA 2  is also involved in some aspects of nervous system devel-
opment and function. Activation of LPA 2  upregulates myelin P0 protein in 
cultured SCs, implicating LPA 2  signaling in SC function. In fact, LPA 2  is upreg-
ulated, along with LPA 1 , after injuries such as nerve transection and neuro-
pathic pain  (129, 163) . LPA 2  ’ s interaction with proteoglycan 1 (PRG - 1) 
signaling has also been reported to modulate excitatory transmission in the 
hippocampus  (203) . Exogenous LPA exposure in an  ex vivo  cerebral cortical 
culture system increased terminal mitosis of NPCs, which resulted in cortical 
thickening and folding that resembles gyri in humans, presumably through a 
decrease in cell death and early cell cycle exit  (133) . These effects are com-
pletely absent in embryonic cerebral cortices from  Lpar1  − / −  /Lpar2  − / −    mice. 

  Lpar1  − / −  /Lpar2  − / −    mice have been especially illuminating in regards to LPA ’ s 
effects on the vascular system and on  vascular smooth muscle cell s ( VSMC s). 
Specifi cally, LPA 1  and LPA 2  were found to exhibit opposite effects on primary 
VSMCs derived from knockout mice  (188) . Migration of VSMCs was increased 
in  Lpar1  − / −    mice, but was attenuated in  Lpar1  − / −  /Lpar2  − / −    mice, thus depicting 
LPA 1  and LPA 2  as acting in opposition to each other as negative and positive 
chemotactic mediators, respectively. LPA has been shown to increase vascular 
permeability, and treatment with the dual LPA 1/3  receptor antagonist Ki16425 
blocked the permeability increases  (204) . Ki16425 also inhibited neointima 
formation and SMC recruitment to the injury after wire - induced carotid injury 
induction  (205) . However, neither LPA 1  nor LPA 2  was required for dediffer-
entiation of SMCs following vascular injury  in vivo  or LPA exposure  ex vivo  
 (39) , which may indicate the involvement of additional LPA receptor subtypes 
in this process. 

 Out of all the LPA receptors currently known to be involved in cancer, 
LPA 2  is associated with protumorogenic activities, along with LPA 3 . LPA 2  
overexpression is found on many types of cancer cells studied  in vivo  and  in 
vitro   (97, 206, 207) , and it has been associated with invasion and metastasis of 
ovarian, endometrial, mesothelioma, and colon cancer cells  (208 – 210) . This is 
most likely through induction of several of the following signaling molecules, 
all of which have been implicated in LPA 2  - mediated cancer cell motility: 
VEGF, epithelial growth factor receptor transactivation, metalloproteinase, 
urokinase - type plasminogen activator,  cyclooxygenase - 2  ( COX - 2 ), and Akt/
ERK1/2  (95, 208, 211 – 214) . Importantly, knockdown or removal of LPA 2  
reduced tumorgenesis in many of the studies previously mentioned. LPA 3  also 
seems to play a complimentary role to LPA 2 , initiating invasion and metastasis 
in the same cancer cell types  (212, 215 – 217) . 

 LPA 1  is also found in many cancer cell lines and primary tumors, but it may 
play both an opposing, and sometimes complimentary, role to LPA 2 – 3  signaling, 
depending on the cancer cell type. LPA 1  has been shown to reduce the prolif-
eration and metastasis of  ovarian cancer cell s ( OCC s) and BCC  in vitro  and 
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 in vivo   (170) , but forced LPA 1  expression in BCCs induced metastasis  (216, 
218)  and initiated motility in human pancreatic cancer cells  (101) . In gastro-
intestinal cells, LPA 1  initiated colony scattering in some cell lines, but inhibited 
it in other cell lines  (219) . Mutations in LPA 1  were also found in an osteosar-
coma cell line  (118) , as well as in lung and liver tumors in rats  (117) . It was 
even reported that LPA 2  initiated  inhibition  of pancreatic cancer cell migra-
tion, whereas LPA 1  induced a migratory response to LPA  (202) . LPA receptor 
signaling promotes invasion and metastasis of many different types of cancers, 
but the roles each receptor plays may be different in each cancer type. These 
pro -  or antitumorogenic roles of LPA 1 – 3  may in part refl ect the expression of 
a variety of growth factor peptides and receptors. 

 LPA 1  and LPA 2  signaling appear to have a similarly interesting dynamic in 
immune cell function. LPA receptors are expressed on most immune cells and 
immune organs, including lymphocytes  (202)  and  dendritic cell s ( DC s)  (220, 
221) , as well as in the speen and thymus  (4, 24, 222) . In T cells, LPA can either 
stimulate or attenuate cellular activity, depending on the cell activation state. 
LPA 2  is predominantly expressed in unstimulated T cells, whereas LPA 1  is 
predominantly expressed in stimulated T cells. While cell survival in T cells is 
infl uenced by both LPA 1  and LPA 2  signaling  (197) , the effects of LPA differ 
depending on the expressed receptor. In unstimulated T cells, LPA enhances 
chemotaxis and inhibits IL - 2 production  (185, 198, 223) . In activated T cells, 
where LPA 2  is downregulated and LPA 1  is upregulated, LPA inhibits chemo-
taxis, activates IL - 2 and IL - 13 production, and promotes cell proliferation  (198, 
224) . In addition, LPA has differing effects on immature and mature DCs. 
LPA 1 – 3  are expressed in both immature and mature DCs, and LPA appears to 
affect immature DCs by enhancing maturation and cytokine production  (220, 
221) . Furthermore, LPA 3  - specifi c activation induces chemotaxis of immature, 
but not mature, DCs  (225) . Thus, the effect of LPA on DCs appears to be stage 
specifi c, though the nature and receptor specifi city of this regulation remains 
largely uncharacterized.  

   1.4.3.     LPA 3   

  Lpar3  was discovered in a similar way to  Lpar2,  using homology searches for 
orphan GPCRs and a degenerate, polymerase chain reaction (PCR) - based 
cloning method  (18, 226) .  LPAR3  (human chromosomal locus 1p22.3 - p31.1) 
encodes a  ∼ 40   kDa GPCR that, in mice, is  ∼ 50% identical in amino acid 
sequence to LPA 1  and LPA 2 . Mutagenesis studies on LPA 3  have identifi ed two 
specifi c residues involved in LPA 3  activation (W4.64A and R5.38N), as well 
as a residue that increased LPA 3  ’ s EC 50  by a factor of 10 (K7.35A)  (124) . 
 LPAR3  expression is found in the human heart, testis, prostate, pancreas, lung, 
ovary, and brain  (18, 226)  and is most prominent in the mouse testis, kidney, 
lung, small intestine, heart, stomach, spleen, brain, and thymus  (125) . During 
development,  Lpar3  expression was reported in the heart, mesonephros, in a 
linear profi le between the lateral nasal process and the maxillary process, and 
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in three spots in the otic vesicle  (127) . Like both LPA 1  and LPA 2 , LPA 3  can 
couple with G  α i/o  and G  α q/11  to mediate LPA - induced PLC activation, Ca 2 +   
mobilization, adenyl cyclase inhibition and activation, and MAPK activation 
(Fig.  1.3 )  (227) . LPA 3  has been reported to prefer 2 - acyl - LPA containing 
unsaturated fatty acids  (18, 228) . 

  Lpar3  − / −    mice are viable and grossly normal, and even though LPA 3  is 
expressed in the frontal cortex, hippocampus, and amygdala  (18, 226) , there 
were no reported phenotypes regarding LPA 3  and the nervous system. 
However, female nulls show a striking phenotype in relation to the reproduc-
tion system  (229) . LPA is present in the follicular fl uid of healthy individuals 
 (230) , and ATX activity is enhanced in the serum and placenta of normal 
pregnant women in the third trimester of pregnancy, which is further increased 
in patients at risk for preterm delivery  (38, 231, 232) , supporting important 
potential roles in aspects of reproduction.  Lpar3  is exclusively expressed in 
the luminal endometrial epithelium during the short window of implantation 
 (229) , and its expression is regulated by progesterone and estrogen  (233) . 
This tight regulation of  Lpar3  expression suggested specifi c functionality 
during embryo implantation. Analyses of  Lpar3  − / −    mutant mice identifi ed 
delayed embryo implantation, embryo crowding, and reduced litter size that 
were traced to maternal effects, based on transfer of wild - type embryos into 
 Lpar3  − / −    dams that failed to implant normally  (229) . These defects are remark-
ably similar to the phenotypes of mice lacking COX - 2, an enzyme that pro-
duces prostaglandins. LPA 3  - mediated signaling appears to be upstream of 
prostaglandin synthesis in this system because exogenous administration of 
prostaglandins to  Lpar3  − / −    dams rescues the delayed implantation and reduced 
litter sizes  (229) . However, this treatment failed to rescue the embryo crowd-
ing, indicating that LPA 3  signaling mediates implantation in both a 
prostaglandin - dependent and prostaglandin - independent manner  (234) . The 
mechanism underlying the spacing defect in  Lpar3  − / −    mice remains obscure, 
but may involve either cytosolic phospholipase A 2 α   (cPLA 2 α  ) or Wnt/ β  - catenin 
signaling, since both cPLA 2 α   removal and Wnt/ β  - catenin signaling inhibition 
show similar embryo - crowding phenotypes as that observed in  Lpar3  − / −    mice 
 (235, 236) . 

 The expression of LPA receptors in the testis  (4, 23, 126)  also suggested a 
role for LPA signaling in male reproduction. Overexpression of LPP - 1, an 
LPA - degrading enzyme, resulted in impaired spermatogenesis  (237) , indicat-
ing the importance of lipid phosphatases, and potentially LPA, in this process. 
There is also evidence for LPA functioning in sperm motility  (238) , although 
triple genetic deletion of LPA 1 – 3  showed no detectable defi cits in sperm motil-
ity. However, genetic deletion of LPA 1 – 3  did result in pronounced defects in 
germ cell survival and an increased prevalence of azoospermia in aging mice 
 (237) , indicating that the combined signaling of LPA 1 – 3 , as well as potential 
involvement of other receptor subtypes, are important for both male reproduc-
tive processes as well as female reproductive processes. These data add to 
other studies indicating that LPA signaling is involved with many reproductive 
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processes, including spermatogenesis, male sexual function, ovarian function, 
embryo implantation, fertilization, decidualization, pregnancy maintenance, 
and parturition (reviewed in Reference  126 ).  

   1.4.4.     LPA 4   

 LPA 4  was the fi rst identifi ed lysophospholipid receptor to show a dissimilar 
predicted amino acid sequence from the other lysophospholipid receptor 
genes for LPA 1 – 3  and S1P 1 – 5 . LPA 4  was identifi ed through ligand screening 
using a calcium mobilization assay  (23) . It had been previously known as an 
orphan GPCR name P2Y9 for its similarity to P2Y purinergic receptors, 
sharing only 20 – 24% sequence homology to LPA 1 – 3   (23) . However, it responds 
to LPA but not to any nucleotides or nucleosides  (23) . Located on chromo-
some Xq21.1,  LPAR4  encodes a 370 amino acid protein, while the mouse 
homolog  Lpar4  is also located on chromosome X (region D).  Lpar4  is present 
in multiple murine tissues including heart, skin, thymus, bone marrow, and 
embryonic brain  (239) . Additional  in situ  data also confi rm the developmental 
expression of  Lpar4  in the mouse brain, maxillary processes, branchial arches, 
limb buds, liver, and somites. This expression pattern of  Lpar4  in the develop-
ing brain suggests a possible role in brain development  (127) . 

 As with the other LPA receptors, LPA 4  is a GPCR with seven transmem-
brane domains and couples to several different G  α   - proteins, including G s , G i , 
G q,  and G 12/13   (239) . Through G  α 12/13  and subsequent Rho/ROCK pathway 
activation, LPA 4  induces neurite retraction and stress fi ber formation seen 
with activation of other LPA receptors  (239, 240) . LPA 4  mediates ROCK -
 dependent cell aggregation and N - cadherin - dependent cell adhesion in the 
B103 rat neuroblastoma cell line heterologously expressing LPA 4   (240) . LPA 4  
induces intracellular cyclic adenosine monophosphate (cAMP) accumulation 
through the activation of G  α s , and was also the fi rst LPA receptor identifi ed 
that could evoke G  α s  activity  (239) . When coexpressed with c - Myc and Tbx2, 
LPA 4 , along with LPA 1  and LPA 2 , can transform MEF  in vitro  and is dependent 
on G  α i  - induced ERK and PI3K signaling  (241) . In addition, LPA 4  has been 
reported to control the differentiation of immortalized hippocampal progeni-
tor cells  (242) . Notably, LPA 4  negatively modulates cell motility, whereas LPA 
is traditionally seen as a chemoattractant, indicating that differential effects 
can be activated through specifi c LPA receptors for cell functions. LPA 4  spe-
cifi cally inhibits LPA - induced cell migration and LPA 4  - defi cient cells are 
hypersensitive to LPA exposure, with more lamellipodia formation and 
increased transwell movement  (243) . 

 Adult  Lpar4   − / −    mice do not display obvious abnormalities  (243) , however 
there is a decrease in the prenatal survival of  Lpar4  − / −    mice likely caused by 
hemorrhage associated with abnormal and dilated blood vessels  (244) . Simi-
larly, the lymphatic system of  Lpar4  − / −    mice is also affected, showing enlarged 
lymphatic vessels and dilated lymph sacs, which indicates an important role 
for LPA 4  in circulatory system development  (244) . Additionally, LPA 4  was 
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shown to be involved in osteogenesis regulation via the inhibition of osteo-
blastic differentiation of stem cells, using a human mesenchymal stem cell line 
that revealed increased alkaline phosphatase activity and mineralization in 
 LPAR4  knockdown cells   (245)  .  Lpar4  − / −    mice also exhibit increased trabecular 
bone volume, number, and thickness, suggesting that LPA 4  negatively regulates 
osteogenesis and may counteract LPA 1  - initiated osteogenesis  (106, 246) .  

   1.4.5.     LPA 5   

 LPA 5  was fi rst identifi ed in 2006  (24, 25) .  LPAR5  shares 35% homology with 
 LPAR4 , but is more dissimilar compared to  LPAR1 - 3   (25) .  LPAR5  (chromo-
somal locus 12p13.31) encodes a 372 amino acid protein, while the homolog 
in mice ( Lpar5 ) is located on chromosome 6F2.  Lpar5  is expressed in many 
murine tissues, with high expression in spleen, heart, platelets, gastrointestinal 
lymphocytes, and  dorsal root ganglia  ( DRG )  (24, 25, 247) . Expression of  Lpar5  
was also identifi ed specifi cally in the early embryonic mouse brain, with ubiq-
uitous expression later in development, suggesting a potential role for LPA 5  
in brain development  (127) . Recent mutagenesis studies have implicated 
several residues involved in LPA 5  ligand recognition, including one mutant 
that abolished receptor activation (R2.60N) and three separate mutants that 
greatly reduced receptor activation (H4.64E, R6.62A, and R7.32A)  (248) . 

 Like other GPCRs, LPA 5  possesses seven transmembrane domains and 
couples to G  α 12/13  and G  α q   (25) .  In vitro  experiments have shown that LPA 5  -
 expressing cell lines produce neurite retraction and stress fi ber formation, as 
well as receptor internalization, through the G  α 12/13  pathway  (25) . LPA 5  also 
activates G  α q  to increase intracellular calcium levels  (25) , as well as induce 
cAMP accumulation in LPA 5  - expressing cells. However, this cAMP accumula-
tion is unaltered by G  α s  minigene administration, suggesting alternative G 
protein involvement  (24, 25) . LPA 5  may also affect intestinal water absorption 
 (249) . In intestinal epithelial cells, LPA induced Na  +   - dependent water absorp-
tion through Na  +  /H  +   exchanger 3 (NHE3). This LPA effect is mediated through 
the interaction between LPA 5  and Na  +  /H  +   exchanger regulatory factor 2 
(NHERF2), which then recruit NHE3 to the microvilli  (249) . These data 
suggest a clinical possibility of using LPA or LPA receptor agonists against 
diarrheal syndromes.  

   1.4.6.     LPA 6   

 The most recent addition to the LPA receptor family was LPA 6 . Previously 
known as an orphan GPCR called P2Y5, LPA 6  is also a member of the P2Y 
group of receptors, along with LPA 4   (27) . A chimeric G  α 13  protein indicated 
that LPA induced LPA 6  - mediated cAMP accumulation, along with Rho -
 dependent cell morphology alterations, [ 3 H]LPA binding, and LPA - induced 
[ 35 S]guanosine 5 ′  - 3 - O - (thio)triphosphate binding  (26) . 2 - acyl - LPA does appear 
to have a higher activity to LPA 6  than 1 - acyl - LPA, and many of the tests 
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performed required unusually high concentrations of LPA (up to 10    µ M) to 
show an effect, compared to the nanomolar concentrations needed for activat-
ing LPA 1 – 5 . Activation of LPA 6  with LPA resulted in increased intracellular 
Ca 2 +   when LPA 6  was coexpressed with a promiscuous G  α s  protein, reduction 
in forskolin - stimulated [cAMP] I , and ERK1/2 activation  (250) . 

 When LPA 6  was fi rst characterized, it was reported as a genetic risk factor 
for an autosomal recessive form of hypotrichosis simplex, a complex of dis-
eases involving rare, familial forms of hair loss in humans. Several studies have 
now identifi ed mutations in LPA 6  in hypotrichosis patients  (27, 251, 252) . There 
have also been reports of lipase member H (LIPH) mutations in hypotrichosis 
that are associated with both a decrease in LPA production when expressed 
in cell culture as well as reduced or completely abrogated LPA 6  activation in 
cells expressing the receptor  (253, 254) . These fi ndings suggest LPA 6  as a can-
didate for therapeutic intervention in forms of human hair loss.   

   1.5.     LPA  RECEPTOR AGONISTS AND ANTAGONISTS 

 There are many different reported LPA receptor agonists and antagonists, all 
with a variety of selectivities and potency (Table  1.1 ). Most of these pharma-
ceutical modulators focus on LPA 1 – 3 , although a few recent studies have 
focused on LPA 4  with limited selectivity  (255, 256) . The vast majority of these 
studies have relied heavily upon  in vitro  assays for validation, but a few have 
been reported as functional  in vivo . For example, the LPA 3  - selective agonist 
OMPT enhanced murine renal ischemia – reperfusion injury, whereas the 
LPA 1/3  dual antagonist VPC12249 reduced the injury via LPA 3  inhibition  (77) . 
Currently, an antagonist to LPA 1  has shown effi cacy in inhibiting lung fi brosis 
in a bleomycin injury model  (257) , and the dual LPA 1/3  antagonist Ki16425 has 
demonstrated reduction of the metastatic potential of breast cancer in a xeno-
graft tumor model  (258) . A dual activity pan - LPA receptor antagonists/ATX 
inhibitors, named BrP - LPA, has also been used to initiate breast, lung, and 
colon cancer tumor regression  (112, 259, 260) . All of these compounds require 
further validation, particularly within specifi c assays, especially if they involve 
delivery  in vivo , where pharmacodynamic and pharmacokinetic issues are 
critical. Nevertheless, they indicate the feasibility of developing pharmaceuti-
cal agents that can therapeutically target LPA receptors, as proven for the 
lysophospholipid S1P receptor modulator FTY720 (fi ngolimod, Gilenya) that 
has become a medicine for the treatment of multiple sclerosis  (91) .    
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