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1
COMPUTATIONAL INTELLIGENCE:
FOUNDATIONS, PERSPECTIVES,
AND RECENT TRENDS

Swagatam Das, Ajith Abraham, and B. K. Panigrahi

The field of computational intelligence has evolved with the objective of developing
machines that can think like humans. As evident, the ultimate achievement in this field
would be to mimic or exceed human cognitive capabilities including reasoning, under-
standing, learning, and so on. Computational intelligence includes neural networks,
fuzzy inference systems, global optimization algorithms, probabilistic computing,
swarm intelligence, and so on. This chapter introduces the fundamental aspects of
the key components of modern computational intelligence. It presents a comprehen-
sive overview of various tools of computational intelligence (e.g., fuzzy logic, neural
network, genetic algorithm, belief network, chaos theory, computational learning the-
ory, and artificial life). The synergistic behavior of the above tools on many occasions
far exceeds their individual performance. A discussion on the synergistic behavior of
neuro-fuzzy, neuro-genetic algorithms (GA), neuro-belief, and fuzzy-belief network
models is also included in the chapter.

1.1 WHAT IS COMPUTATIONAL INTELLIGENCE?

Machine Intelligence refers back to 1936, when Turing proposed the idea of a univer-
sal mathematics machine [1,2], a theoretical concept in the mathematical theory of
computability. Turing and Post independently proved that determining the decidabil-
ity of mathematical propositions is equivalent to asking what sorts of sequences of a
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4 COMPUTATIONAL INTELLIGENCE

finite number of symbols can be recognized by an abstract machine with a finite set of
instructions. Such a mechanism is now known as a Turing machine [3]. Turing’s re-
search paper addresses the question of machine intelligence, assessing the arguments
against the possibility of creating an intelligent computing machine and suggesting an-
swers to those arguments, proposing the Turing test as an empirical test of intelligence
[4]. The Turing test, called the imitation game by Turing, measures the performance
of a machine against that of a human being. The machine and a human (A) are placed
in two rooms. A third person, designated the interrogator, is in a room apart from both
the machine and the human (A). The interrogator cannot see or speak directly to either
(A) or the machine, communicating with them solely through some text messages or
even a chat window. The task of the interrogator is to distinguish between the human
and the computer on the basis of questions he/she may put to both of them over the
terminals. If the interrogator cannot distinguish the machine from the human then,
Turing argues, the machine may be assumed to be intelligent. In the 1960s, computers
failed to pass the Turing test due to the low-processing speed of the computers.

The last few decades have seen a new era of artificial intelligence focusing on
the principles, theoretical aspects, and design methodology of algorithms gleaned
from nature. Examples are artificial neural networks inspired by mammalian neural
systems, evolutionary computation inspired by natural selection in biology, simulated
annealing inspired by thermodynamics principles and swarm intelligence inspired by
collective behavior of insects or micro-organisms, and so on, interacting locally
with their environment causing coherent functional global patterns to emerge. These
techniques have found their way in solving real-world problems in science, business,
technology, and commerce.

Computational Intelligence (CI) [5–8] is a well-established paradigm, where new
theories with a sound biological understanding have been evolving. The current exper-
imental systems have many of the characteristics of biological computers (brains in
other words) and are beginning to be built to perform a variety of tasks that are difficult
or impossible to do with conventional computers. To name a few, we have microwave
ovens, washing machines, and digital cameras that can figure out on their own what
settings to use to perform their tasks optimally with reasoning capability, make intel-
ligent decisions, and learn from the experience. As usual, defining CI is not an easy
task. Bezdek defined a computationally intelligent system [5] in the following way:

“A system is computationally intelligent when it: deals with only numerical (low-level)
data, has pattern recognition components, does not use knowledge in the AI sense; and
additionally when it (begins to) exhibit i) computational adaptivity, ii) computational
fault tolerance, iii) speed approaching human-like turnaround and iv) error rates that
approximate human performance.”

The above definition infers that a computationally intelligent system should be
characterized by the capability of computational adaptation, fault tolerance, high
computational speed, and be less error prone to noisy information sources. It also
implies high computational speed and less error rates than human beings. It is true that
a high computational speed may sometimes yield a poor accuracy in the results. Fuzzy
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logic and neural nets that support a high degree of parallelism usually have a fast
response to input excitations. Further, unlike a conventional production (rule-based)
system, where only a single rule is fired at a time, fuzzy logic allows firing of a large
number of rules ensuring partial matching of the available facts with the antecedent
clauses of those rules. Thus the reasoning capability of fuzzy logic is humanlike, and
consequently it is less error prone. An artificial neural network (ANN) also allows
firing of a number of neurons concurrently. Thus it has a high computational speed;
it usually adapts its parameters by satisfying a set of constraints that minimizes the
error rate. The parallel realization of GA and belief networks for the same reason
have a good computational speed, and their inherent information filtering behavior
maintain accuracy of their resulting outcome.

In an attempt to define CI [9], Marks clearly mentions the name of the constituent
members of the family. According to him:

“. . . neural networks, genetic algorithms, fuzzy systems, evolutionary programming and
artificial life are the building blocks of computational intelligence.”

At this point, it is worth mentioning that artificial life is also an emerging discipline
based on the assumption that physical and chemical laws are good enough to explain
the intelligence of the living organisms. Langton defines artificial life [10] as:

“. . . . an inclusive paradigm that attempts to realize lifelike behavior by imitating the
processes that occur in the development or mechanics of life.”

Now, let us summarize exactly what we understand by the phrase CI. Figure 1.1
outlines the topics that share some ideas of this new discipline.

The early definitions of CI were centered around the logic of fuzzy sets, neural
networks, genetic algorithms, and probabilistic reasoning along with the study of
their synergism. Currently, the CI family is greatly influenced by the biologically
inspired models of machine intelligence. It deals with the models of fuzzy as well as
granular computing, neural computing, and evolutionary computing along with their
interactions with artificial life, swarm intelligence, chaos theory, and other emerg-
ing paradigms. Belief networks and probabilistic reasoning fall in the intersection
of traditional AI and the CI. Note that artificial life is shared by the CI and the
physicochemical laws (not shown in Fig. 1.1).

Note that Bezdek [5], Marks [9], Pedrycz [11–12], and others have defined com-
putational intelligence in different ways depending on the then developments of this
new discipline. An intersection of these definitions will surely focus to fuzzy logic,
ANN, and GA, but a union (and generalization) of all these definitions includes many
other subjects (e.g., rough set, chaos, and computational learning theory). Further,
CI being an emerging discipline should not be pinpointed only to a limited number
of topics. Rather it should have a scope to expand in diverse directions and to merge
with other existing disciplines.

In a nutshell, which becomes quite apparent in light of the current research pursuits,
the area is heterogeneous as being dwelled on such technologies as neural networks,



P1: TIX/FYX P2: MRM
c01 JWBS033-Maulik July 21, 2010 9:59 Printer Name: Yet to Come

6 COMPUTATIONAL INTELLIGENCE

PR= Probabilistic reasoning, BN= Belief networks. 
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Computing

Artificial Life, Rough Sets, Chaos Theory,
Swarm Intelligence, and others

Evolutionary
Computing

FIGURE 1.1 The building blocks of CI.

fuzzy systems, evolutionary computation, swarm intelligence, and probabilistic rea-
soning. The recent trend is to integrate different components to take advantage of
complementary features and to develop a synergistic system. Hybrid architectures
like neuro-fuzzy systems, evolutionary-fuzzy systems, evolutionary-neural networks,
evolutionary neuro-fuzzy systems, and so on, are widely applied for real-world prob-
lem solving. In the following sections, the main functional components of CI are
explained with their key advantages and application domains.

1.2 CLASSICAL COMPONENTS OF CI

This section will provide a conceptual overview of common CI models based on their
fundamental characteristics.

1.2.1 Artificial Neural Networks

Artificial neural networks [13–15] have been developed as generalizations of math-
ematical models of biological nervous systems. In a simplified mathematical model
of the neuron, the effects of the synapses are represented by connection weights that
modulate the effect of the associated input signals, and the nonlinear characteristic ex-
hibited by neurons is represented by a transfer function, which is usually the sigmoid,
Gaussian, trigonometric function, and so on. The neuron impulse is then computed
as the weighted sum of the input signals, transformed by the transfer function. The
learning capability of an artificial neuron is achieved by adjusting the weights in
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FIGURE 1.2 Architecture of an artificial neuron and a multilayered neural network.

accordance to the chosen learning algorithm. Most applications of neural networks
fall into the following categories:

Prediction. Use input values to predict some output.

Classification. Use input values to determine the classification.

Data Association. Like classification, but it also recognizes data that contains
errors.

Data Conceptualization. Analyze the inputs so that grouping relationships can be
inferred.

A typical multilayered neural network and an artificial neuron are illustrated in
Figure 1.2. Each neuron is characterized by an activity level (representing the state of
polarization of a neuron), an output value (representing the firing rate of the neuron),
a set of input connections, (representing synapses on the cell and its dendrite), a
bias value (representing an internal resting level of the neuron), and a set of output
connections (representing a neuron’s axonal projections). Each of these aspects of
the unit is represented mathematically by real numbers. Thus each connection has an
associated weight (synaptic strength), which determines the effect of the incoming
input on the activation level of the unit. The weights may be positive or negative.
Referring to Figure 1.2, the signal flow from inputs x1 · · · xn is considered to be
unidirectional indicated by arrows, as is a neuron’s output signal flow (O). The
neuron output signal O is given by the following relationship:

O = f (net) = f

⎛
⎝

n∑
j=1

w j x j

⎞
⎠ (1.1)

where w j is the weight vector and the function f (net) is referred to as an activation
(transfer) function and is defined as a scalar product of the weight and input vectors

net = w T x = w1x1 + · · · · +wn xn (1.2)
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where T is the transpose of a matrix and in the simplest case the output value O is
computed as

O = f (net) =
{

1 if w T x ≥ θ

0 otherwise
(1.3)

where θ is called the threshold level and this type of node is called a linear threshold
unit.

The behavior of the neural network depends largely on the interaction between
the different neurons. The basic architecture consists of three types of neuron layers:
input, hidden and output layers. In feedforward networks, the signal flow is from
input to output units strictly in a feedforward direction. The data processing can
extend over multiple (layers of) units, but no feedback connections are present, that
is, connections extending from outputs to inputs of units in the same or previous
layers.

Recurrent networks contain feedback connections. Contrary to feedforward net-
works, the dynamical properties of the network are important. In some cases, the
activation values of the units undergo a relaxation process such that the network will
evolve to a stable state in which these activations do not change anymore. In other
applications, the changes of the activation values of the output neurons are significant,
such that the dynamical behavior constitutes the output of the network. There are sev-
eral other neural network architectures (Elman network, adaptive resonance theory
maps, competitive networks, etc.) depending on the properties and requirement of
the application. The reader may refer to [16–18] for an extensive overview of the
different neural network architectures and learning algorithms.

A neural network has to be configured such that the application of a set of inputs
produces the desired set of outputs. Various methods to set the strengths of the
connections exist. One way is to set the weights explicitly, using a priori knowledge.
Another way is to train the neural network by feeding its teaching patterns and letting
it change its weights according to some learning rule. The learning situations in
neural networks may be classified into three distinct types. These are supervised,
unsupervised, and reinforcement learning. In supervised learning, an input vector is
presented at the inputs together with a set of desired responses, one for each node, at
the output layer. A forward pass is done and the errors or discrepancies, between the
desired and actual response for each node in the output layer, are found. These are then
used to determine weight changes in the net according to the prevailing learning rule.
The term ‘supervised’ originates from the fact that the desired signals on individual
output nodes are provided by an external teacher. The best-known examples of this
technique occur in the back-propagation algorithm, the delta rule, and perceptron
rule. In unsupervised learning (or self-organization) an (output) unit is trained to
respond to clusters of patterns within the input. In this paradigm, the system is
supposed to discover statistically salient features of the input population [19]. Unlike
the supervised learning paradigm, there is no a priori set of categories into which the
patterns are to be classified; rather the system must develop its own representation
of the input stimuli. Reinforcement learning is learning what to do—how to map
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situations to actions—so as to maximize a numerical reward signal. The learner is
not told which actions to take, as in most forms of machine learning, but instead must
discover which actions yield the most reward by trying them. In the most interesting
and challenging cases, actions may affect not only the immediate reward, but also the
next situation and, through that, all subsequent rewards. These two characteristics,
trial-and-error search and delayed reward are the two most important distinguishing
features of reinforcement learning.

1.2.2 Fuzzy Logic

Professor Zadeh [20] introduced the concept of fuzzy logic (FL) to present vagueness
in linguistics, and further implement and express human knowledge and inference
capability in a natural way. Fuzzy logic starts with the concept of a fuzzy set. A
fuzzy set is a set without a crisp, clearly defined boundary. It can contain elements
with only a partial degree of membership. A membership function (MF) is a curve
that defines how each point in the input space is mapped to a membership value (or
degree of membership) between 0 and 1. The input space is sometimes referred to as
the universe of discourse.

Let X be the universe of discourse and x be a generic element of X . A classical
set A is defined as a collection of elements or objects xεX , such that each x can
either belong to or not belong to the set A, A � X. By defining a characteristic
function (or membership function) on each element x in X , a classical set A can be
represented by a set of ordered pairs (x , 0) or (x , 1), where 1 indicates membership
and 0 nonmembership. Unlike the conventional set mentioned above, the fuzzy set
expresses the degree to which an element belongs to a set. Hence, the characteristic
function of a fuzzy set is allowed to have a value between 0 and 1, denoting the degree
of membership of an element in a given set. If X is a collection of objects denoted
generically by x , then a fuzzy set A in X is defined as a set of ordered pairs:

A = {(x, µA(x))|xεX} (1.4)

µA(x) is called the MF of linguistic variable x in A, which maps X to the membership
space M , M = [0,1], where M contains only two points 0 and 1, A is crisp and µA is
identical to the characteristic function of a crisp set. Triangular and trapezoidal mem-
bership functions are the simplest membership functions formed using straight lines.
Some of the other shapes are Gaussian, generalized bell, sigmoidal, and polynomial-
based curves. Figure 1.3 illustrates the shapes of two commonly used MFs. The most
important thing to realize about fuzzy logical reasoning is the fact that it is a superset
of standard Boolean logic.

It is interesting to note about the correspondence between two- and multivalued
logic operations for AND, OR, and NOT. It is possible to resolve the statement
A AND B, where A and B are limited to the range (0,1), by using the operator
minimum (A, B). Using the same reasoning, we can replace the OR operation with
the maximum operator, so that A OR B becomes equivalent to maximum (A, B).
Finally, the operation NOT A becomes equivalent to the operation 1-A.
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(a)

(b)

FIGURE 1.3 Examples of FM functions (a) Gaussian and (b) trapezoidal.

In FL terms, these are popularly known as fuzzy intersection or conjunction
(AND), fuzzy union or disjunction (OR), and fuzzy complement (NOT). The inter-
section of two fuzzy sets A and B is specified in general by a binary mapping T ,
which aggregates two membership functions as follows:

µA∩B(x) = T (µA(x), µB(x)) (1.5)

The fuzzy intersection operator is usually referred to as a T -norm (Triangular norm)
operator. The fuzzy union operator is specified in general by a binary mapping S.

µA∪B(x) = S(µA(x), µB(x)) (1.6)

This class of fuzzy union operators are often referred to as T -conorm (or S-norm)
operators.

The fuzzy rule base is characterized in the form of if–then rules in which precon-
ditions and consequents involve linguistic variables. The collection of these fuzzy
rules forms the rule base for the FL system. Due to their concise form, fuzzy if–then
rules are often employed to capture the imprecise modes of reasoning that play an
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essential role in the human ability to make decisions in an environment of uncertainty
and imprecision. A single fuzzy if–then rule assumes the form

if x is A then y is B

where A and B are linguistic values defined by fuzzy sets on the ranges (universes
of discourse) X and Y, respectively. The if –part of the rule “x is A” is called the
antecedent (precondition) or premise, while the then–part of the rule “y is B” is
called the consequent or conclusion. Interpreting an if–then rule involves evaluating
the antecedent (fuzzification of the input and applying any necessary fuzzy operators)
and then applying that result to the consequent (known as implication). For rules with
multiple antecedents, all parts of the antecedent are calculated simultaneously and
resolved to a single value using the logical operators. Similarly, all the consequents
(rules with multiple consequents) are affected equally by the result of the antecedent.
The consequent specifies a fuzzy set be assigned to the output. The implication
function then modifies that fuzzy set to the degree specified by the antecedent. For
multiple rules, the output of each rule is a fuzzy set. The output fuzzy sets for each
rule are then aggregated into a single output fuzzy set. Finally, the resulting set is
defuzzified, or resolved to a single number.

The defuzzification interface is a mapping from a space of fuzzy actions defined
over an output universe of discourse into a space of non-fuzzy actions, because the
output from the inference engine is usually a fuzzy set while for most practical appli-
cations crisp values are often required. The three commonly applied defuzzification
techniques are, max-criterion, center-of-gravity, and the mean- of- maxima. The max-
criterion is the simplest of these three to implement. It produces the point at which
the possibility distribution of the action reaches a maximum value.

Reader, please refer to [21–24] for more information related to fuzzy systems. It is
typically advantageous if the fuzzy rule base is adaptive to a certain application. The
fuzzy rule base is usually constructed manually or by automatic adaptation by some
learning techniques using evolutionary algorithms and/or neural network learning
methods [25].

1.2.3 Genetic and Evolutionary Computing Algorithms

To tackle complex search problems, as well as many other complex computational
tasks, computer-scientists have been looking to nature for years (both as a model and
as a metaphor) for inspiration. Optimization is at the heart of many natural processes
(e.g., Darwinian evolution itself ). Through millions of years, every species had to
optimize their physical structures to adapt to the environments they were in. This
process of adaptation, this morphological optimization is so perfect that nowadays,
the similarity between a shark, a dolphin or a submarine is striking. A keen observation
of the underlying relation between optimization and biological evolution has led to
the development of a new paradigm of CI (the evolutionary computing techniques
[26,27]) for performing very complex search and optimization.
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Evolutionary computation uses iterative progress (e.g., growth or development in a
population). This population is then selected in a guided random search using parallel
processing to achieve the desired end. Such processes are often inspired by biological
mechanisms of evolution. The paradigm of evolutionary computing techniques dates
back to the early 1950s, when the idea to use Darwinian principles for automated
problem solving originated. It was not until the 1960s that three distinct interpre-
tations of this idea started to be developed in three different places. Evolutionary
programming (EP) was introduced by Lawrence J. Fogel in the United States [28],
while John Henry Holland called his method a genetic algorithm (GA) [29]. In Ger-
many Ingo Rechenberg and Hans-Paul Schwefel introduced the evolution strategies
(ESs) [30,31]. These areas developed separately for 15 years. From the early 1990s
on they are unified as different representatives (dialects) of one technology, called
evolutionary computing. Also, in the early 1990s, a fourth stream following the gen-
eral ideas had emerged—genetic programming (GP) [32]. They all share a common
conceptual base of simulating the evolution of individual structures via processes
of selection, mutation, and reproduction. The processes depend on the perceived
performance of the individual structures as defined by the environment (problem).

The GAs deal with parameters of finite length, which are coded using a finite
alphabet, rather than directly manipulating the parameters themselves. This means
that the search is unconstrained by either the continuity of the function under inves-
tigation, or the existence of a derivative function. Figure 1.4 depicts the functional
block diagram of a GA and the various aspects are discussed below. It is assumed that
a potential solution to a problem may be represented as a set of parameters. These
parameters (known as genes) are joined together to form a string of values (known as
a chromosome). A gene (also referred to a feature, character, or detector) refers to a
specific attribute that is encoded in the chromosome. The particular values the genes
can take are called its alleles.

Encoding issues deal with representing a solution in a chromosome and unfor-
tunately, no one technique works best for all problems. A fitness function must be
devised for each problem to be solved. Given a particular chromosome, the fitness
function returns a single numerical fitness or figure of merit, which will determine
the ability of the individual, that chromosome represents. Reproduction is the second
critical attribute of GAs where two individuals selected from the population are al-
lowed to mate to produce offspring, which will comprise the next generation. Having
selected the parents, the off springs are generated, typically using the mechanisms of
crossover and mutation.

Start
Initialization

of Population
Valuation

(fitness value)
Solution
Found?

Stop
Yes

No

Reproduction

FIGURE 1.4 Flow chart of genetic algorithm iteration.
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Selection is the survival of the fittest within GAs. It determines which individuals
are to survive to the next generation. The selection phase consists of three parts. The
first part involves determination of the individual’s fitness by the fitness function. A
fitness function must be devised for each problem; given a particular chromosome,
the fitness function returns a single numerical fitness value, which is proportional to
the ability, or utility, of the individual represented by that chromosome. The second
part involves converting the fitness function into an expected value followed by the
last part where the expected value is then converted to a discrete number of offspring.
Some of the commonly used selection techniques are the roulette wheel and stochastic
universal sampling. If the GA has been correctly implemented, the population will
evolve over successive generations so that the fitness of the best and the average
individual in each generation increases toward the global optimum.

Currently, evolutionary computation techniques mostly involve meta-heuristic op-
timization algorithms, such as:

1. Evolutionary algorithms (comprising of genetic algorithms, evolutionary pro-
gramming, evolution strategy, genetic programming, learning classifier sys-
tems, and differential evolution)

2. Swarm intelligence (comprised of ant colony optimization and particle swarm
optimization) [33].

And involved to a lesser extent in the following:

3. Self-organization (e.g., self-organizing maps, growing neural gas) [34].

4. Artificial life (digital organism) [10].

5. Cultural algorithms [35].

6. Harmony search algorithm [36].

7. Artificial immune systems [37].

8. Learnable evolution model [38].

1.2.4 Probabilistic Computing and Belief Networks

Probabilistic models are viewed as similar to that of a game, actions are based on
expected outcomes. The center of interest moves from the deterministic to probabilis-
tic models using statistical estimations and predictions. In the probabilistic modeling
process, risk means uncertainty for which the probability distribution is known. There-
fore risk assessment means a study to determine the outcomes of decisions along with
their probabilities. Decision makers often face a severe lack of information. Probabil-
ity assessment quantifies the information gap between what is known, and what needs
to be known for an optimal decision. The probabilistic models are used for protection
against adverse uncertainty, and exploitation of propitious uncertainty [39].

A good example is the probabilistic neural network (Bayesian learning) in which
probability is used to represent uncertainty about the relationship being learned.
Before we have seen any data, our prior opinions about what the true relationship
might be can be expressed in a probability distribution over the network weights that



P1: TIX/FYX P2: MRM
c01 JWBS033-Maulik July 21, 2010 9:59 Printer Name: Yet to Come

14 COMPUTATIONAL INTELLIGENCE

define this relationship. After we look at the data, our revised opinions are captured by
a posterior distribution over network weights. Network weights that seemed plausible
before, but which donot match the data very well, will now be seen as being much
less likely, while the probability for values of the weights that do fit the data well will
have increased. Typically, the purpose of training is to make predictions for future
cases in which only the inputs to the network are known. The result of conventional
network training is a single set of weights that can be used to make such predictions.

A Bayesian belief network [40,41] is represented by a directed acyclic graph
or tree, where the nodes denote the events and the arcs denote the cause–effect
relationship between the parent and the child nodes. Here, each node, may assume
a number of possible values. For instance, a node A may have n number of possible
values, denoted by A1,A2, . . . , An . For any two nodes, A and B, when there exists
a dependence A→B, we assign a conditional probability matrix [P(B/A)] to the
directed arc from node A to B. The element at the j th row and i th column of P(B/A),
denoted by P(B j /Ai ), represents the conditional probability of B j assuming the prior
occurrence of Ai . This is described in Figure 1.5.

Given the probability distribution of A, denoted by [P(A1) P(A2) · · · · · P(An)], we
can compute the probability distribution of event B by using the following expression:

P(B) = [P(B1) P(B2) · · · · P(Bm)]1 × m

= [P(A1) P(A2) · · · · P(An)]1 × n · [P(B/A)]n × m

= [P(A)]1 × n · [P(B/A)]n × m (1.7)

We now illustrate the computation of P(B) with an example.
Pearl [39–41] proposed a scheme for propagating beliefs of evidence in a Bayesian

network. First, we demonstrate his scheme with a Bayesian tree like that in Figure 1.5.
However, note that like the tree of Figure 1.5 each variable, say A, B . . . need not
have only two possible values. For example, if a node in a tree denotes German
measles (GM), it could have three possible values like severe-GM, little-GM, and
moderate-GM.

In Pearl’s scheme for evidential reasoning, he considered both the causal effect and
the diagnostic effect to compute the belief function at a given node in the Bayesian
belief tree. For computing belief at a node, say V, he partitioned the tree into two
parts: (1) the subtree rooted at V and (2) the rest of the tree. Let us denote the subset
of the evidence, residing at the subtree of V by ev

− and the subset of the evidence

A

P (B /A) B

FIGURE 1.5 Assigning a conditional probability matrix in the directed arc connected from
A to B.
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from the rest of the tree by ev
+. We denote the belief function of the node V by

Bel(V), where it is defined as

Bel (V) = P(V/ev
+, ev

−)

= P(ev
−/V) · P(V/ev

+)/α

= λ(V)�(V)/α (1.8)

where, λ (V) = P(ev
−/V)

}

�(V) = P(V/ev
+) (1.9)

and α is a normalizing constant, determined by

α = �v ∈(true, false)P(ev
−/V) · P(V/ev

+) (1.10)

It seems from the last expression that v could assume only two values: true and
false. It is just an illustrative notation. In fact, v can have a number of possible values.

Pearl designed an interesting algorithm for belief propagation in a causal tree.
He assigned a priori probability of one leaf node to be defective, then propagated
the belief from this node to its parent, and then from the parent to the grandparent,
until the root is reached. Next, he considered a downward propagation of belief from
the root to its children, and from each child node to its children, and so on, until
the leaves are reached. The leaf having the highest belief is then assigned a priori
probability and the whole process described above is repeated. Pearl has shown that
after a finite number of up–down traversal on the tree, a steady-state condition is
reached following which a particular leaf node in all subsequent up–down traversal
yields a maximum belief with respect to all other leaves in the tree. The leaf thus
selected is considered as the defective item.

1.3 HYBRID INTELLIGENT SYSTEMS IN CI

Several adaptive hybrid intelligent systems (HIS) have in recent years been devel-
oped for model expertise, image and video segmentation techniques, process control,
mechatronics, robotics and complicated automation tasks, and so on. Many of these
approaches use the combination of different knowledge representation schemes, deci-
sion making models, and learning strategies to solve a computational task. This inte-
gration aims at overcoming limitations of individual techniques through hybridization
or fusion of various techniques. These ideas have led to the emergence of several
different kinds of intelligent system architectures. Most of the current HIS consists
of three essential paradigms: artificial neural networks, fuzzy inference systems, and
global optimization algorithms (e.g., evolutionary algorithms). Nevertheless, HIS
is an open instead of conservative concept. That is, it is evolving those relevant
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TABLE 1.1 Hybrid Intelligent System Basic Ingredients

Methodology Advantage

Artificial neural networks Adaptation, learning, and approximation
Fuzzy logic Approximate reasoning
Global optimization algorithms Derivative-free optimization of multiple parameters

techniques together with the important advances in other new computing methods.
Table 1.1 lists the three principal ingredients together with their advantages [42].

Experience has shown that it is crucial for the design of HIS to primarily focus
on the integration and interaction of different techniques rather than merge different
methods to create ever-new techniques. Techniques already well understood, should
be applied to solve specific domain problems within the system. Their weakness must
be addressed by combining them with complementary methods.

Neural networks offer a highly structured architecture with learning and gen-
eralization capabilities. The generalization ability for new inputs is then based on
the inherent algebraic structure of the neural network. However, it is very hard to
incorporate human a priori knowledge into a neural network. This is mainly because
the connectionist paradigm gains most of its strength from a distributed knowledge
representation.

In contrast, fuzzy inference systems exhibit complementary characteristics, offer-
ing a very powerful framework for approximate reasoning as it attempts to model the
human reasoning process at a cognitive level. Fuzzy systems acquire knowledge from
domain experts and this is encoded within the algorithm in terms of the set of if–then
rules. Fuzzy systems employ this rule-based approach and interpolative reasoning to
respond to new inputs. The incorporation and interpretation of knowledge is straight
forward, whereas learning and adaptation constitute major problems.

Global optimization is the task of finding the absolutely best set of parameters
to optimize an objective function. In general, it may be possible to have solutions
that are locally, but not globally, optimal. Evolutionary computing (EC) works by
simulating evolution on a computer. Such techniques could be easily used to optimize
neural networks, fuzzy inference systems, and other problems.

Due to the complementary features and strengths of different systems, the trend
in the design of hybrid systems is to merge different techniques into a more powerful
integrated system, to overcome their individual weaknesses.

The various HIS architectures could be broadly classified into four different
categories based on the systems overall architecture: (1) Stand alone architec-
tures, (2) transformational architectures, (3) hierarchical hybrid architectures, and
(4) integrated hybrid architectures.

1. Stand-Alone Architecture. Stand-alone models of HIS applications consist of
independent software components, which do not interact in anyway. Devel-
oping stand-alone systems can have several purposes. First, they provide di-
rect means of comparing the problem solving capabilities of different tech-
niques with reference to a certain application. Running different techniques in a
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parallel environment permits a loose approximation of integration. Stand-alone
models are often used to develop a quick initial prototype, while a more time-
consuming application is developed. Some of the benefits are simplicity and
ease of development using commercially available software packages.

2. Transformational Hybrid Architecture. In a transformational hybrid model, the
system begins as one type of system and ends up as the other. Determining
which technique is used for development and which is used for delivery is
based on the desirable features that the technique offers. Expert systems and
neural networks have proven to be useful transformational models. Variously,
either the expert system is incapable of adequately solving the problem, or the
speed, adaptability, or robustness of neural network is required. Knowledge
from the expert system is used to set the initial conditions and training set for
a neural network. Transformational hybrid models are often quick to develop
and ultimately require maintenance on only one system. Most of the developed
models are just application oriented.

3. Hierarchical Hybrid Architectures. The architecture is built in a hierarchical
fashion, associating a different functionality with each layer. The overall func-
tioning of the model will depend on the correct functioning of all the layers. A
possible error in one of the layers will directly affect the desired output.

4. Integrated Hybrid Architectures. These models include systems, which com-
bine different techniques into one single computational model. They share
data structures and knowledge representations. Another approach is to put
the various techniques on a side-by-side basis and focus on their interaction in
the problem-solving task. This method might allow integrating alternative tech-
niques and exploiting their mutuality. The benefits of fused architecture include
robustness, improved performance, and increased problem-solving capabilities.
Finally, fully integrated models can provide a full range of capabilities (e.g.,
adaptation, generalization, noise tolerance, and justification). Fused systems
have limitations caused by the increased complexity of the intermodule in-
teractions and specifying, designing, and building fully integrated models is
complex.

1.4 EMERGING TRENDS IN CI

This section introduces a few new members of the CI family that are currently gaining
importance owing to their successful applications in both science and engineering.
The new members include swarm intelligence, Type-2 fuzzy sets, chaos theory,
rough sets, granular computing, artificial immune systems, differential evolution
(DE), bacterial foraging optimization algorithms (BFOA), and the algorithms based
on artificial bees foraging behavior.

1.4.1 Swarm Intelligence

Swarm intelligence (SI) is the name given to a relatively new interdisciplinary field
of research, which has gained wide popularity in recent times. Algorithms belonging
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to this field draw inspiration from the collective intelligence emerging from the
behavior of a group of social insects (e.g., bees, termites, and wasps). These insects
even with very limited individual capability can jointly (cooperatively) perform many
complex tasks necessary for their survival. The expression "Swarm Intelligence" was
introduced by Beni and Wang in 1989, in the context of cellular robotic systems [43].

Swarm intelligence systems are typically made up of a population of simple agents
interacting locally with one another and with their environment. Although there is
normally no centralized control structure dictating how individual agents should
behave, local interactions between such agents often lead to the emergence of global
behavior. Swarm behavior can be seen in bird flocks, fish schools, as well as in insects
(e.g., mosquitoes and midges). Many animal groups (e.g., fish schools and bird flocks)
clearly display structural order, with the behavior of the organisms so integrated that
even though they may change shape and direction, they appear to move as a single
coherent entity [44]. The main properties (traits) of collective behavior can be pointed
out as follows (see Fig. 1.6):

Homogeneity. Every bird in a flock has the same behavior model. The flock moves
without a leader, even though temporary leaders seem to appear.

Locality. Its nearest flock-mates only influence the motion of each bird. Vision is
considered to be the most important senses for flock organization.

Collision Avoidance. Avoid colliding with nearby flock mates.

Velocity Matching. Attempt to match velocity with nearby flock mates.

Flock Centering. Attempt to stay close to nearby flock mates.

Individuals attempt to maintain a minimum distance between themselves and others
at all times. This rule is given the highest priority and corresponds to a frequently

Collision
Avoidance

Velocity
Matching 

Collective
Global
Behavior 

Flock 
Centering

Locality 

Homogeneity 

FIGURE 1.6 Main traits of collective behavior.
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observed behavior of animals in nature [45]. If individuals are not performing an
avoidance man oeuvre, they tend to be attracted toward other individuals (to avoid
being isolated) and to align themselves with neighbors [46,47].

According to Milonas, five basic principles define swarm intelligence [48]. First is
the proximity principle: The swarm should be able to carry out simple space and time
computations. Second is the quality principle: The swarm should be able to respond
to quality factors in the environment. Third is the principle of diverse response: The
swarm should not commit its activities along excessively narrow channels. Fourth is
the principle of stability: The swarm should not change its mode of behavior every
time the environment changes. Fifth is the principle of adaptability: The swarm must
be able to change behavior mote when it is worth the computational price. Note that
principles four and five are direct opposites; opposite sides of the same coin.

Below we provide a brief outline of two most popular algorithms of SI paradigm,
namely, the particle swarm optimization (PSO) algorithm and the ant colony opti-
mization (ACO) algorithm.

1.4.1.1 The PSO Algorithm. The concept of particle swarms, although initially
introduced for simulating human social behavior, has become very popular these days
as an efficient means of intelligent search and optimization. The PSO [49], as it is
called now, does not require any gradient information of the function to be optimized,
uses only primitive mathematical operators, and is conceptually very simple. The
PSO emulates swarming behavior of insects, animals, and so on, and also draws
inspiration from the boid’s method of Reynolds and sociocognition [49]. Particles
are conceptual entities, which search through a multidimensional search space. At
any particular instant, each particle has a position and velocity. The position vector
of a particle with respect to the origin of the search space represents a trial solution
to the search problem. The efficiency of PSO is mainly attributed to the efficient
communication of information among the search agents.

The classical PSO starts with the random initialization of a population of candidate
solutions (particles) over the fitness landscape. However, unlike other evolutionary
computing techniques, PSO uses no direct recombination of genetic material between
individuals during the search. Rather, it works depending on the social behavior of the
particles in the swarm. Therefore, it finds the best global solution by simply adjusting
the trajectory of each individual toward its own best position and toward the best
particle of the entire swarm at each time-step (generation). In a D-dimensional search
space, the position vector of the i th particle is given by �Xi = (xi,1, xi,2, . . . , xi,D)
and velocity of the i th particle is given by �Vi = (vi,1, vi,2, . . . , vi,D). Positions and
velocities are adjusted and the objective function to be optimized, f ( �Xi ), is evaluated
with the new coordinates at each time-step. The velocity and position update equations
for the dth dimension of the i th particle in the swarm may be represented as

vi,d,t = ω*vi,d,t−1 + C1*rand1*(pbesti,d − xi,d,t−1) + C2*rand2*(gbestd − xi,d,t−1)

(1.11)

xi,d,t = xi,d,t−1 + vi,d,t (1.12)
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where rand1 and rand2 are random positive numbers uniformly distributed in (0,1)
and are drawn anew for each dimension of each particle. pbest is the personal best
solution found so far by an individual particle while gbest represents the fittest particle
found so far by the entire community. The first term in the velocity updating formula is
referred to as the “cognitive part”. The last term of the same formula is interpreted as
the “social part”, which represents how an individual particle is influenced by the other
members of its society. The acceleration coefficients C1 and C2 determine the relative
influences of the cognitive and social parts on the velocity of the particle. The particle’s
velocity is clamped to a maximum value �Vmax = [vmax,1, vmax,2, . . . , vmax,D]T . If in
dth dimension,

∣∣vi,d

∣∣ exceeds vmax,dspecified by the user, then the velocity of that
dimension is assigned to sign(vi,d )*vmax,d , where sign(x) is the triple-valued signum
function.

1.4.1.2 The ACO Algorithm. The main idea of ACO [50,51] is to model a problem
as the search for a minimum cost path in a graph. Artificial ants as those walking on
this graph, looking for cheaper paths. Each ant has a rather simple behavior capable
of finding relatively costlier paths. Cheaper paths are found as the emergent result
of the global cooperation among ants in the colony. The behavior of artificial ants is
inspired from real ants: They lay pheromone trails (obviously in a mathematical form)
on the graph edges and choose their path with respect to probabilities that depend
on pheromone trails. These pheromone trails progressively decrease by evaporation.
The basic idea of a real ant system is illustrated in Figure 1.7. In (a), the ants move
in a straight line to the food. Part (b) illustrates the situation soon after an obstacle
is inserted between the nest and the food. To avoid the obstacle, initially each ant
chooses to turn left or right at random. Let us assume that ants move at the same
speed depositing pheromone in the trail uniformly. However, the ants that, by chance,
choose to turn left will reach the food sooner, whereas the ants that go around the
obstacle turning right will follow a longer path, and so will take a longer time to
circumvent the obstacle. As a result, pheromone accumulates faster in the shorter
path around the obstacle. Since ants prefer to follow trails with larger amounts of

Nest

Food Food Food

Nest Nest

(b) (c)(a)

FIGURE 1.7 Illustrating the behavior of real ant movements.
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pheromone, eventually all the ants converge to the shorter path around the obstacle,
as shown in (c).

In addition, artificial ants have some extra features not seen in their counterpart
in real ants. In particular, they live in a discrete world (a graph) and their moves
consist of transitions from nodes to nodes. Pheromone placed on the edges acts
like a distributed long-term memory. The memory, instead of being stored locally
within individual ants, remains distributed on the edges of the graph. This indirectly
provides a means of communication among the ants called stigmergy [50]. In most
cases, pheromone trails are updated only after having constructed a complete path
and not during the walk, and the amount of pheromone deposited is usually a function
of the quality of the path. Finally, the probability for an artificial ant to choose an
edge not only depends on pheromones deposited on that edge in the past, but also on
some problem dependent local heuristic functions.

1.4.2 Type-2 Fuzzy Sets

The idea of types-2 fuzzy sets emerged from a 1975 paper by Zadeh [52], where he
tried to address a typical problem with type-1 fuzzy sets that the membership function
of type-1 fuzzy sets has no uncertainty associated with it. Thus this sometimes
contradicts the word fuzzy, since that word has the connotation of lots of uncertainty.
Type-2 fuzzy sets [53–55] are special kinds of fuzzy sets, the membership grades of
which are themselves fuzzy (i.e., they incorporate a blurring of the type-1 membership
function). The idea of type-2 fuzzy sets emerged from a 1975 paper by Zadeh [53],
where he tried to address a typical problem with type-1 fuzzy sets that the membership
function of a type-1 fuzzy set has no uncertainty associated with it. Thus this finding
sometimes contradicts the word fuzzy, since that word has the connotation of lots
of uncertainty. Now, in type-2 fuzzy sets, there is no longer a single value for the
membership function for any input measurement or x value, but there are a few. This
fact has been illustrated in Figure 1.8.

In order to symbolically distinguish between a type-1 fuzzy set and a type-2 fuzzy
set, researchers use a tilde symbol over the symbol for the latter fuzzy set; so, if
A denotes a type-1 fuzzy set, Ã may denote the comparable type-2 fuzzy set. The

 (a) Single membership grade in type-1 fuzzy set (b) Membership grades corresponding to
     a single entity x in type-2 fuzzy set 

1.0

0.5

0.0
x

1.0

0.5

0.0
x

FIGURE 1.8 Illustrating the membership grades in (a) type-1 and (b) type-2 fuzzy sets.
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FOU

u (Primary membership)

(Third dimension)

(Primary variable)
x

I

FIGURE 1.9 Illustrating the 3D membership of a general type-2 fuzzy set. A cross section
of one slice of the third dimension is shown. This cross section, as well as all others, sits on
the FOU.

distinguishing feature of Ã versus A is the membership function values of Ã are
blurred, (i.e., they are no longer a single number from 0 to 1), but are instead a
continuous range of values between 0 and 1, say [a, b]. We can either assign the same
weighting or a variable weighting to the interval of membership function values [a,
b]. When the former is done, the resulting type-2 fuzzy set is called either an interval
type-2 fuzzy set or an interval valued fuzzy set (although different names may be
used, they are the same fuzzy set). When the latter is done, the resulting type-2 fuzzy
set is called a general type-2 fuzzy set (to distinguish it from the special interval
type-2 fuzzy set).

The membership function of a general type-2 fuzzy set, Ã, is three-dimensional
(3D) and the third dimension represents the value of the membership function at each
point on its two-dimensional (2D) domain that is called its footprint of uncertainty
(FOU). It is illustrated in Figure 1.9. For an interval type-2 fuzzy set that 3D value
is the same (e.g., 1) everywhere, which means that no new information is contained
in the third dimension of an interval type-2 fuzzy set. So, for such a set, the third
dimension is ignored, and only the FOU is used to describe it. It is for this reason
that an interval type-2 fuzzy set is sometimes called a first-order uncertainty fuzzy
set model, whereas a general type-2 fuzzy set (with its useful third dimension) is
sometimes referred to as a second-order uncertainty fuzzy set model.

1.4.3 Rough Set Theory

Introduced by Pawlak [56,57] in the 1980s, rough set theory constitutes a sound basis
for discovering patterns in hidden data and thus have extensive applications in data
mining in distributed systems. It has recently emerged as a major mathematical tool
for managing uncertainty that arises from granularity in the domain of discourse (i.e.,
from the indiscernibility between objects in a set).
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Rough sets can be considered sets with fuzzy boundaries: Sets that cannot be
precisely characterized using the available set of attributes. The basic concept of the
rough set theory (RST) is the notion of approximation space, which is an ordered
pair A = (U, R), where

U : Nonempty set of objects, called universe.

R: Equivalence relation on U , called indiscernibility relation. If x, y ∈ U and xRy
then x and y are indistinguishable in A.

Each equivalence class induced by R, (i.e., each element of the quotient set R̃ =
U

/
R), is called an elementary set in A. An approximation space can be alternatively

noted by A = (U, R̃). It is assumed that the empty set is also elementary for every
approximation space A. A definable set in A is any finite union of elementary sets
in A. For x ∈ U let [x]R denote the equivalence class of R, containing x. For each
X ⊆ U, X is characterized in A by a pair of sets: its lower and upper approximation
in A, defined respectively as

Alow(X) = {x ∈ U |[x]R ⊆ X}
Aupp(X) = {x ∈ U |[x]R ∩ X 
= ∅}

A rough set in A is the family of all subsets of U having the same lower and
upper approximations. Figure 1.10 illustrates rough boundaries Alow(X) [the lower
approximation and Aupp(X)] the upper approximation of a given point set X.

Many different problems can be addressed by RST. During the last few years,
this formalism has been approached as a tool used in connection with many different
areas of research. There have been investigations of the relations between RST
and the Dempster–Shafer theory and between rough sets and fuzzy sets. The RST

Alow(X)

Aupp(X)

X

FIGURE 1.10 The rough boundaries Alow(X) [the lower approximation and Aupp(X)] the
upper approximation of a given point set X ⊆ U-the universe of discourse.
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has also provided the necessary formalism and ideas for the development of some
propositional machine learning systems. It has also been used for, among many
others, knowledge representation; data mining; dealing with imperfect data; reducing
knowledge representation, and for analyzing attribute dependencies. The notions of
rough relations and functions are based on RST and can be applied as a theoretical
basis for rough controllers, among others.

1.4.4 Granular Computing

The philosophy of rough set analysis is general enough to be applicable to many
problem-solving tasks. It, in fact, has a major influence on an emerging field of
study known as granular computing (GrC) [58–60]. The theory of rough sets and the
theory of granularity offer artificial intelligence perspectives on granular computing.
Specifically, granular computing can be viewed as a study of human-inspired problem
solving and information processing. Granular computing concerns the processing of
complex information entities called information granules, which arise in the pro-
cess of data abstraction and derivation of knowledge from information. Generally
speaking, information granules are collections of entities that usually originate at the
numeric level and are arranged together due to their similarity, functional or physical
adjacency, indistinguishability, coherency, or the like.

Currently, granular computing is more a theoretical perspective than a coherent
set of methods or principles. As a theoretical perspective, it encourages an approach
to data that recognizes and exploits the knowledge present in data at various levels of
resolution or scales. In this sense, it encompasses all methods that provide flexibility
and adaptability in the resolution at which knowledge or information is extracted and
represented.

1.4.5 Artificial Immune Systems

The artificial immune systems (AIS) [61,62] have appeared as a new computational
approach for the CI community. Like other biologically inspired techniques, it tries
to extract ideas from a natural system, in particular the vertebrate immune system,
in order to develop computational tools for solving engineering problems. The pio-
neering task of AIS is to detect and eliminate non-self materials, called “antigens”
(e.g., virus cells or cancer cells). The artificial immune system also plays a great role
to maintain its own system against dynamically changing environment. The immune
system thus aims at providing a new methodology suitable for dynamics problems
dealing with unknown–hostile environment.

In recent years, much attention has been focused on behavior-based AI for its
proven robustness and flexibility in a dynamically changing environment. Artificial
immune systems are one such behavior-based reactive system that aims at developing
a decentralized consensus making mechanism, following the behavioral characteris-
tics of biological immune system.
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The basic components of the biological immune system are macrophages, an-
tibodies, and lymphocytes, the last one being classified into two types: B- and
T-lymphocytes [63], which are the cells stemming from the bone marrow. The human
blood circulatory system contains roughly 107 distinct types of B-lymphocytes, each
of which has a distinct molecular structure and produces Y-shaped [63] antibodies
from its surface. Antibodies can recognize foreign substances, called antigens, that
invade a living creature. Virus, cancer cells, and so on, are typical examples of anti-
gens. To cope with a continuously changing environment, a living system possesses an
enormous repertoire of antibodies in advance. The T-lymphocytes, on the other hand,
are the cells maturing in the thymus, and are used to kill infected cells and regulate
the generation of antibodies from B-lymphocytes as outside circuits of B-lymphocyte
networks. It is interesting to note that an antibody recognizes an antigen by part of its
structure called epitope. The portion of the antibody that has the recognizing capabil-
ity of an antigen is called paratope. Usually, epitope is the key portion of the antigen,
and paratope is the keyhole portion of the antibody. Recent study in immunology re-
veals that each type of antibody has its specific antigen determinant, called idiotope.

Jerne [63–65] proposed the idiotypic network hypothesis to explain the biological
communication among different species of antibodies. According to the hypothesis,
antibodies–lyphocytes are not isolated, but they communicate to each other among
their variant species.

A simple model of the immune system can be put forward in the following way:
Let

αi (t) be the concentration of the i th antibody

mi j be the affinity between antibody j and antibody i

mik be the affinity between antibody i and the detected antigen k

ki be the natural decay rate of antibody i

N and M , respectively, denote the number of antibodies that stimulate and suppress
antibody i

The growth rate of antibody is given below:

dαi

dt
=

⎧⎨
⎩

N∑
j=1

m ji · a j (t) −
N∑

k=1

mik · ak(t) − mi − ki

⎫⎬
⎭αi (t) (1.13)

and αi (t + 1) = 1

1 + exp(0.5 − αi (t))
(1.14)

The first and the second term on the right-hand side of Eq. (1.13), respectively,
denote the stimulation and suppression by other antibodies, respectively. The third
term denotes the stimulation from the antigen, and the fourth term represents the
natural decay of the i th antibody. Equation (1.14) is a squashing function used to
ensure the stability of the concentration.
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1.4.6 Chaos Theory

In mathematics, chaos theory [66,67] describes the behavior of certain dynamical
systems (i.e., systems whose states evolve with time) that may exhibit dynamics that
are highly sensitive to initial conditions (popularly referred to as the butterfly effect).
As a result of this sensitivity, which manifests itself as an exponential growth of
perturbations in the initial conditions, the behavior of chaotic systems appears to be
random. This happens even though these systems are deterministic, meaning that their
future dynamics are fully defined by their initial conditions with no random elements
involved. This behavior is known as deterministic chaos, or simply chaos. Chaos
theory describes the behavior of certain nonlinear dynamical systems that under
certain conditions exhibit a peculiar phenomenon known as chaos. One important
characteristic of the chaotic systems is their sensitivity to initial conditions (popularly
referred to as the butterfly effect). Because of this sensitivity, the behavior of these
systems appears to be random, even though the dynamics is deterministic in the sense
that it is well defined and contains no random parameters. Examples of such systems
include the atmosphere, the solar system, plate tectonics, turbulent fluids, economics,
and population growth.

Currently, fuzzy logic and chaos theory form two of the most intriguing and
promising areas of mathematical research. Recently, fuzzy logic and chaos theory
have merged to form a new discipline of knowledge, called fuzzy chaos theory
[68,69]. The detailed implications of fuzzy chaotic models are beyond the scope of
this chapter.

1.4.7 The Differential Evolution Algorithm

Differential evolution (DE) [70–72] is well known as a simple and efficient scheme
for global optimization over continuous spaces. It has reportedly outperformed a
few evolutionary algorithms (EAs) and other search heuristics like the PSO when
tested over both benchmark and real-world problems. Differential evolution is a
population-based global optimization algorithm that uses a floating-point (real-coded)
representation. The i th individual (parameter vector or chromosome) of the population
at generation (time) t is a D-dimensional vector containing a set of D optimization
parameters:

�Zi (t) = [Zi,1(t), Zi,2(t), . . . , Zi,D(t)] (1.15)

Now, in each generation (or one iteration of the algorithm) to change the population
members �Zi (t) (say), a donor vector �Yi (t) is created. It is the method of creating
this donor vector that distinguishes the various DE schemes. In one of the earliest
variants of DE, now called the DE–rand–1 scheme, to create �Yi (t) for each i th member,
three other parameter vectors (say the r1, r2, and r3th vectors such that r1, r2, r3 ∈
[1, N P] and r1 
= r2 
= r3) are chosen at random from the current population. Next,
the difference of any two of the three vectors is multiplied by a scalar number F and
the scaled difference is added to the third one, hence we obtain the donor vector �Yi (t).
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The process for the j th component of the i th vector may be expressed as,

Yi, j (t) = Zr1, j (t) + F · (Zr2, j (t) − Zr3, j (t)) (1.16)

Next, a crossover operation takes place to increase the potential diversity of the
population. The DE family primarily uses two kinds of crossover schemes, namely,
“exponential” and “binomial” [70]. To save space here, we briefly describe the bino-
mial crossover, which is also employed by the modified DE algorithm. The binomial
crossover is performed on each of the D variables whenever a randomly picked num-
ber between 0 and 1 is within the Cr value. In this case, the number of parameters
inherited from the mutant has a (nearly) binomial distribution. Thus for each target
vector �Zi (t), a trial vector �Ri (t) is created in the following fashion:

Ri, j (t) = Yi, j (t) if rand j (0, 1) ≤ Cr or j = rn(i)

= Zi, j (t) if rand j (0, 1) > Cr or j 
= rn(i) (1.17)

for j = 1, 2, . . . , D and rand j (0, 1) ∈ [0, 1] is the j th evaluation of a uniform random
number generator. The Paramiter rn(i) ∈ [1, 2, . . . , D] is a randomly chosen index
that ensures �Ri (t)gets at least one component from �Zi (t). To keep the population
size constant over subsequent generations, the next step of the algorithm calls for
“selection” in order to determine which one between the target and trial vector will
survive in the next generation (i.e., at time t = t + 1). If the trial vector yields a
better value of the fitness function, it replaces its target vector in the next generation;
otherwise the parent is retained in the population:

�Zi (t + 1) = �Ri (t) if f ( �Ri (t)) ≤ f ( �Zi (t))

= �Zi (t) if f ( �Ri (t)) > f ( �Zi (t)) (1.18)

where f (.) is the function to be minimized.
The DE has successfully been applied to diverse domains of science and engineer-

ing (e.g., mechanical engineering design, signal processing, chemical engineering,
machine intelligence, and pattern recognition, see [73]). It has been shown to perform
better than the GA and PSO over several numerical benchmarks [74].

1.4.8 BFOA

In 2002, Passino and co-workers proposed the BFOA [75,76] based on the foraging
theory of natural creatures that try to optimize (maximize) their energy intake per
unit time spent for foraging, considering all the constraints presented by their own
physiology (e.g., sensing and cognitive capabilities), and environment (e.g., density
of prey, risks from predators, physical characteristics of the search space). Although
BFOA has certain characteristics analogous to an evolutionary algorithm ([75], p. 63),
it is not directly connected to Darwinian evolution and natural genetics, which formed
the basis of the GA type algorithms in the early 1970s.
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During foraging of the real bacteria, locomotion is achieved by a set of tensile
flagella. Flagella help an Escherechia coli bacterium to tumble or swim, which are
two basic operations performed by a bacterium at the time of foraging [70]. When
they rotate the flagella in the clockwise direction, each flagellum pulls on the cell.
That results in the moving of flagella independently and finally the bacterium tumbles
with a lesser number of tumbling, whereas in a harmful place it tumbles frequently to
find a nutrient gradient. Moving the flagella in the counterclockwise direction helps
the bacterium to swim at a very fast rate. In the above-mentioned algorithm, the
bacteria undergoes chemotaxis, where they like to move toward a nutrient gradient
and avoid noxious environment. Generally, the bacteria move for a longer distance
in a friendly environment. Figure 1.11 depicts how clockwise and counterclockwise
movement of a bacterium take place in a nutrient solution.

When they get sufficient food, they increased in length, and in the presence
of a suitable temperature, they break in the middle to from an exact replica of
themselves. This phenomenon inspired Passino to introduce an event of reproduction
in BFOA. Due to the occurrence of sudden environmental changes or attack, the
chemotactic progress may be destroyed and a group of bacteria may move to some
other places or something else may be introduced in the swarm of concern. This
constitutes the event of elimination dispersal in the real bacterial population, where
all the bacteria in a region are killed or a group is dispersed into a new part of the
environment.

Now, suppose that we want to find the minimum of J (θ ), where θ ∈ p (i.e., θ

is a p-dimensional vector of real numbers), and we do not have measurements or an
analytical description of the gradient ∇ J (θ ). The BFOA mimics the four principal
mechanisms observed in a real bacterial system: chemotaxis, swarming, reproduction,
and elimination dispersal to solve this nongradient optimization problem. Below, we
introduce the formal notations used in BFOA literature, and then provide the complete
pseudocode of the BFO algorithm.

Counter
clockwise
rotation

SWIM 

TUMBLEClockwise rotation

FIGURE 1.11 Swim and tumble of a bacterium.
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Let us define a chemotactic step to be a tumble followed by a tumble or a tumble
followed by a run. Let j be the index for the chemotactic step. Let k be the index for
the reproduction step. Let l be the index of the elimination-dispersal event. Also, let

p = Dimension of the search space

S = Total number of bacteria in the population

Nc = The number of chemotactic steps

Ns = The swimming length

Nre = The number of reproduction steps

Ned = The number of elimination-dispersal events

Ped = Elimination-dispersal probability

C(i) = The size of the step taken in the random direction specified by the tumble

Let P( j, k, l) = {θ i ( j, k, l)|i = 1, 2, . . . , S} represent the position of each mem-
ber in the population of the S bacteria at the j th chemotactic step, kth reproduction
step, and lth elimination-dispersal event. Here, let J (i, j, k, l) denote the cost at the
location of the i th bacterium θ i ( j, k, l) ∈ p (sometimes we drop the indices and
refer to the i th bacterium position as θ i ). Note: We will interchangeably refer to J as
being a “cost” (using terminology from optimization theory) and as being a nutrient
surface (in reference to the biological connections). For actual bacterial populations,
S can be very large (e.g., S = 109), but p = 3. In our computer simulations, we will
use much smaller population sizes and will keep the population size fixed. However,
the BFOA, allows p > 3 so that we can apply the method to higher dimensional
optimization problems. Below we briefly describe the four prime steps in BFOA. We
also provide a pseudocode of the complete algorithm.

1. Chemotaxis. This process simulates the movement of an E. coli cell through
swimming and tumbling via flagella. Suppose θ i ( j, k, l) represents i th bac-
terium at the j th chemotactic, kth reproductive, and lth elimination-dispersal
step. The parameter C(i) is a scalar and indicates the size of the step taken
in the random direction specified by the tumble (run length unit). Then in
computational chemotaxis, the movement of the bacterium may be represented
by

θ i ( j + 1, k, l) = θ i ( j, k, l) + C(i)
�(i)√

�T (i)�(i)
(1.19)

where � indicates a unit length vector in the random direction.

2. Swarming. An interesting group behavior has been observed for several motile
species of bacteria including E. coli and Salmonella typhimurium, where stable
spatiotemporal patterns (swarms) are formed in a semisolid nutrient medium.
A group of E. coli cells arrange themselves in a traveling ring by moving up the
nutrient gradient when placed amid a semisolid matrix with a single nutrient
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chemoeffecter. The cells when stimulated by a high level of succinate, release
an attractant aspertate, which helps them to aggregate into groups and thus
move as concentric patterns of swarms with high bacterial density. The cell-to-
cell signaling in E. coli swarm may be represented by the following function:

Jcc(θ, P( j, k, l)) =
S∑

i=1

Jcc(θ, θ i ( j, k, l))

=
S∑

i=1

[−dattractant exp(−wattractant

p∑
m=1

(θm − θ i
m)2)]

+
S∑

i=1

[hrepellant exp(−wrepellant

p∑
m=1

(θm − θ i
m)2)] (1.20)

where Jcc(θ, P( j, k, l)) is the objective function value to be added to the
actual objective function (to be minimized) to present a time varying objective
function. The coefficients dattractant, wattractant, hrepellant, and wrepellant control the
strength of the cell-to-cell signaling. More specifically dattractant is the depth of
the attractant released by the cell; wattractant is a measure of the width of the at-
tractant signal (a quantification of the diffusion rate of the chemical); hrepellant =
dattractant is the height of the repellant effect (a bacterium cell also repels a
nearby cell in the sense that it consumes nearby nutrients and it is not physically
possible to have two cells at the same location); and wrepellant is a measure of
the width of the repellant. For a detailed discussion on the function Jcc, please
see [70].

3. Reproduction. The least healthy bacteria eventually die while each of the
healthier bacteria (those yielding lower value of the objective function)
asexually split into two bacteria, which are then placed in the same location.
This keeps the swarm size constant.

4. Elimination and Dispersal. To simulate this phenomenon in BFOA, some
bacteria are liquidated at random with a very small probability while the new
replacements are randomly initialized over the search space.

1.4.9 Bees Foraging Algorithm

Besides the gradually increasing popularity of BFOA, the current decade also wit-
nessed the development of a family of computer algorithms mimicking the foraging
strategies of honey bees. A colony of honey bees can extend itself over long distances
(up to 14 km) and in multiple directions simultaneously to exploit a large number of
food sources. A colony prospers by deploying its foragers to good fields. In principle,
flower patches with plentiful amounts of nectar or pollen that can be collected with
less effort should be visited by more bees, whereas patches with less nectar or pollen
should receive fewer bees [77,78]. The foraging process begins in a colony by scout



P1: TIX/FYX P2: MRM
c01 JWBS033-Maulik July 21, 2010 9:59 Printer Name: Yet to Come

EMERGING TRENDS IN CI 31

bees being sent to search for promising flower patches. Scout bees move randomly
from one patch to another. During the harvesting season, a colony continues its ex-
ploration, keeping a percentage of the population as scout bees. When they return
to the hive, those scout bees founding a patch that is rated above a certain quality
threshold (measured as a combination of some constituents, e.g., sugar content) de-
posit their nectar or pollen and go to the “dance floor” to perform a dance known
as the Waggle Dance [41]. The family of Artificial Bee Foraging algorithms try to
mimic the above aspects of the foraging strategies employed by real bee colonies.
The key members of the family and their applications to several different engineering
optimization problems have been summarized in Table 1.2.

TABLE 1.2 A Summary of State-of-the-art Research Works on Bees
Foraging Algorithm

Researchers References Related Algorithms Applications

1. Yonezawa and
Kikuchi (1996)

[79] Biological Simulations

2. Seeley and
Buhrman (1999)

[80],

3. Schmickl et al.
(2005)

[81],

4. Lemmens
(2006)

[82],

Sato and Hagiwara
(1997)

[83] Bee System Genetic Algorithm
Improvement

Karaboga (2005) [84] Artificial Bee Colony
(ABC)

Continuous Optimization

Yang (2005) [85] Virtual Bee Algorithm
(VBA)

Continuous Optimization

Pham et al. (2006) [86] Bees Algorithm (BA) Continuous Optimization
Lucic and

Teodorovic
(2001)

[87] Bee System (BS) Travelling Salesman
Problem (TSP)

Lucic and
Teodorovic
(2002)

[88] BS TSP and Stochastic Vehicle
Routing Problem

Teodorovic and
Dell’Orco
(2005)

[89] Bee Colony
Optimization (BCO)
+ Fuzzy Bee System
(FBS)

Ride-Matching Problem

Nakrani and Tovey
(2003)

[90] A Honey Bee Algorithm Dynamic Allocation of
Internet Service

Wedde et al. (2004) [91] Bee Hive Telecommunication
Network Routing

Drias et al. (2005) [92] Bees Swarm Max-W-Sat Problem
Pham et al. (2006) [93] BA LVQ-Neural Network
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Recently, Quijano et al. [94] modeled the social foraging behavior of honey bees
for nectar, involving the environment representation, activities during bee expedi-
tions (exploration and foraging), unloading nectar, dance strength decisions, explorer
allocation, recruitment on the dance floor, and accounting for interactions with other
hive functions [95]. They used the computational model of bee foraging to (1) solve
a continuous optimization problem underlying resource allocation, and (2) provide
novel strategies for multizone temperature control, an important industrial engineer-
ing application. They also established the global optimality of such algorithms for
single or multiple hives theoretically on the resource allocation problem.

1.5 SUMMARY

This chapter introduced different fundamental components of CI, discussed their
scope of possible synergism, and also focused on the most prominent recent topics
emerging in the field. It is clear from the discussions that fuzzy logic is a fundamental
tool for reasoning with approximate data and knowledge. Neural network plays a
significant role in machine learning and GA has an extensive application in intelligent
search and optimization problems. Belief networks are capable of propagating beliefs
of an event node based on the probabilistic support of its cause and effect nodes in
the causal tree–graph. The chapter also provided a list of possible synergism of two
or more computational models that fall under the rubric of CI. It ends with a brief
exposure to some very recently developed methodologies, which are gaining rapid
importance in the realm of CI.
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32. J. R. Koza (1992), Genetic Programming: On the programming of Computers by Means
of Natural Selection, MIT Press, Cambridge, MA.

33. E. Bonabeau, M. Dorigo, and G. Theraulaz (1999), Swarm Intelligence: From Natural to
Artificial Systems, Oxford University Press Inc.



P1: TIX/FYX P2: MRM
c01 JWBS033-Maulik July 21, 2010 9:59 Printer Name: Yet to Come

34 COMPUTATIONAL INTELLIGENCE

34. T. M. Martinetz and K. J. Schulten (1991), A neural-gas network learns topologies,
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