
PART I

Mac OS X Developer Resources

CHAPTER 1: The Mac OS X Environment

CHAPTER 2: Developer Tools

CHAPTER 3: Xcode

CHAPTER 4: Interface Builder

�

�

�

�

c01.indd 1c01.indd 1 12/12/09 1:01:15 PM12/12/09 1:01:15 PM

CO
PYRIG

HTED
 M

ATERIA
L

c01.indd 2c01.indd 2 12/12/09 1:01:24 PM12/12/09 1:01:24 PM

1
 The Mac OS X Environment

 WHAT YOU WILL LEARN IN THIS CHAPTER:

 How the Mac OS X operating system is structured, including what

the major areas of the system are and how they work together

 How to use Mac OS X ’ s command - line interface

 How applications take advantage of the operating system services

on Mac OS X

 How Apple encourages a common look and feel for Mac OS X

applications

 Welcome to the wonderful world of Mac OS X, the next - generation operating system from
Apple Computer!

 The Mac OS X operating system powers modern Macintosh computers. After many long
years and a few scrapped attempts to modernize the older Mac OS operating system, Apple
released Mac OS X in April 2001. Since then, Apple has released a steady stream of upgrades
and system updates. This book was written around Mac OS X v10.6 Snow Leopard, the
latest version.

 To write software for Mac OS X, you need to know your way around the system. By now
you may already be familiar with Mac OS X ’ s applications and user interface style. Those
things all rest on top of a number of subsystems and services that make up the Mac OS X
operating system.

➤

➤

➤

➤

c01.indd 3c01.indd 3 12/12/09 1:01:24 PM12/12/09 1:01:24 PM

4 ❘ CHAPTER 1 THE MAC OS X ENVIRONMENT

 INTRODUCING THE MAC OS X

 What comes to mind when you think of Mac OS X? Is it the applications you use? Perhaps you
recall Mac OS X ’ s distinctive user interface? Or maybe you think of Mac OS X ’ s stability? In truth,
Mac OS X embodies all these things.

 The Mac OS X operating system is often described as a collection of layers, as seen in Figure 1 - 1.

 You are probably already familiar with the topmost layer: the
applications that run on Mac OS X (such as Mail, iTunes, Safari,
and so on). These applications are all written against a collection
of application frameworks. These frameworks are special
libraries that provide the code and all the other resources (icons,
translated strings, and so on) to perform common tasks. For
example, the Cocoa framework contains a number of resources
necessary to make a Cocoa application.

 All Mac OS X applications use graphics to some extent, ranging
from simply presenting its user interface to processing graphical
data such as QuickTime movies. The system provides several specialized libraries for working with
graphics and graphics fi les.

 These layers rest on the broad shoulders of the core operating system, which at the lowest level
is responsible for making your Macintosh run. For example, the core OS handles reading from
and writing to your hard drive and random access memory (RAM), it manages your network
connections, it powers down the computer when it falls to “ sleep, ” and so on. In fact, any program
that talks to your hardware in any way ultimately goes through the core OS.

 Throughout this book you examine Mac OS X in detail through Slide Master, an application that
builds and displays photo slideshows. You will build Slide Master bit - by - bit as you learn more about
how the elements of Mac OS X come together. The Slide Master application and its source code can
be downloaded from Wiley ’ s web site; so you can check your work against our complete solution as
you go.

 This is a good time to take a quick tour of Slide Master. You can download Slide Master from
Wiley ’ s web site, make a slideshow, and view your handiwork. In doing so, you touch on all the
major areas of the Mac OS X operating system.

TRY IT OUT Slide Master

1. Download the fi les for this chapter from www.wrox.com. Refer to the Introduction for instructions
on fi nding the fi les you need from the Wrox web site. You can search for the book by its ISBN
number: 978-0-470-57752-3. You are looking for a fi le named MacOSXProg Chapter01.zip.

2. Uncompress the MacOSXProg Chapter01.zip archive using your favorite decompression tool.
(Mac OS X supports uncompressing .zip fi les directly in the Finder.) Inside you will fi nd the
Slide Master application, a folder of pictures called Images, and a folder of source code.

Applications

Frameworks and UI

Graphics and Media

Core Operating System

FIGURE 1-1

c01.indd 4c01.indd 4 12/12/09 1:01:29 PM12/12/09 1:01:29 PM

3. Run the Slide Master application by double-clicking it in Finder. The application opens an unti-
tled document window.

4. Add the pictures in the Images folder to Slide Master by choosing Slide Show ➪ Add Slide. You
can select all the fi les at once from the open panel. The images appear in a drawer to the side of
the document window and the main window displays the selected image, as shown in Figure 1-2.
You can use the arrow keys to change the selection.

FIGURE 1-2

5. Export a slideshow as a QuickTime movie by choosing File ➪ Export. Slide Master writes out a
QuickTime movie and opens it with QuickTime Player.

6. Save your document by choosing File ➪ Save.

How It Works

Slide Master is a document-based application, which means that it provides a user interface for indi-
vidual documents. In this case, documents are collections of slides that you can sift through and export
as QuickTime movies. Slide Master documents can be opened, saved, and closed using the File menu.
Other document-based applications also support printing, although Slide Master does not.

Introducing the Mac OS X ❘ 5

c01.indd 5c01.indd 5 12/12/09 1:01:30 PM12/12/09 1:01:30 PM

6 ❘ CHAPTER 1 THE MAC OS X ENVIRONMENT

Much of the functionality you see here comes from Slide Master’s application framework: Cocoa. The
Cocoa application framework provides the implementation for the things you see on the screen: win-
dows, pictures, menus, buttons, and so on. Cocoa also provides support for managing the document:
reading and writing document fi les, closing the document when its window is closed, and routing menu
commands to the selected document. Finally, Cocoa provides tools for storing application data,
including working with user preferences and storing lists of items in memory.

Of course Slide Master uses QuickTime to generate movie fi les. You are probably already familiar
with QuickTime, both through QuickTime Player and through web browsers that support the display
of QuickTime movies. But QuickTime also makes most, if not all, of its functionality available to
 applications through its framework interface.

When you save a Slide Master document, the document fi le contains a list of image fi les that are part of
your slideshow, not the actual images themselves. As a result, these documents can be relatively small.
Behind the scenes, Slide Master uses aliases to track these image fi les so that they can be found if the
fi les are moved around on your disk. These aliases are the same aliases you can create in the Finder,
although they are embedded in your document rather than saved separately to disk.

You learn more about Cocoa, QuickTime, and other technologies later in this chapter, and as you
 proceed through this book.

 THE CORE OPERATING SYSTEM

 The heart of Mac OS X is based on the Unix operating system. Unix was developed by AT & T in the
early 1970s. In those days, computers were large and expensive, and Unix was intended as a way to
share computing resources between multiple users at once. It was likely that an organization at that
time could afford only one computer for all its members, and Unix provided a way for people to use
that computer simultaneously without getting in each other ’ s way.

 Over the years, Unix development has split off into many distinct “ fl avors ” of Unix, all headed
up by different groups of people, all with somewhat different goals. BSD and Linux are two such
examples. Each version of Unix shares some portion of the original vision and typically implements
a common set of libraries and commands.

 Unix is regarded as a robust operating system whose scalability and innate networking capability
make it ideal for use as a server. In fact, most of the modern - day Internet is powered by Unix servers
of one version or another. It turns out that these features are also desirable in modern desktop
operating systems. So it is no surprise that when Apple was seeking to modernize the original
Macintosh operating system, it turned to Unix.

 Mac OS X ’ s core operating system is a Unix fl avor called Darwin . As with most Unix fl avors,
Darwin ’ s source code is freely available, allowing interested parties to see exactly how the core
operating system works. Apple maintains several resources for programmers interested in Darwin,
including a way for people - at - large to contribute changes and bug fi xes back to Apple.

c01.indd 6c01.indd 6 12/12/09 1:01:31 PM12/12/09 1:01:31 PM

 Although Mac OS X tries to hide Darwin from the average user, there are some places where the
Unix command line pokes through. The most obvious example is the Terminal application, found
in /Application/Utilities . You can use Terminal to work directly with Darwin ’ s command - line
tools. A more subtle example includes the way you describe fi le locations on Mac OS X: by using a
 fi le path . A fi le path is a string of text that describes a fi le ’ s location.

 The original Mac OS operating system abhorred fi le paths and tried its best to avoid them; but even
so, it devised a convention for describing a path to a fi le. Mac OS fi le paths are composed of a disk
volume name followed by several folder names and possibly a fi le, all separated by colons, as in
 Macintosh HD:Applications:Utilities:Terminal.app .

PROGRAM, PROCESS, APPLICATION — WHAT’S THE DIFFERENCE?

Much of the time you can use the terms program and process interchange-
ably to refer to something that’s executable. But these terms do have distinct
 defi nitions. The word program refers to a fi le on disk containing a series of
computer instructions. When this fi le is executed (or run, launched, and so on),
the computer starts processing the instructions in the fi le. Process describes the
act of executing the fi le. To borrow an example from the kitchen, it may help to
think of a program as a recipe for baking a cake, and the process as the act of
 baking that cake.

Ultimately, an application is just a program. On Mac OS X, however, programs
can take many forms: simple tools typed in a command-line interface, a program
you can double-click in the Finder, a plug-in fi le loaded by other programs, and
so on. To avoid some confusion, we use the term application in this book to refer
 specifi cally to programs that appear in the Finder; we use the term program when
no distinction is necessary.

 Although there are places where this old convention still exists, Mac OS X mostly uses Unix ’ s
method of describing fi le paths: a series of directories from the root directory all separated by
slashes, as in /Applications/Utilities/Terminal.app . The root directory contains all the fi les
and directories on a Mac OS X system and is referred to simply as / . The path /Applications
refers to a fi le or directory named Applications in the root directory. A path that begins with
the root slash is called an absolute (or full) path because it describes a precise fi le location.
If the root slash is not included, the path is called a relative path because it is relative to your
current location.

 The Core Operating System ❘ 7

c01.indd 7c01.indd 7 12/12/09 1:01:31 PM12/12/09 1:01:31 PM

8 ❘ CHAPTER 1 THE MAC OS X ENVIRONMENT

NOTE If you look in /Applications/Utilities in the Finder, you might notice
that there is no Terminal.app; instead there ’ s just a program called Terminal.
By default, Finder and other applications hide fi le extensions such as .app and
.txt from you. So the application at /Applications/Utilities/Terminal.app
appears simply as Terminal. The Core OS makes no attempt to hide extensions
from you; if you browse the fi le system using Mac OS X ’ s command - line inter-
face, you can see all these extensions. You learn more about Mac OS X ’ s
 command - line interface later in this chapter.

 Darwin is composed of several parts, including
a kernel, a system library, and numerous
commands, as illustrated in Figure 1 - 3.

 The Kernel

 The heart of a Unix operating system is its kernel .
The kernel is the program that loads when the
computer is fi rst turned on and is responsible for
managing all the hardware resources available
to the computer. The kernel is also responsible
for running the other programs on the system,
scheduling process execution so that they can
share the central processing unit (CPU) and other
resources, and preventing one process from seeing what another process is doing. These last two
responsibilities are more commonly known as pre emptive multi tasking and protected memory ,
respectively.

 Because Unix prevents programs from accessing the computer hardware or other programs directly,
it protects against the most common forms of system crashes. If a process misbehaves in one way
or another, the system simply terminates the process and continues on its way. In other words, the
misbehaving process crashes. In some operating systems, a misbehaving process can stomp all over
other applications, or even break the operating system itself, before the system is able to terminate
the process. As a result, poorly written programs can cause the entire computer to freeze or crash.
Not so on Unix; because a process cannot modify other processes, including the kernel, there is
virtually no risk of a bad process bringing down the entire operating system.

 Although the kernel is responsible for accessing hardware, much of the knowledge of specifi c
hardware details is delegated to device drivers . Device drivers are small programs that are loaded
directly into the kernel. Whereas the kernel might know how to talk to hard disks, a specifi c
device driver generally knows how to talk to specifi c makes and models of hard disks. This
provides a way for third parties to add support for new devices without having to build it into
Apple ’ s kernel. Mac OS X includes default drivers for talking to a wide variety of devices,
so much of the time you won ’ t need to install separate drivers when you install new third - party
hardware.

Applications

Frameworks and UI

Graphics and Media

Core Operating System

Command-
line Tools

System Library

Kernel

FIGURE 1-3

c01.indd 8c01.indd 8 12/12/09 1:01:32 PM12/12/09 1:01:32 PM

 The System Library

 The kernel is responsible for critical functions such as memory management and device access, so
programs must ask the kernel to perform work on its behalf. Programs communicate with the kernel
through an application program interface (API) provided by a special library. This library defi nes
some common data structures for describing system operations, provides functions to request these
operations, and handles shuttling data back and forth between the kernel and other programs. This
library is simply called the system library .

 As you might imagine, every program on Mac OS X links against this library, either directly or
indirectly. Without it, a program would be unable to allocate memory, access the fi le system, and
perform other simple tasks.

WHAT IS AN API?

All libraries and frameworks provide a collection of functions and data structures
that programs can use to perform a task. For example, the system library provides
functions for reading from fi les, and QuickTime provides functions for playing
back QuickTime movies. These functions and data structures are collectively
known as the library’s application program interface, or API.

 The system library takes the form of a dynamic library installed as /usr/lib/libSystem.B.dylib .
Mac OS X also includes a framework called System.framework in /System/Library/Frameworks
that refers to this library. The fi les that defi ne the Darwin interface live in the /usr/include
directory. By the way, neither of these directories is visible from Finder; Mac OS X actively hides
much of the complexity of Darwin from the average Mac user.

 Unix Commands

 Unix users interact with their systems using command - line tools. These tools typically perform
very specialized functions, such as listing fi les in a directory or displaying fi les on - screen. The
advantage of supplying many specialized tools lies in the way commands can be combined to form
more sophisticated commands. For example, a command that lists the contents of a directory can be
combined with a program that lists text in “ pages ” for easy reading.

 As you have learned, you use the Terminal application to gain access to Darwin ’ s command - line
tools.

 The following Try It Out looks at Darwin ’ s command - line interface. You start by browsing fi les
using the command line, looking up command information in Darwin ’ s online help system, and
running a command that displays its own arguments.

 The Core Operating System ❘ 9

c01.indd 9c01.indd 9 12/12/09 1:01:47 PM12/12/09 1:01:47 PM

10 ❘ CHAPTER 1 THE MAC OS X ENVIRONMENT

TRY IT OUT Experiencing Darwin’s Command-Line Interface

1. In the Finder, go to Applications ➪ Utilities and launch the Terminal application. You will see a
few status lines of text ending in a command-line prompt (your lines may look slightly different
from what is shown here):

Last login: Sat May 15 23:28:46 on ttys000
Macintosh:~ sample $

2. When you’re using Terminal, there are commands that let you navigate the fi le system. The
Terminal application always keeps track of where you are, maintaining the notion of your current
directory. You can display the contents of the current directory using the ls (list) command that
follows. As a matter of fact, the Terminal window is currently “in” your home directory. Your
results may vary from what’s printed here, but they will match what you see in the Finder when
you browse your home directory. (Throughout this book, any text you are asked to type on the
command line is indicated in bold.)

Macintosh:~ sample $ ls
Desktop Downloads Movies Pictures Sites
Documents Library Music Public

3. You can display more information about the fi les in your home directory by passing additional
arguments, called fl ags, into ls. By using ls –l, you can build what is often called a long list.
Again, your results may differ from what is printed here:

Macintosh:~ sample$ ls -l
total 0
drwx------+ 4 sample staff 136 Jul 16 01:49 Desktop
drwx------+ 10 sample staff 340 Jul 22 00:10 Documents
drwx------+ 6 sample staff 204 Jul 21 10:22 Downloads
drwx------+ 31 sample staff 1054 Jul 16 00:05 Library
drwx------+ 3 sample staff 102 Jul 15 09:19 Movies
drwx------+ 4 sample staff 136 Jul 18 23:34 Music
drwx------+ 4 sample staff 136 Jul 15 09:19 Pictures
drwxr-xr-x+ 5 sample staff 170 Jul 15 09:19 Public
drwxr-xr-x+ 5 sample staff 170 Jul 15 09:19 Sites

4. You can view the contents of a specifi c directory by specifying its name as the argument to ls.
Note that this argument can co-exist with other fl ags you might want to use:

Macintosh:~ sample$ ls -l Library
total 0
drwx------+ 11 sample staff 374 Jul 18 23:37 Application Support
drwx------+ 2 sample staff 68 Jul 15 09:19 Assistants
drwx------+ 5 sample staff 170 Jul 15 09:19 Audio
drwx------ 4 sample staff 136 Jul 22 00:12 Autosave Information
drwx------ 23 sample staff 782 Jul 20 23:39 Caches
drwxr-xr-x 6 sample staff 204 Jul 15 15:44 Calendars
drwx------+ 2 sample staff 68 Jul 15 09:19 ColorPickers
drwx------+ 3 sample staff 102 Jul 15 09:19 Compositions
drwxr-xr-x 3 sample staff 102 Jul 21 10:35 Cookies
drwx------+ 3 sample staff 102 Jul 15 09:19 Favorites

c01.indd 10c01.indd 10 12/12/09 1:01:47 PM12/12/09 1:01:47 PM

drwx------+ 9 sample staff 306 Jul 18 23:37 FontCollections
drwx------+ 2 sample staff 68 Jul 15 09:19 Fonts
drwxr-xr-x 2 sample staff 68 Jul 16 00:05 Fonts Disabled
drwx------+ 3 sample staff 102 Jul 15 09:19 Input Methods
drwx------+ 2 sample staff 68 Jul 15 09:19 Internet Plug-Ins
drwx------+ 2 sample staff 68 Jul 15 09:19 Keyboard Layouts
drwxr-xr-x 4 sample staff 136 Jul 18 23:35 Keychains
drwx------ 3 sample staff 102 Jul 15 12:29 Logs
. . .

5. Two new questions immediately come to mind: exactly what is ls -l telling you, and what other
fl ags can you pass into ls? The answer to both of these questions resides in Darwin’s online help
system, which is better known as the Unix Manual. You can consult the manual by using the man
command and including the name of another command as the argument:

Macintosh:~ sample$ man ls
LS(1) BSD General Commands Manual LS(1)
NAME
 ls - list directory contents
SYNOPSIS
 ls [-ABCFGHLPRTWZabcdfghiklmnopqrstuwx1] [file ...]
DESCRIPTION
 For each operand that names a file of a type other than directory, ls
 displays its name as well as any requested, associated information. For
 each operand that names a file of type directory, ls displays the names
 of files contained within that directory, as well as any requested, asso-
 ciated information.
 If no operands are given, the contents of the current directory are dis-
 played. If more than one operand is given, non-directory operands are
 displayed first; directory and non-directory operands are sorted sepa-
 rately and in lexicographical order.
 The following options are available:
 -A List all entries except for . and ... Always set for the super-
:

6. The arguments you are allowed to pass to a Unix command depend entirely on the command. As
you have seen, the ls command accepts fi lenames, and the man command accepts the names of
other Unix commands. The echo command accepts arbitrary arguments and simply repeats them
on the screen. It turns out that this command is especially useful when writing shell scripts, as
you see in Chapter 11.

Macintosh:~ sample$ echo hello, my name is sample
hello, my name is sample

How It Works

In spite of appearances, Terminal doesn’t understand any of the commands you just entered. In fact,
Terminal’s only job is to read input from your keyboard and display text coming from a special
 program called a shell. Terminal starts your shell for you when its window appears. The shell is a
 special program that provides a command-line prompt, parses instructions into command names
and lists of arguments, runs the requested commands, and passes back the resulting text.

 The Core Operating System ❘ 11

c01.indd 11c01.indd 11 12/12/09 1:01:48 PM12/12/09 1:01:48 PM

12 ❘ CHAPTER 1 THE MAC OS X ENVIRONMENT

When the shell has decided which command to launch, the shell starts that command and passes the
remaining fl ags and arguments into the command for further evaluation. That’s why ls, man, and echo
all interpret their arguments in different ways. Flags are also interpreted by individual commands, so
it’s not uncommon to use a particular fl ag in more than one Unix command, although the fl ag might
have different meanings.

One thing to watch out for: Unix shells historically are case-sensitive, meaning that the command LS
is not the same as ls, the directory library is not the same as the directory Library, and so on. Mac
OS X’s default fi le system, HFS+, is case-insensitive, and much of the time the shell can fi gure out what
you mean. But if you had some trouble with the commands in the preceding Try It Out, make sure you
entered the text exactly as it appears here.

You have only just scratched the surface of what the shell can do. You will continue to learn more
about the shell as you continue through the book.

GRAPHICS AND MEDIA LAYERS

 Much of the user experience on Mac OS X is built around graphics. All the elements you see on the
screen — windows, menus, buttons, and text — are graphics. It comes as no surprise that Mac OS
X has several subsystems dedicated to graphics, as shown in Figure 1 - 4.

 Mac OS X provides a rich graphics library for doing two -
 dimensional drawings, called Quartz 2D. The Quartz 2D
library is specifi c to Mac OS X, although it uses industry -
 standard graphic formats, such as PDF. Mac OS X also
includes OpenGL for those interested in three - dimensional
drawings. Although popularized by cross - platform video
games, Mac OS X itself uses OpenGL for certain operations.
Finally, QuickTime is built into Mac OS X, providing
support for what Apple occasionally calls four - dimensional
drawing. QuickTime is also available for Microsoft Windows
operating systems, and for older versions of Mac OS. All these
programming libraries rely on the Quartz Compositor for
actually drawing their content.

 The following sections look at these subsystems in more detail.

 The Quartz Compositor

 The Quartz Compositor is a private system service that oversees all graphics operations on Mac
OS X. Apple does not provide a means for developers to interact with the Quartz Compositor
directly, so we won ’ t look at it in detail here. The Quartz Compositor plays such an important role
in Mac OS X ’ s graphic strategy, however, that it pays to understand what it does.

Frameworks and UI

Applications

Core Operating System

Quartz Compositor

Quartz 2D QuickTimeOpenGL

FIGURE 1-4

c01.indd 12c01.indd 12 12/12/09 1:01:48 PM12/12/09 1:01:48 PM

 Among its many duties, the Quartz Compositor handles these tasks:

 Manages all the windows on your screen — Although the actual look of the window may
come from an application or an application framework such as Cocoa or Carbon, the
Quartz Compositor provides most of the window ’ s guts: where the window sits on the
screen, how the window casts its drop shadow, and so on.

 Ensures that graphics are drawn appropriately, regardless of which library or libraries an
application may be using — In fact, an application may use commands from Quartz 2D,
OpenGL, and QuickTime when drawing a given window. The Quartz Compositor ensures
that the drawing reaches the screen correctly.

 Collects user events from the core operating system and dispatches them to the Application
Frameworks layer — User events such as keystrokes and mouse movements are collected
from drivers in the core operating system and sent to the Quartz Compositor. Some of
these events are passed along where they may be interpreted by the application. The Quartz
Compositor will also send its own special events to the application for responding to special
conditions, such as when the user brings the application to the foreground or when a win-
dow needs to be updated.

 The Quartz Compositor was designed with modern best practices for graphics in mind. For
example, the drawing coordinate space uses fl oating - point values, allowing for sub - pixel precision
and image smoothing. Compositing operations can take advantage of available hardware.
Transparency is supported natively and naturally in all drawing operations.

 Apple has been able to capitalize on this architecture to provide a number of exciting features,
such as Quartz Extreme and Expos é . Quartz Extreme allows graphic operations to take full
advantage of the graphics processing unit (GPU) found on modern video cards to provide
hardware - accelerated drawing. This has two benefi ts. The GPU is specially optimized for
common drawing operations, so drawing is much faster than when using the computer ’ s CPU.
Second, by offl oading drawing onto the GPU in the video card, Quartz Extreme frees up the
CPU for other tasks. Although in the past, developers needed to use OpenGL to do hardware -
 accelerated drawing, Quartz Extreme provides this support to Quartz 2D as well, and ultimately
to QuickTime. Expos é allows the user to quickly view all windows at once. It is a very handy
way to fi nd a specifi c window that might be buried underneath a number of other windows, as
shown in Figure 1 - 5.

 The Quartz Compositor is one of the most fundamental parts of Mac OS X. Although you will not
be working with it directly in this book, you will feel its infl uence in almost everything you do.

Graphics and Media Layers ❘ 13

c01.indd 13c01.indd 13 12/12/09 1:01:49 PM12/12/09 1:01:49 PM

14 ❘ CHAPTER 1 THE MAC OS X ENVIRONMENT

FIGURE 1-5

WHAT ARE PDF FILES?

PDF stands for Portable Document Format. The PDF standard was invented by
Adobe as a means for describing documents that can be displayed or printed
 virtually anywhere. The fi le specifi cation itself is open, meaning the public-at-large
can view the format and write their own tools for reading and generating PDF
documents. Adobe continues to own and develop the standard.

Mac OS X reads and writes PDF documents as its preferred native image fi le
 format. You can save any document in PDF format simply by “printing” it and
clicking Save as PDF in Mac OS X’s print panel. PDF fi les can be displayed in Mac
OS X’s Preview application.

c01.indd 14c01.indd 14 12/12/09 1:01:49 PM12/12/09 1:01:49 PM

 Quartz 2D

 The Quartz 2D graphics library is Mac OS X ’ s native graphics library. It is responsible for all the
two - dimensional drawing performed by Mac OS X. As you might imagine, Quartz 2D provides an
interface for drawing two - dimensional shapes, such as lines and rectangles, and compositing images.
It is also capable of drawing sophisticated curves, arbitrary shapes expressed as paths or vectors, and
color gradients. Quartz 2D also includes support for generating and displaying PDF fi les.

 The Quartz 2D programming interface is provided by CoreGraphics, which is part of the
ApplicationServices framework: /System/Library/Frameworks/ApplicationServices.framework .
The Quartz 2D API is very powerful and is best approached by an experienced programmer. In this
book, you focus more on the drawing API in the Application Frameworks layer, which is a little
easier to use.

 OpenGL

 OpenGL is a powerful, cross - platform graphics library for doing 2D and 3D graphics.
Although OpenGL is owned by SGI, the OpenGL specifi cation is governed by an independent
consortium called the OpenGL Architecture Review Board — ARB for short. As a voting member
of the ARB, Apple contributes to the OpenGL community as a whole, in addition to improving the
state of OpenGL on Mac OS X.

 One of OpenGL ’ s most compelling features is its tight integration with video card technology. Many
OpenGL commands, such as image and shape drawing, blending, and texture - mapping, can be
performed directly by the video card ’ s GPU. Recall that the GPU is optimized to perform these operations
very quickly, and after graphic operations have been unloaded onto the video card, the CPU is free to
perform other computational functions. The net result of this tight integration is very fast drawing.

 Performance combined with its cross - platform nature makes OpenGL uniquely suited for certain
kinds of situations, including scientifi c research, professional video editing, and games. If you have
played a 3D video game on Mac OS X, you ’ ve seen OpenGL in action. For that matter, if you have
used one of Mac OS X ’ s built - in screen saver modules, you ’ ve seen OpenGL.

 OpenGL ’ s programming interface is spread across two frameworks: core OpenGL functionality lives
in the OpenGL framework (/System/Library/Frameworks/OpenGL.framework), and a basic cross -
 platform Application Framework called GLUT resides at /System/Library/Frameworks /GLUT
.framework . As with Quartz 2D, the OpenGL API is fairly advanced and better suited for more
experienced programmers.

 QuickTime

 Apple Computer invented QuickTime back in 1991 as a way to describe, author, and play back
video on Macintosh computers running System 6 and System 7. Since then, QuickTime has exploded
into a cross - platform library encompassing a variety of multimedia fi le formats and algorithms.
QuickTime provides tools for working with digital video, panoramic images, digital sound, MIDI,
and more. It has spawned entire genres of software, including CD - ROM adventure games, digital
audio/video editing suites, and desktop video conferencing.

Graphics and Media Layers ❘ 15

c01.indd 15c01.indd 15 12/12/09 1:01:50 PM12/12/09 1:01:50 PM

16 ❘ CHAPTER 1 THE MAC OS X ENVIRONMENT

 Mac OS X increased Apple ’ s commitment to QuickTime by building it directly into the operating
system. Though versions of QuickTime shipped with Mac OS releases since the earliest days of
QuickTime, Mac OS X actually relies on QuickTime in ways earlier OS versions did not. For
example, Finder uses QuickTime to allow you to preview video and audio fi les directly in the Finder
when using column view. Mac OS X ’ s Internet connectivity apps, including iChat and Safari, make
substantial use of QuickTime.

 Mac OS X Snow Leopard introduces QuickTime X, integrating QuickTime more tightly into
the Mac OS X architecture than before. Although QuickTime has taken advantage of available
video hardware resources for years, QuickTime X has been redesigned around the multiple CPUs
and powerful programmable GPUs found in current Macintosh computers. QuickTime X also
reintroduces some simple editing features into QuickTime Player, so you can make and edit videos
without additional software.

 The QuickTime X API is supplied by the QTKit framework: /System/Library/Frameworks/
QTKit.framework . The QuickTime programming interface has undergone nearly 20 years of
evolution, and many of its concepts are quite advanced.

 Core Animation

 Animations can make tasks more appealing or more understandable. When you activate Expos é,
all your windows reorganize on your screen with a sweeping animation. When you minimize a
document, it fl ows into the Dock. When using Cover Flow in the Finder or in iTunes, fi les fl ip
smoothly to and fro.

 Mac OS X v10.5 Leopard introduced a new technology called Core Animation to manage common
animations. Core Animation takes fl at, two - dimensional images called “ layers ” and basically pushes
them around. Layers are drawn using the GPU, freeing up the CPU to manage the actual business of
animation. You can use Core Animation to animate a number of individual parameters, such as the
layer ’ s position, its angle of rotation (in three - dimensional space), its size, how transparent it is, and so on.

 The Core Animation API is part of the QuartzCore framework: /System/Library/Frameworks/
QuartzCore.framework .

 APPLICATION FRAMEWORKS AND UI

 All applications rely on common interface elements to communicate with the user. By packaging
these elements in a library, an operating system can make sure all applications look and behave
the same way. And the more functionality the operating system provides “ for free, ” the less work
application developers need to do themselves.

 Toward that end, Mac OS X provides a number of application frameworks, as shown in
Figure 1 - 6, upon which programmers can build their applications: Cocoa, Carbon, and the Java
JDK. These frameworks, described in more detail in the following sections, all provide the basic
concepts essential for application design: how events are processed by the application, how window
contents are organized and drawn, how controls are presented to the user, and so on.

c01.indd 16c01.indd 16 12/12/09 1:01:51 PM12/12/09 1:01:51 PM

 It is important that all applications present their user interface
(UI) in a consistent manner, regardless of which application
framework the program uses. In other words, all windows,
menus, buttons, text fi elds, and so on should look and behave
the same way on Mac OS X. These UI elements together
on Mac OS X form a distinctive user experience that Apple
calls the Aqua user interface. Consistency among apps is so
important that Apple has published guidelines enumerating
the proper way to use Aqua user interface elements; these
guidelines are called the Apple Human Interface Guidelines.

 Each of these application frameworks is appropriate in
different situations. In addition, these application frameworks are not mutually exclusive. An
application may draw on features from all three frameworks.

 Cocoa

 The Cocoa application framework provides programmers with a means of building feature - rich Mac
OS X applications quickly. The roots of Cocoa lie in NeXTSTEP, the operating system that powered
NeXT computers in the early 1990s. When Apple announced Mac OS X in 1998, the API was
re - christened Cocoa, and introduced alongside Carbon as Mac OS X ’ s application development strategy.

 Cocoa is an object - oriented API written in Objective - C, an object - oriented language descended
from ANSI C and Smalltalk. Programmers work with Cocoa by creating objects and hooking
them together in various ways. Objects provide a convenient way for programmers to extend basic
application functionality without having to design the entire application from the ground up. Put
another way, Cocoa allows you to focus on writing the code that makes your application unique,
rather than forcing you to write the code that all applications must share.

 The Cocoa API is divided between two frameworks:

 The AppKit framework (/System/Library/Frameworks/AppKit.framework): Provides
high - level objects and services for writing applications, including Aqua UI elements.

 The Foundation framework (/System/Library/Frameworks/Foundation.framework):
Provides objects and services useful for all programs, such as collection data types, Unicode
string support, and so on.

 These features are divided into two separate frameworks so programs can use Foundation ’ s utility
classes without having to bring in a full graphical user interface (GUI). For example, a command -
 line tool written in Objective - C might simply use Foundation.

 Carbon

 What we know as Carbon today started out as the programmatic interface to the original
Macintosh operating system. Although suffi cient for writing Macintosh applications, the API
had some problems that made transitioning to a new core operating system impossible. In 1998,

➤

➤

Aqua User Interface

Applications

Core Operating System

Graphics and Media

Cocoa Java JDKCarbon

FIGURE 1-6

Application Frameworks and UI ❘ 17

c01.indd 17c01.indd 17 12/12/09 1:01:51 PM12/12/09 1:01:51 PM

18 ❘ CHAPTER 1 THE MAC OS X ENVIRONMENT

Apple set out to revise the traditional Mac OS API and eliminate these problems, which would give
existing Macintosh developers an easy path for migrating their code to Mac OS X. This revised API
was called Carbon.

 It used to be the case that you needed to work with Carbon to do a number of useful things in
Mac OS X. For example, programmers interested in working with aliases, customized menus, or
QuickTime all needed to use Carbon, even if they were writing a Cocoa application. Many of these
things are no longer true in Mac OS X Snow Leopard. Cocoa programmers can now access things
either through Cocoa or through specialized frameworks, such as QTKit.

 If you are interested in porting a traditional Mac OS application to Mac OS X, Carbon is a good
place to start. However, Apple has begun encouraging programmers to move away from Carbon
altogether. Many Carbon technologies simply don ’ t play well with modern hardware such as
accelerated GPUs or modern software such as Core Animation. Apple has chosen to stop investing
in Carbon to spend time on newer, more interesting technology.

 The Carbon API is built around a collection of C interfaces, spread across several frameworks,
including the Carbon framework (/System/Library/Frameworks/Carbon.framework), the
Core Services framework (/System/Library/Frameworks/CoreServices.framework), and
the ApplicationServices framework (/System/Library/Frameworks/ApplicationServices.
framework). The Carbon framework includes a number of interfaces for working with high -
 level concepts, such as UI elements, online help, and speech recognition. CoreServices provides
interfaces for working with lower - level Carbon data structures and services. ApplicationServices fi ts
somewhere between the other two, building on CoreServices to provide important infrastructure
supporting the high - level interfaces in the Carbon framework, such as Apple events, font and type
services, and speech synthesis.

 Java JDK

 Mac OS X comes with built - in support for Java applications. Java is an object - oriented
programming language created by Sun Microsystems for developing solid applications that can
deploy on a wide variety of machines. Java itself is best thought of as three separate technologies:
an object - oriented programming language, a collection of application frameworks, and a runtime
environment, as described in the following list:

 Java the programming language — Designed to make writing programs as safe as possible.
Toward that end, Java shields the programmer from certain concepts that often are a
source of trouble. For example, because programmers often make mistakes when accessing
 memory directly, Java doesn ’ t allow programmers to access memory in that way.

 Java the application framework — Provides a number of ways to develop applications using
the Java programming language. Java and Cocoa are similar in many ways; for example,
many of the objects and concepts in Cocoa also appear in Java.

 Java the virtual machine — Provides the runtime environment, called a virtual machine,
in which all Java programs live. This virtual machine protects Java programs from subtle
differences one encounters when trying to deploy programs on a variety of systems. For

c01.indd 18c01.indd 18 12/12/09 1:01:52 PM12/12/09 1:01:52 PM

example, different systems may have widely divergent hardware characteristics, supply dif-
ferent kinds of operating system services, and so on. Java Virtual Machine levels the playing
fi eld for all Java apps, so that Java programmers do not need to worry about these issues
themselves.

 Java ’ s greatest strength is that it enables you to easily write applications that are deployable on
a wide variety of computers and devices. In this respect, Java has no equal. On the other hand,
for the purposes of writing a Mac OS X – specifi c application, the Java application frameworks
have some serious drawbacks. Because Java must deploy on several different computers, Java ’ s
approach to application design tends to focus on commonly available technologies and concepts.
It is diffi cult to gain access to features unique to Mac OS X, such as the power of CoreGraphics,
through Java ’ s application frameworks, because those features are not available on all Java
systems. Because this book focuses on technologies specifi c to Mac OS X, we will not examine
Java in further detail.

 APPLE HUMAN INTERFACE GUIDELINES

 All Mac OS X programs share a specifi c look and feel that makes them instantly recognizable as
Mac OS X programs. This creates the illusion that all the applications on your system were designed
to work together — even though your applications may have been designed by different people, all
with different interests. After you learn how to use one application, you have a pretty good idea of
how to use all applications.

 Apple provides a document, called the Apple Human
Interface Guidelines, which spells out how Mac OS
X applications should look and behave. Applications
written against one of Mac OS X ’ s application
frameworks start with a bit of an advantage: all the
UI elements provided by these frameworks meet
the specifi cations in the Apple Human Interface
Guidelines. All the controls in Figure 1 - 7 are drawn
using the Cocoa application framework; notice that
they all look like Mac OS X controls.

 Unfortunately, simply using the right controls isn ’ t enough to make an Aqua - compliant interface.
A large part of UI design is in collecting and organizing controls so they make sense. The Apple
Human Interface Guidelines provide metrics for how far apart related controls and groups of
controls should be and where certain kinds of controls should go. The Aqua guidelines specify
specifi c fonts and font sizes for UI elements. It also specifi es when certain features are appropriate,
such as default buttons, hierarchical menu items, and so on. Figure 1 - 8 illustrates the same controls
from Figure 1 - 7, laid out in compliance with the Apple Human Interface Guidelines — note that it
looks much cleaner.

FIGURE 1-7

Apple Human Interface Guidelines ❘ 19

c01.indd 19c01.indd 19 12/12/09 1:01:52 PM12/12/09 1:01:52 PM

20 ❘ CHAPTER 1 THE MAC OS X ENVIRONMENT

 The information in the Apple Human Interface
Guidelines is quite extensive. It covers all the user
interface elements available within Mac OS X, such as
windows, menus, controls, separators, text labels, and
icons. All Mac OS X programmers should be familiar
with the Apple Human Interface Guidelines to know
what correct Aqua user interfaces are supposed to look
like, and how they ’ re supposed to behave.

 SUMMARY

 You have seen how the major elements of Mac OS X come together on your computer. The
applications you use every day are but one element. These applications are built on application
frameworks, system services, and ultimately
Mac OS X ’ s core operating system; all
these pieces contribute to your application
experience. The high - level picture might look
similar to Figure 1 - 9.

 In the next chapter, you learn about the
developer resources bundled with Mac
OS X. These include tools used during
the development process, as well as online
documentation and other resources. Before
proceeding, you can use the exercises that
follow to practice some of the things you
learned in this chapter. You can fi nd the
solutions to these exercises in Appendix A.

 EXERCISES

 1. The apropos command returns a list of manual pages that match one or more keywords. Try

entering the following commands into Terminal:

 a. apropos copy

 b. apropos copy fi le

 c. apropos “ copy fi le ”

 Which of these commands provides the best result?

 2. You have seen how you can use man to read the online help for a specifi c command. Type man

man into Terminal and read about what man is capable of. For example, what does man - k “ copy

file ” do?

FIGURE 1-8

Applications

Aqua User Interface

Quartz Compositor

Command-
line Tools

System Library

Kernel

Cocoa Java JDKCarbon

Quartz 2D QuickTimeOpenGL

FIGURE 1-9

c01.indd 20c01.indd 20 12/12/09 1:01:52 PM12/12/09 1:01:52 PM

 WHAT YOU LEARNED IN THIS CHAPTER

 Kernel the heart of the Core OS, responsible for talking to hardware and

running programs

 System Library API for “ talking to ” the Core OS

 Quartz Compositor the process responsible for all application drawing and event handling

 Quartz 2D API for drawing rich 2D graphics

 OpenGL an open, standard API for drawing hardware accelerated 2D and 3D

graphics

 QuickTime a framework for reading and creating multimedia fi les

 CoreAnimation a framework for animating user interfaces and other application content

 Cocoa a collection of frameworks used for writing Mac OS X applications using

the Objective - C programming language

 Carbon a collection of frameworks used for older Mac OS and Mac OS X

applications

�

Summary ❘ 21

CONFER PROGRAMMER TO PROGRAMMER ABOUT THIS TOPIC.

Visit p2p.wrox.com

c01.indd 21c01.indd 21 12/12/09 1:01:53 PM12/12/09 1:01:53 PM

c01.indd 22c01.indd 22 12/12/09 1:01:54 PM12/12/09 1:01:54 PM

