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1.1 IntroductIon

In the course of the development and clinical use of pharmaceutical products, many 
questions arise that require quantitative answers regarding issues of safety and efficacy, 
dose selection, and study design and interpretation. The analytical tools available to 
researchers and clinicians in part define the questions that can be answered. If a useful 
tool is available, it must have been invented, and there must be a skilled person on hand 
with the knowledge to use the tool. As we practice the science of pharmacometrics, we 
employ computer programs as tools to work with mathematical and statistical models 
to address diverse questions in the pharmaceutical sciences. The pharmacometric tool-
kit involves both theoretical modeling constructs as well as analysis software. The 
would-be analyst must learn the theory and the use of computer software, with its 
attendant syntax, data format and content requirements, numerical analysis methods, 
and output of results. Nonlinear mixed effects models have been the primary analysis 
framework for population-based pharmacometric modeling, and NONMEM (Beal 
et al. 1989–2011) has been the gold-standard software package for the implementation 
of these methods. The use of NONMEM in practice requires the development of pro-
cedures for efficient and quality-controlled dataset assembly, analysis, model building, 
hypothesis testing, and model evaluation, as will be discussed in some detail in later 
chapters of this text.

As pharmacometric tools have developed, the efficiency of use and breadth of 
applications have also increased. Though these tools have become somewhat easier to 
use through the development of software packages with graphical user interfaces and 
ancillary software products such as Perl Speaks NONMEM™ (Lindbom et al. 2004, 
2005), PLT Tools (PLTSoft 2013), and MIfuns (Knebel et al. 2008), the learning curve 
for new pharmacometricians is still quite substantial. This introductory text is written 
to help with that learning curve for students of these methods.

Perhaps, the key question in regard to the use of a particular drug product is 
what dosing regimen (i.e., dose and frequency) is safe and effective for use in a patient 
population, or more specifically, for an individual patient. In the hands of a trained 
researcher or clinician, pharmacometric analysis can contribute arguably better insight 
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2 Chapter 1 the praCtiCe of pharmaCometriCs

than any other tool available to answer this question. The development of NONMEM 
and subsequent programs has dramatically enhanced the ability to evaluate sparse 
data; to pool data for analysis from different studies, subjects, and experimental 
 conditions; and to simulate new circumstances of drug product use.

In traditional pharmacokinetic (PK) studies, a sufficient number of samples 
must be collected for the PK analysis to be performed on an individual subject basis, 
whether that analysis is simply the computation of noncompartmental parameters or 
it is the estimation of the parameters of a PK model through nonlinear regression or 
other numerical analysis techniques. Data are considered sparse when an insufficient 
number of samples are collected in an individual to perform the relevant PK analysis 
for the individual.

The analysis of sparse data was a prime motivating factor for the development 
of nonlinear mixed effect model approaches. Those patients from whom it is most 
difficult to obtain data are frequently the ones for whom the appropriate dose  selection 
is most critical. Neonates and the critically ill are patient groups that are likely to 
differ in PK disposition from the typical healthy adult volunteers in whom most PK 
data are obtained. Yet, obtaining enough data for pharmacokinetic modeling on an 
individual patient basis may be particularly difficult in these patient groups.

Traditional therapeutic drug monitoring (TDM), with dose assessment and 
adjustment following the collection of one or more drug concentrations, is a sim-
plistic approach to sparse data analysis. TDM methods generally assume a particular, 
previously identified underlying PK model and are not useful for developing such 
models. Whether a TDM assessment is made through numerical computations or by 
use of a nomogram, the approaches are generally limited to answering a single 
question, and frequently have specific assumptions about the time of the sample 
 collection, the dosing interval of the collection, or simplifying assumptions regarding 
the underlying model. These approaches are efficient and clinically beneficial in 
application to individual patient care, but they have very limited flexibility to answer 
other questions related to patient care that might be better answered with more 
thorough pharmacometric analysis or to make use of data that might not adhere to the 
assumptions of the method.

The ability to develop nonlinear mixed effects models of PK data when only a few 
observations were collected from individuals is a significant contribution to the toolkit 
of the pharmacometrician. These methods were first formalized and made available 
through the work of Dr. Lewis Sheiner and Dr. Stuart Beal. These brilliantly creative 
men have provided the foundation of the field of pharmacometrics as a legacy.

1.2 applIcatIons of sparse data analysIs

We can consider two broad approaches for the use of sparse PK data. The first is, like 
the TDM methods described above, to obtain the best description possible for the 
PKs of a drug in an individual patient. To do so, we assume a prior model with its 
typical population values and parameter variances and use the patient’s observed 
sparse samples to develop Bayesian estimates of the most likely PK model  parameters 
for this patient. An assessment of the need for dose adjustment is made possible by 
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this knowledge of the most likely estimates of the PK parameters for an individual 
patient. The patient’s data and the prior model are then used to estimate a patient-
specific model. The patient-specific model can be used to predict concentrations at 
different doses to optimize the dosage regimen for the individual. This approach 
 represents a clinical opportunity that is not limited by the simplifying assumptions 
and requirements of a particular TDM approach. The substantial level of training that 
is required for a clinical pharmacist or physician to be able to use these tools has 
severely limited their application in practice. However, improved TDM software 
based on population PK models and Bayesian analysis continue to be developed to 
facilitate the knowledge gained from sparse information and to make it more acces-
sible to the clinician (BestDose 2013). Pharmacy school curricula should increase 
the teaching and use of such tools to improve the ability of clinical pharmacists to 
individualize therapy and improve patient outcomes.

The second and perhaps most broadly used application of sparse data analysis 
has occurred in the drug development environment when sparse data from many 
 individuals are pooled for the purpose of population PK model development. Such 
data may be pooled with or without some subjects contributing full-profile data. 
Combining sparse concentration–time data from many individuals means the burden 
of sample collection on each patient is reduced in terms of the number of needle sticks 
for blood draws, total blood volume collected, and perhaps in the number of clinic 
visits for PK sample collection. Inclusion of sparse sampling is now commonplace, as 
recommended by FDA, during the conduct of Phase 3 trials and provides PK data in 
the patients for whom the drug is intended (Guidance 1999).

Including PK data from many patients lends strength to models that attempt to 
account for differences in PK model parameters between individuals. Covariates, or 
observable patient characteristics that correlate with PK parameters, are sought to 
account for a portion of the differences in parameters between individuals. The 
greater variety and number of patients included in Phase 3 studies give broader range 
to the covariates observed and enhance the relevance of the PK findings for future 
applications of the models in other patients. The ability to analyze sparse data allows 
this enrichment of covariates without the additional cost required to collect and 
 analyze the large number of samples needed for a traditional PK analysis in each 
individual.

Although the previous comments considering the role of sparse data anal-
ysis were made in the context of PK, these observations equally pertain to phar-
macodynamics (PD), which is the study of the effects of drugs. The study of 
pharmacometrics includes PK, PD, and models that link these in some fashion 
(i.e., PK/PD models).

A very significant advantage of population approaches in pharmacometric 
analyses is the ability to pool data from different trials into a single analysis dataset 
and enrich the data for analysis beyond that which is attained from any single trial. 
Pooling data in this way enhances the applicability of the resulting models. Through 
population analysis of pooled study data, we are often able to perform analyses that 
would not otherwise be feasible. For instance, pooling data from Phase 1, 2, and 3 
studies allow the researcher to model data following administration of the broad 
range of doses included in Phase 1 with the richness of covariates encountered in 
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phases 2 and 3 to develop a more robust dataset for a broader understanding of the 
properties of a drug.

The development of population PK and PD models during new drug dev-
elopment has become routine. These models serve as a repository of knowledge about 
the properties of the drug. Depending upon the development plan and the issues that 
were studied in phase 1, some issues, such as the effect of renal impairment and drug 
interactions, may be assessed with sparse PK samples from Phase 3 clinical trials. 
Phase 1 studies may give more conclusive results regarding specific study objectives 
but from a far smaller group that is less representative of the treatment population. In 
Phase 3 data, a screening approach can be used to assess whether additional Phase 1 
trials are needed to address certain regulatory and clinical PK questions.

Population models may be further used to address important development and 
regulatory related questions. The knowledge and understanding that may result from a 
model-based analysis can give insight into new study designs or conditions that can be 
explored through computer simulations. There is a significant move toward simulating 
clinical trials before actual study conduct in order to improve the probability of suc-
cessful outcome through optimization of the trial design (Gobburu 2010).

Simulations can also be used to gain information about drug use in special 
populations such as patients with renal or hepatic impairment or the elderly. For 
example, dabigatran etexilate mesylate is labeled to be administered at a dose of 
75 mg twice daily in patients with severe renal impairment (creatinine clearance of 
15–30 mL/min). This dose was not studied in this patient population but instead 
resulted from conclusions based on simulations from the population PK model 
results (Hariharan and Madabushi 2012).

1.3 Impact of pharmacometrIcs

The impact of pharmacometrics on regulatory and corporate decision making has 
been considerable. Pivotal regulatory approval decisions have been made based on 
pharmacometric modeling and simulation for Toradol®, Remifentanil®, Netrecor®, 
and Neurontin® (Gobburu 2010). According to an internal FDA survey of 42 NDAs 
submitted between 2000 and 2004, pharmacometric analysis contributed to both 
pivotal approval decisions and establishing the product label (Bhattaram et al. 
2005). According to this survey, pharmacometric analyses have most commonly 
influenced language regarding product labeling; however, in 14 of the 42 new drug 
applications (NDAs) reviewed, pivotal approval decisions were made in part based 
on the pharmacometrics component of the application. For example, as the result of 
pharmacometric efforts, a two-step dosing regimen was included in the pediatric 
section of the product label for busulfan, though this regimen was not tested in a 
clinical trial. Pharmacometric analysis also influenced language regarding the initial 
dose recommendation in the label of pasireotide injection for the treatment of 
Cushing’s disease (FDA Briefing Document, Pasireotide 2012).

The number and importance of regulatory decisions made by Food and Drug 
Administration (FDA) which rely on pharmacometric approaches continues to 
expand. In a survey of 198 submissions during 2000–2008, pharmacometric analyses 
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influenced drug approval and labeling decisions for more than 60% of submissions, 
with increasing numbers of submissions and in more therapeutic areas in the later 
years (Lee et al. 2011). The importance of pharmacometric contributions at the U.S. 
FDA is also evidenced by the elevation of the Staff of Pharmacometrics to the level 
of a Division, which occurred in February 2009.

Clinical pharmacology reviewers at the FDA use a question-based review 
 process to review the content of the Clinical Pharmacology summary (Section 2.7.2) 
of the NDA submission. Questions important to the PK characteristics of a new drug, 
the influence of intrinsic and extrinsic factors, and the exposure–response relation-
ships for safety and efficacy are included, and the data presented in the NDA are used 
to answer these questions or to reveal gaps in knowledge. This process is at the heart 
of an evidence-based review and includes the opportunity for a pharmacometrics 
review. Pharmacometricians involved in the development of a new drug product need 
to be able to anticipate the important regulatory questions and provide adequate, 
quantitative data to address those issues. Such results need to be presented clearly 
and completely, without ambiguous language, and without errors in the writing, data 
summaries, or graphical presentations to achieve the appropriate impact.

Pharmacometrics is making a significant impact on corporate development 
decisions as well, where the support for pharmacometrics in many companies has grown 
from the ad hoc “clean-up and recovery” applications of the past to planned support for 
many drug programs (Stone et al. 2010). The majority of pharmacometric modeling 
activity in the corporate environment takes place in the clinical phases of development. 
Internal corporate decision making has been influenced by pharmacometrics activities 
in dose selection and dose modifications, study design, go/no-go decisions, and formu-
lation decisions. Additionally, there has been research and expanding support for areas 
of decision analysis approaches such as decision models, economic models, comparator 
models, and utility index applications. New applications such as these will likely move 
the impact of pharmacometrics forward, beyond the PK and PD modeling support of 
product labeling. In a recent Pharmaceutical Research and Manufacturers of America 
(PhRMA) survey on model-based drug development, three companies estimated the 
financial benefit of pharmacometric activities in 2008 as cost avoidance of $1–5 million, 
$11–25 million, and $26–100 million (Stone et al. 2010).

Pharmacometric approaches are used to analyze PK and PD data from clinical 
trials to construct pharmacostatistical models that quantify PK, safety, and efficacy 
 measures and relationships. Pharmacostatistical models differ from the traditional 
statistics used in drug approval that are historically and routinely performed by statisti-
cians in industry and at FDA for the pivotal assessments of safety and efficacy. There are 
important differences in the approaches, though there is much benefit to be gained by the 
groups working together for the efficient and informed development of drug products.

1.4 clInIcal example

A recent publication details the development of a population PK model for propofol 
in morbidly obese children and adolescents (Diepstraten et al. 2012), and serves as 
an example of several important aspects and advantages of the population PK 
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approach. Propofol is commonly used for induction and maintenance of anesthesia in 
adults and children, but children have demonstrated a higher clearance of propofol 
than adults on a weight-adjusted basis (Schuttler and Ihmsen 2000).

This study was performed with frequent blood collection for measurement of pro-
pofol concentrations in each individual patient, so a traditional PK analysis would have 
been possible in these patients using a two-stage approach. To use a two-stage approach, 
one would estimate all the parameters of the model in each patient individually, and then 
compute the means and variances of the parameters across the individuals. This two-stage 
method has been shown to inflate the random effects (i.e., the variances and covariances 
of the parameter estimates) (Sheiner and Beal 1980, 1981, 1983; Steimer et al. 1984; 
Population PK Guidance 1999). The authors chose to use a population PK approach; 
however, since one advantage of the population approach is the ability to appropriately 
model the variance of model parameters across patients.

The population model approach allows the development of a model that accounts 
for the differences in model parameters between subjects. A covariate model can be 
developed that explains the intersubject variance in parameters based on a measurable 
covariate and a random-effect parameter. The random-effect parameter accounts for the 
portion of the parameter variance that is not explained by the covariate. This method is 
less biased for the estimates of the variance model than the two-stage approach.

In the propofol example, the authors considered age, total body weight (TBW), 
lean body weight (LBW), and body mass index (BMI) as predictors, or covariates, of 
the PK model parameters clearance and volume of the central compartment. Different 
functional forms were explored to describe the relationship between covariates and 
model parameters. For example, the relationship between TBW and clearance (Cl) 
was evaluated with flexible allometric scaling function. The model was expressed as:

Cl Cl
TBW

popi
i

z

= ×







70

where Cl
i
 is the value of clearance in the ith individual, Cl

pop
 is the population typical 

value of clearance, and z is the allometric exponent. TBW for the individual subject, 
TBW

i
, is “centered” on the typical weight of 70 kg. The concept of centering will be 

explained in detail in Chapter 5. Four models were tested that differed in the value of 
the exponent, z, where z = 1, 0.75, 0.8, or y. When z = 1, the relationship between pro-
pofol clearance and weight is linear. When z = 0.75 or 0.8, this is an allometric model 
with fixed constants, and when z = y, this is an allometric model with an estimated 
allometric scaling exponent. Following a thorough covariate model development 
process, the selected model included the allometric exponent fixed to a value of 0.8. 
This was the only covariate parameter retained in the final model. In this example, 
TBW proved to be a better predictor of propofol clearance in morbidly obese  children 
and adolescents than LBW, age, or BMI. The relationship between propofol clearance 
and TBW is illustrated in Figure 1.1.

Using this model, a clinician can prospectively individualize the dose for a 
morbidly obese child or adolescent. Since propofol is dosed by continuous infusion, 
the anticipated infusion rate, k

0
, can be calculated based on the target steady-state 

concentration, c
ss
 and the individual patient clearance, Cl

i
:
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k c i0 = ×ss Cl

This individualized dosing rate, derived from the population PK model, gives the 
best estimate of the anticipated dosing requirement for a patient. This example is 
intended to illustrate the utility of population PK models in patient care.

Pharmacometric models are built for a purpose. The development of pharma-
cometric models involves making implicit and explicit assumptions during the model 
building process. These assumptions may limit the general application of the model 
to new circumstances, so the user of a model must understand the data on which a 
model was constructed and the assumptions made in the development of the model 
(e.g., dose range, linearity, model structure, inter- and intrasubject variability models, 
patient type, disease state, concomitant medications, method of bioanalytical anal-
ysis, or pharmacodynamic measurement). This text is intended to give the reader an 
introduction to many of the methods and assumptions of pharmacometric model 
building. The emphasis will be on practical syntax and procedural process for what 
we believe to be typical modeling practices.
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