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Introduction to the Logistic
Regression Model

1.1 INTRODUCTION

Regression methods have become an integral component of any data analysis
concerned with describing the relationship between a response variable and one
or more explanatory variables. Quite often the outcome variable is discrete, tak-
ing on two or more possible values. The logistic regression model is the most
frequently used regression model for the analysis of these data.

Before beginning a thorough study of the logistic regression model it is important
to understand that the goal of an analysis using this model is the same as that of
any other regression model used in statistics, that is, to find the best fitting and most
parsimonious, clinically interpretable model to describe the relationship between
an outcome (dependent or response) variable and a set of independent (predictor
or explanatory) variables. The independent variables are often called covariates.
The most common example of modeling, and one assumed to be familiar to the
readers of this text, is the usual linear regression model where the outcome variable
is assumed to be continuous.

What distinguishes a logistic regression model from the linear regression model
is that the outcome variable in logistic regression is binary or dichotomous. This
difference between logistic and linear regression is reflected both in the form of
the model and its assumptions. Once this difference is accounted for, the methods
employed in an analysis using logistic regression follow, more or less, the same
general principles used in linear regression. Thus, the techniques used in linear
regression analysis motivate our approach to logistic regression. We illustrate both
the similarities and differences between logistic regression and linear regression
with an example.
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2 introduction to the logistic regression model

Example 1: Table 1.1 lists the age in years (AGE), and presence or absence of
evidence of significant coronary heart disease (CHD) for 100 subjects in a hypo-
thetical study of risk factors for heart disease. The table also contains an identifier
variable (ID) and an age group variable (AGEGRP). The outcome variable is CHD,
which is coded with a value of “0” to indicate that CHD is absent, or “1” to indicate
that it is present in the individual. In general, any two values could be used, but
we have found it most convenient to use zero and one. We refer to this data set as
the CHDAGE data.

It is of interest to explore the relationship between AGE and the presence or
absence of CHD in this group. Had our outcome variable been continuous rather
than binary, we probably would begin by forming a scatterplot of the outcome
versus the independent variable. We would use this scatterplot to provide an impres-
sion of the nature and strength of any relationship between the outcome and the
independent variable. A scatterplot of the data in Table 1.1 is given in Figure 1.1.

In this scatterplot, all points fall on one of two parallel lines representing the
absence of CHD (y = 0) or the presence of CHD (y = 1). There is some tendency
for the individuals with no evidence of CHD to be younger than those with evidence
of CHD. While this plot does depict the dichotomous nature of the outcome variable
quite clearly, it does not provide a clear picture of the nature of the relationship
between CHD and AGE.

The main problem with Figure 1.1 is that the variability in CHD at all ages is
large. This makes it difficult to see any functional relationship between AGE and
CHD. One common method of removing some variation, while still maintaining
the structure of the relationship between the outcome and the independent variable,
is to create intervals for the independent variable and compute the mean of the
outcome variable within each group. We use this strategy by grouping age into the
categories (AGEGRP) defined in Table 1.1. Table 1.2 contains, for each age group,
the frequency of occurrence of each outcome, as well as the percent with CHD
present.

By examining this table, a clearer picture of the relationship begins to emerge. It
shows that as age increases, the proportion (mean) of individuals with evidence of
CHD increases. Figure 1.2 presents a plot of the percent of individuals with CHD
versus the midpoint of each age interval. This plot provides considerable insight
into the relationship between CHD and AGE in this study, but the functional form
for this relationship needs to be described. The plot in this figure is similar to what
one might obtain if this same process of grouping and averaging were performed
in a linear regression. We note two important differences.

The first difference concerns the nature of the relationship between the outcome
and independent variables. In any regression problem the key quantity is the mean
value of the outcome variable, given the value of the independent variable. This
quantity is called the conditional mean and is expressed as “E(Y |x)” where Y

denotes the outcome variable and x denotes a specific value of the independent
variable. The quantity E(Y |x) is read “the expected value of Y , given the value x”.
In linear regression we assume that this mean may be expressed as an equation
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Table 1.1 Age, Age Group, and Coronary Heart Disease
(CHD) Status of 100 Subjects

ID AGE AGEGRP CHD

1 20 1 0
2 23 1 0
3 24 1 0
4 25 1 0
5 25 1 1
6 26 1 0
7 26 1 0
8 28 1 0
9 28 1 0
10 29 1 0
11 30 2 0
12 30 2 0
13 30 2 0
14 30 2 0
15 30 2 0
16 30 2 1
17 32 2 0
18 32 2 0
19 33 2 0
20 33 2 0
21 34 2 0
22 34 2 0
23 34 2 1
24 34 2 0
25 34 2 0
26 35 3 0
27 35 3 0
28 36 3 0
29 36 3 1
30 36 3 0
31 37 3 0
32 37 3 1
33 37 3 0
34 38 3 0
35 38 3 0
36 39 3 0
37 39 3 1
38 40 4 0
39 40 4 1
40 41 4 0
41 41 4 0
42 42 4 0
43 42 4 0
44 42 4 0

(continued)
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Table 1.1 (Continued)

ID AGE AGEGRP CHD

45 42 4 1
46 43 4 0
47 43 4 0
48 43 4 1
49 44 4 0
50 44 4 0
51 44 4 1
52 44 4 1
53 45 5 0
54 45 5 1
55 46 5 0
56 46 5 1
57 47 5 0
58 47 5 0
59 47 5 1
60 48 5 0
61 48 5 1
62 48 5 1
63 49 5 0
64 49 5 0
65 49 5 1
66 50 6 0
67 50 6 1
68 51 6 0
69 52 6 0
70 52 6 1
71 53 6 1
72 53 6 1
73 54 6 1
74 55 7 0
75 55 7 1
76 55 7 1
77 56 7 1
78 56 7 1
79 56 7 1
80 57 7 0
81 57 7 0
82 57 7 1
83 57 7 1
84 57 7 1
85 57 7 1
86 58 7 0
87 58 7 1
88 58 7 1
89 59 7 1
90 59 7 1
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Table 1.1 (Continued)

ID AGE AGEGRP CHD

91 60 8 0
92 60 8 1
93 61 8 1
94 62 8 1
95 62 8 1
96 63 8 1
97 64 8 0
98 64 8 1
99 65 8 1
100 69 8 1
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Figure 1.1 Scatterplot of presence or absence of coronary heart disease (CHD) by AGE for 100
subjects.

linear in x (or some transformation of x or Y ), such as

E(Y |x) = β0 + β1x.

This expression implies that it is possible for E(Y |x) to take on any value as x

ranges between −∞ and +∞.
The column labeled “Mean” in Table 1.2 provides an estimate of E(Y |x). We

assume, for purposes of exposition, that the estimated values plotted in Figure 1.2
are close enough to the true values of E(Y |x) to provide a reasonable assessment of
the functional relationship between CHD and AGE. With a dichotomous outcome
variable, the conditional mean must be greater than or equal to zero and less than
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Table 1.2 Frequency Table of Age Group by CHD

Coronary Heart Disease

Age Group n Absent Present Mean

20–29 10 9 1 0.100
30–34 15 13 2 0.133
35–39 12 9 3 0.250
40–44 15 10 5 0.333
45–49 13 7 6 0.462
50–54 8 3 5 0.625
55–59 17 4 13 0.765
60–69 10 2 8 0.800

Total 100 57 43 0.430
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Figure 1.2 Plot of the percentage of subjects with CHD in each AGE group.

or equal to one (i.e., 0 ≤ E(Y |x) ≤ 1). This can be seen in Figure 1.2. In addition,
the plot shows that this mean approaches zero and one “gradually”. The change in
the E(Y |x) per unit change in x becomes progressively smaller as the conditional
mean gets closer to zero or one. The curve is said to be S-shaped and resembles a
plot of the cumulative distribution of a continuous random variable. Thus, it should
not seem surprising that some well-known cumulative distributions have been used
to provide a model for E(Y |x) in the case when Y is dichotomous. The model we
use is based on the logistic distribution.

Many distribution functions have been proposed for use in the analysis of a
dichotomous outcome variable. Cox and Snell (1989) discuss some of these. There
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are two primary reasons for choosing the logistic distribution. First, from a mathe-
matical point of view, it is an extremely flexible and easily used function. Second,
its model parameters provide the basis for clinically meaningful estimates of effect.
A detailed discussion of the interpretation of the model parameters is given in
Chapter 3.

In order to simplify notation, we use the quantity π(x) = E(Y |x) to represent
the conditional mean of Y given x when the logistic distribution is used. The
specific form of the logistic regression model we use is:

π(x) = eβ0+β1x

1 + eβ0+β1x
. (1.1)

A transformation of π(x) that is central to our study of logistic regression is the
logit transformation. This transformation is defined, in terms of π(x), as:

g(x) = ln

[
π (x)

1 − π(x)

]
= β0 + β1x.

The importance of this transformation is that g(x) has many of the desirable prop-
erties of a linear regression model. The logit, g(x), is linear in its parameters, may
be continuous, and may range from −∞ to +∞, depending on the range of x.

The second important difference between the linear and logistic regression
models concerns the conditional distribution of the outcome variable. In the linear
regression model we assume that an observation of the outcome variable may be
expressed as y = E(Y |x) + ε. The quantity ε is called the error and expresses an
observation’s deviation from the conditional mean. The most common assumption
is that ε follows a normal distribution with mean zero and some variance that is
constant across levels of the independent variable. It follows that the conditional
distribution of the outcome variable given x is normal with mean E(Y |x), and a
variance that is constant. This is not the case with a dichotomous outcome vari-
able. In this situation, we may express the value of the outcome variable given x

as y = π(x) + ε. Here the quantity ε may assume one of two possible values. If
y = 1 then ε = 1 − π(x) with probability π(x), and if y = 0 then ε = −π(x) with
probability 1 − π(x). Thus, ε has a distribution with mean zero and variance equal
to π(x)[1 − π(x)]. That is, the conditional distribution of the outcome variable
follows a binomial distribution with probability given by the conditional mean,
π(x).

In summary, we have shown that in a regression analysis when the outcome
variable is dichotomous:

1. The model for the conditional mean of the regression equation must be
bounded between zero and one. The logistic regression model, π(x), given
in equation (1.1), satisfies this constraint.

2. The binomial, not the normal, distribution describes the distribution of the
errors and is the statistical distribution on which the analysis is based.
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3. The principles that guide an analysis using linear regression also guide us in
logistic regression.

1.2 FITTING THE LOGISTIC REGRESSION MODEL

Suppose we have a sample of n independent observations of the pair (xi, yi),
i = 1, 2, . . . , n, where yi denotes the value of a dichotomous outcome variable and
xi is the value of the independent variable for the ith subject. Furthermore, assume
that the outcome variable has been coded as 0 or 1, representing the absence or the
presence of the characteristic, respectively. This coding for a dichotomous outcome
is used throughout the text. Fitting the logistic regression model in equation (1.1)
to a set of data requires that we estimate the values of β0 and β1, the unknown
parameters.

In linear regression, the method used most often for estimating unknown param-
eters is least squares. In that method we choose those values of β0 and β1 that
minimize the sum-of-squared deviations of the observed values of Y from the pre-
dicted values based on the model. Under the usual assumptions for linear regression
the method of least squares yields estimators with a number of desirable statistical
properties. Unfortunately, when the method of least squares is applied to a model
with a dichotomous outcome, the estimators no longer have these same properties.

The general method of estimation that leads to the least squares function under
the linear regression model (when the error terms are normally distributed) is
called maximum likelihood. This method provides the foundation for our approach
to estimation with the logistic regression model throughout this text. In a general
sense, the method of maximum likelihood yields values for the unknown parameters
that maximize the probability of obtaining the observed set of data. In order to apply
this method we must first construct a function, called the likelihood function. This
function expresses the probability of the observed data as a function of the unknown
parameters. The maximum likelihood estimators of the parameters are the values
that maximize this function. Thus, the resulting estimators are those that agree most
closely with the observed data. We now describe how to find these values for the
logistic regression model.

If Y is coded as 0 or 1 then the expression for π(x) given in equation (1.1)
provides (for an arbitrary value of β = (β0, β1), the vector of parameters) the
conditional probability that Y is equal to 1 given x. This is denoted as π(x).
It follows that the quantity 1 − π(x) gives the conditional probability that Y is
equal to zero given x, Pr(Y = 0|x). Thus, for those pairs (xi, yi), where yi = 1,
the contribution to the likelihood function is π(xi), and for those pairs where
yi = 0, the contribution to the likelihood function is 1 − π(xi), where the quantity
π(xi) denotes the value of π(x) computed at xi . A convenient way to express the
contribution to the likelihood function for the pair (xi, yi) is through the expression

π(xi)
yi [1 − π(xi)]

1−yi . (1.2)
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As the observations are assumed to be independent, the likelihood function is
obtained as the product of the terms given in equation (1.2) as follows:

l(β) =
n∏

i=1

π(xi)
yi [1 − π(xi)]

1−yi . (1.3)

The principle of maximum likelihood states that we use as our estimate of β
the value that maximizes the expression in equation (1.3). However, it is easier
mathematically to work with the log of equation (1.3). This expression, the log-
likelihood, is defined as

L(β) = ln[l(β)] =
n∑

i=1

{yi ln[π(xi)] + (1 − yi) ln[1 − π(xi)]}. (1.4)

To find the value of β that maximizes L(β) we differentiate L(β) with respect to
β0 and β1 and set the resulting expressions equal to zero. These equations, known
as the likelihood equations, are∑

[yi − π(xi)] = 0 (1.5)

and ∑
xi[yi − π(xi)] = 0. (1.6)

In equations (1.5) and (1.6) it is understood that the summation is over i varying
from 1 to n. (The practice of suppressing the index and range of summation, when
these are clear, is followed throughout this text.)

In linear regression, the likelihood equations, obtained by differentiating the
sum-of-squared deviations function with respect to β are linear in the unknown
parameters and thus are easily solved. For logistic regression the expressions in
equations (1.5) and (1.6) are nonlinear in β0 and β1, and thus require special
methods for their solution. These methods are iterative in nature and have been
programmed into logistic regression software. For the moment, we need not be
concerned about these iterative methods and view them as a computational detail
that is taken care of for us. The interested reader may consult the text by McCullagh
and Nelder (1989) for a general discussion of the methods used by most programs.
In particular, they show that the solution to equations (1.5) and (1.6) may be
obtained using an iterative weighted least squares procedure.

The value of β given by the solution to equations (1.5) and (1.6) is called
the maximum likelihood estimate and is denoted as β̂. In general, the use of the
symbol “̂” denotes the maximum likelihood estimate of the respective quantity.
For example, π̂(xi) is the maximum likelihood estimate of π(xi). This quantity
provides an estimate of the conditional probability that Y is equal to 1, given that
x is equal to xi . As such, it represents the fitted or predicted value for the logistic
regression model. An interesting consequence of equation (1.5) is that

n∑
i=1

yi =
n∑

i=1

π̂(xi).
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Table 1.3 Results of Fitting the Logistic Regression Model
to the CHDAGE Data, n = 100

Variable Coeff. Std. Err. z p

Age 0.111 0.0241 4.61 <0.001
Constant −5.309 1.1337 −4.68 <0.001

Log-likelihood = −53.676546.

That is, the sum of the observed values of y is equal to the sum of the predicted
(expected) values. We use this property in later chapters when we discuss assessing
the fit of the model.

As an example, consider the data given in Table 1.1. Use of a logistic regres-
sion software package, with continuous variable AGE as the independent variable,
produces the output in Table 1.3.

The maximum likelihood estimates of β0 and β1 are β̂0 = −5.309 and β̂1 =
0.111. The fitted values are given by the equation

π̂(x) = e−5.309+0.111×AGE

1 + e−5.309+0.111×AGE
(1.7)

and the estimated logit, ĝ(x), is given by the equation

ĝ(x) = −5.309 + 0.111 × AGE. (1.8)

The log-likelihood given in Table 1.3 is the value of equation (1.4) computed using
β̂0 and β̂1.

Three additional columns are present in Table 1.3. One contains estimates of the
standard errors of the estimated coefficients, the next column displays the ratios of
the estimated coefficients to their estimated standard errors, and the last column
displays a p-value. These quantities are discussed in the next section.

Following the fitting of the model we begin to evaluate its adequacy.

1.3 TESTING FOR THE SIGNIFICANCE OF THE COEFFICIENTS

In practice, the modeling of a set of data, as we show in Chapters 4, 7, and 8, is
a much more complex process than one of simply fitting and testing. The methods
we present in this section, while simplistic, do provide essential building blocks
for the more complex process.

After estimating the coefficients, our first look at the fitted model commonly
concerns an assessment of the significance of the variables in the model. This
usually involves formulation and testing of a statistical hypothesis to determine
whether the independent variables in the model are “significantly” related to the
outcome variable. The method for performing this test is quite general, and differs
from one type of model to the next only in the specific details. We begin by
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discussing the general approach for a single independent variable. The multivariable
case is considered in Chapter 2.

One approach to testing for the significance of the coefficient of a variable in
any model relates to the following question. Does the model that includes the vari-
able in question tell us more about the outcome (or response) variable than a model
that does not include that variable? This question is answered by comparing the
observed values of the response variable to those predicted by each of two models;
the first with, and the second without, the variable in question. The mathematical
function used to compare the observed and predicted values depends on the partic-
ular problem. If the predicted values with the variable in the model are better, or
more accurate in some sense, than when the variable is not in the model, then we
feel that the variable in question is “significant”. It is important to note that we are
not considering the question of whether the predicted values are an accurate rep-
resentation of the observed values in an absolute sense (this is called goodness of
fit). Instead, our question is posed in a relative sense. The assessment of goodness
of fit is a more complex question that is discussed in detail in Chapter 5.

The general method for assessing significance of variables is easily illustrated
in the linear regression model, and its use there motivates the approach used for
logistic regression. A comparison of the two approaches highlights the differences
between modeling continuous and dichotomous response variables.

In linear regression, one assesses the significance of the slope coefficient by
forming what is referred to as an analysis of variance table. This table partitions
the total sum-of-squared deviations of observations about their mean into two parts:
(1) the sum-of-squared deviations of observations about the regression line SSE
(or residual sum-of-squares) and (2) the sum-of-squares of predicted values, based
on the regression model, about the mean of the dependent variable SSR (or due
regression sum-of-squares). This is just a convenient way of displaying the com-
parison of observed to predicted values under two models. In linear regression, the
comparison of observed and predicted values is based on the square of the distance
between the two. If yi denotes the observed value and ŷi denotes the predicted
value for the ith individual under the model, then the statistic used to evaluate this
comparison is

SSE =
n∑

i=1

(yi − ŷi )
2.

Under the model not containing the independent variable in question the only
parameter is β0, and β̂0 = y, the mean of the response variable. In this case, ŷi = y

and SSE is equal to the total sum-of-squares. When we include the independent
variable in the model, any decrease in SSE is due to the fact that the slope coefficient
for the independent variable is not zero. The change in the value of SSE is due to
the regression source of variability, denoted SSR. That is,

SSR =
[

n∑
i=1

(
yi − y

)2] −
[

n∑
i=1

(
yi − ŷi

)2]
.
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In linear regression, interest focuses on the size of SSR. A large value suggests
that the independent variable is important, whereas a small value suggests that the
independent variable is not helpful in predicting the response.

The guiding principle with logistic regression is the same: compare observed
values of the response variable to predicted values obtained from models, with and
without the variable in question. In logistic regression, comparison of observed to
predicted values is based on the log-likelihood function defined in equation (1.4).
To better understand this comparison, it is helpful conceptually to think of an
observed value of the response variable as also being a predicted value resulting
from a saturated model. A saturated model is one that contains as many parameters
as there are data points. (A simple example of a saturated model is fitting a linear
regression model when there are only two data points, n = 2.)

The comparison of observed to predicted values using the likelihood function is
based on the following expression:

D = −2 ln

[
(likelihood of the fitted model)

(likelihood of the saturated model)

]
. (1.9)

The quantity inside the large brackets in the expression above is called the likelihood
ratio. Using minus twice its log is necessary to obtain a quantity whose distribution
is known and can therefore be used for hypothesis testing purposes. Such a test is
called the likelihood ratio test. Using equation (1.4), equation (1.9) becomes

D = −2
n∑

i=1

[
yi ln

(
π̂i

yi

)
+ (1 − yi) ln

(
1 − π̂i

1 − yi

)]
, (1.10)

where π̂i = π̂(xi).
The statistic, D, in equation (1.10) is called the deviance, and for logistic

regression, it plays the same role that the residual sum-of-squares plays in lin-
ear regression. In fact, the deviance as shown in equation (1.10), when computed
for linear regression, is identically equal to the SSE.

Furthermore, in a setting as shown in Table 1.1, where the values of the outcome
variable are either 0 or 1, the likelihood of the saturated model is identically equal
to 1.0. Specifically, it follows from the definition of a saturated model that π̂i = yi

and the likelihood is

l(saturated model) =
n∏

i=1

y
yi

i × (1 − yi)
(1−yi ) = 1.0.

Thus it follows from equation (1.9) that the deviance is

D = −2 ln(likelihood of the fitted model). (1.11)

Some software packages report the value of the deviance in equation (1.11) rather
than the log-likelihood for the fitted model. In the context of testing for the signif-
icance of a fitted model, we want to emphasize that we think of the deviance in
the same way that we think of the residual sum-of-squares in linear regression.
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In particular, to assess the significance of an independent variable we compare
the value of D with and without the independent variable in the equation. The
change in D due to the inclusion of the independent variable in the model is:

G = D(model without the variable) − D(model with the variable).

This statistic, G, plays the same role in logistic regression that the numerator of
the partial F -test does in linear regression. Because the likelihood of the satu-
rated model is always common to both values of D being differenced, G can be
expressed as

G = −2 ln

[
(likelihood without the variable)

(likelihood with the variable)

]
. (1.12)

For the specific case of a single independent variable, it is easy to show that
when the variable is not in the model, the maximum likelihood estimate of β0 is
ln(n1/n0) where n1 = ∑

yi and n0 = ∑
(1 − yi) and the predicted probability for

all subjects is constant, and equal to n1/n. In this setting, the value of G is:

G = −2 ln

⎡⎢⎢⎢⎢⎣
(n1

n

)n1
(n0

n

)n0

n∏
i=1

π̂
yi

i (1 − π̂i)
(1−yi )

⎤⎥⎥⎥⎥⎦ , (1.13)

or

G = 2

{
n∑

i=1

[
yi ln

(
π̂i

) + (1 − yi) ln(1 − π̂i)
]

− [
n1 ln

(
n1

) + n0 ln(n0) − n ln(n)
]}

. (1.14)

Under the hypothesis that β1 is equal to zero, the statistic G follows a chi-square
distribution with 1 degree of freedom. Additional mathematical assumptions are
needed; however, for the above case they are rather nonrestrictive, and involve
having a sufficiently large sample size, n, and enough subjects with both y = 0
and y = 1. We discuss in later chapters that, as far as sample size is concerned,
the key determinant is min(n0, n1).

As an example, we consider the model fit to the data in Table 1.1, whose
estimated coefficients and log-likelihood are given in Table 1.3. For these data the
sample size is sufficiently large as n1 = 43 and n0 = 57. Evaluating G as shown
in equation (1.14) yields

G = 2{−53.677 − [43 ln(43) + 57 ln(57) − 100 ln(100)]}
= 2[−53.677 − (−68.331)] = 29.31.
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The first term in this expression is the log-likelihood from the model contain-
ing age (see Table 1.3), and the remainder of the expression simply substitutes
n1 and n0 into the second part of equation (1.14). We use the symbol χ2(ν) to
denote a chi-square random variable with ν degrees of freedom. Using this nota-
tion, the p-value associated with this test is P [χ2(1) > 29.31] < 0.001; thus, we
have convincing evidence that AGE is a significant variable in predicting CHD.
This is merely a statement of the statistical evidence for this variable. Other impor-
tant factors to consider before concluding that the variable is clinically important
would include the appropriateness of the fitted model, as well as inclusion of other
potentially important variables.

As all logistic regression software report either the value of the log-likelihood
or the value of D, it is easy to check for the significance of the addition of new
terms to the model or to verify a reported value of G. In the simple case of a
single independent variable, we first fit a model containing only the constant term.
Next, we fit a model containing the independent variable along with the constant.
This gives rise to another log-likelihood. The likelihood ratio test is obtained by
multiplying the difference between these two values by −2.

In the current example, the log-likelihood for the model containing only a con-
stant term is −68.331. Fitting a model containing the independent variable (AGE)
along with the constant term results in the log-likelihood shown in Table 1.3 of
−53.677. Multiplying the difference in these log-likelihoods by −2 gives

−2 × [−68.331 − (−53.677)] = −2 × (−14.655) = 29.31.

This result, along with the associated p-value for the chi-square distribution, is
commonly reported in logistic regression software packages.

There are two other statistically equivalent tests: the Wald test and the Score test.
The assumptions needed for each of these is the same as those of the likelihood
ratio test in equation (1.14). A more complete discussion of these three tests and
their assumptions may be found in Rao (1973).

The Wald test is equal to the ratio of the maximum likelihood estimate of the
slope parameter, β̂1, to an estimate of its standard error. Under the null hypothesis
and the sample size assumptions, this ratio follows a standard normal distribution.
While we have not yet formally discussed how the estimates of the standard errors
of the estimated parameters are obtained, they are routinely printed out by computer
software. For example, the Wald test for the coefficient for AGE in Table 1.3 is
provided in the column headed z and is

W = β̂1

ŜE(β̂1)
= 0.111

0.024
= 4.61.

The two-tailed p-value, provided in the last column of Table 1.3, is P(|z| > 4.61) <

0.001, where z denotes a random variable following the standard normal distribu-
tion. Some software packages display the statistic W 2 = z2, which is distributed
as chi-square with 1 degree of freedom. Hauck and Donner (1977) examined the
performance of the Wald test and found that it behaved in an aberrant manner, often
failing to reject the null hypothesis when the coefficient was significant using the
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likelihood ratio test. Thus, they recommended (and we agree) that the likelihood
ratio test is preferred. We note that while the assertions of Hauk and Donner are
true, we have never seen huge differences in the values of G and W 2. In prac-
tice, the more troubling situation is when the values are close, and one test has
p < 0.05 and the other has p > 0.05. When this occurs, we use the p-value from
the likelihood ratio test.

A test for the significance of a variable that does not require computing the
estimate of the coefficient is the score test. Proponents of the score test cite this
reduced computational effort as its major advantage. Use of the test is limited by
the fact that it is not available in many software packages. The score test is based
on the distribution theory of the derivatives of the log-likelihood. In general, this
is a multivariate test requiring matrix calculations that are discussed in Chapter 2.

In the univariate case, this test is based on the conditional distribution of
the derivative in equation (1.6), given the derivative in equation (1.5). In this
case, we can write down an expression for the Score test. The test uses the
value of equation (1.6) computed using β0 = ln(n1/n0) and β1 = 0. As noted
earlier, under these parameter values, π̂ = n1/n = y and the left-hand side of
equation (1.6) becomes

∑
xi(yi − y). It may be shown that the estimated variance

is y(1 − y)
∑

(xi − x)2. The test statistic for the score test (ST) is

ST =

n∑
i=1

xi(yi − y)√√√√y(1 − y)

n∑
i=1

(xi − x)2

.

As an example of the score test, consider the model fit to the data in Table 1.1.
The value of the test statistic for this example is

ST = 296.66√
3333.742

= 5.14

and the two tailed p-value is P(|z| > 5.14) < 0.001. We note that, for this example,
the values of the three test statistics are nearly the same (note:

√
G = 5.41).

In summary, the method for testing the significance of the coefficient of a
variable in logistic regression is similar to the approach used in linear regression;
however, it is based on the likelihood function for a dichotomous outcome variable
under the logistic regression model.

1.4 CONFIDENCE INTERVAL ESTIMATION

An important adjunct to testing for significance of the model, discussed in
Section 1.3, is calculation and interpretation of confidence intervals for parameters
of interest. As is the case in linear regression we can obtain these for the slope,
intercept and the “line” (i.e., the logit). In some settings it may be of interest to
provide interval estimates for the fitted values (i.e., the predicted probabilities).
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The basis for construction of the interval estimators is the same statistical theory
we used to formulate the tests for significance of the model. In particular, the confi-
dence interval estimators for the slope and intercept are, most often, based on their
respective Wald tests and are sometimes referred to as Wald-based confidence inter-
vals. The endpoints of a 100(1 − α)% confidence interval for the slope coefficient
are

β̂1 ± z1−α/2ŜE(β̂1) (1.15)

and for the intercept they are

β̂0 ± z1−α/2ŜE(β̂0) (1.16)

where z1−α/2 is the upper 100(1 − α/2)% point from the standard normal dis-
tribution and ŜE(·) denotes a model-based estimator of the standard error of the
respective parameter estimator. We defer discussion of the actual formula used for
calculating the estimators of the standard errors to Chapter 2. For the moment, we
use the fact that estimated values are provided in the output following the fit of a
model and, in addition, many packages also provide the endpoints of the interval
estimates.

As an example, consider the model fit to the data in Table 1.1 regressing
AGE on the presence or absence of CHD. The results are presented in Table 1.3.
The endpoints of a 95 percent confidence interval for the slope coefficient from
equation (1.15) are 0.111 ± 1.96 × 0.0241, yielding the interval (0.064, 0.158). We
defer a detailed discussion of the interpretation of these results to Chapter 3. Briefly,
the results suggest that the change in the log-odds of CHD per one year increase
in age is 0.111 and the change could be as little as 0.064 or as much as 0.158 with
95 percent confidence.

As is the case with any regression model, the constant term provides an estimate
of the response at x = 0 unless the independent variable has been centered at some
clinically meaningful value. In our example, the constant provides an estimate of
the log-odds ratio of CHD at zero years of age. As a result, the constant term, by
itself, has no useful clinical interpretation. In any event, from equation (1.16), the
endpoints of a 95 percent confidence interval for the constant are −5.309 ± 1.96 ×
1.1337, yielding the interval (−7.531,−3.087).

The logit is the linear part of the logistic regression model and, as such, is most
similar to the fitted line in a linear regression model. The estimator of the logit is

ĝ(x) = β̂0 + β̂1x. (1.17)

The estimator of the variance of the estimator of the logit requires obtaining the
variance of a sum. In this case it is

V̂ar[ĝ(x)] = V̂ar(β̂0) + x2V̂ar(β̂1) + 2xĈov(β̂0, β̂1). (1.18)

In general, the variance of a sum is equal to the sum of the variance of each
term and twice the covariance of each possible pair of terms formed from the
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Table 1.4 Estimated Covariance Matrix of the Estimated
Coefficients in Table 1.3

Age Constant

Age 0.000579
Constant −0.026677 1.28517

components of the sum. The endpoints of a 100(1 − α)% Wald-based confidence
interval for the logit are

ĝ(x) ± z1−α/2ŜE[ĝ(x)], (1.19)

where ŜE[ĝ(x)] is the positive square root of the variance estimator in
equation (1.18).

The estimated logit for the fitted model in Table 1.3 is shown in equation (1.8). In
order to evaluate equation (1.18) for a specific age we need the estimated covariance
matrix. This matrix can be obtained from the output from all logistic regression
software packages. How it is displayed varies from package to package, but the
triangular form shown in Table 1.4 is a common one.

The estimated logit from equation (1.8) for a subject of age 50 is

ĝ(50) = −5.31 + 0.111 × 50 = 0.240,

the estimated variance, using equation (1.18) and the results in Table 1.4, is

V̂ar[ĝ(50)] = 1.28517 + (50)2 × 0.000579 + 2 × 50 × (−0.026677) = 0.0650

and the estimated standard error is ŜE[ĝ(50)] = 0.2549. Thus the end points of a
95 percent confidence interval for the logit at age 50 are

0.240 ± 1.96 × 0.2550 = (−0.260, 0.740).

We discuss the interpretation and use of the estimated logit in providing estimates
of odds ratios in Chapter 3.

The estimator of the logit and its confidence interval provide the basis for the
estimator of the fitted value, in this case the logistic probability, and its associated
confidence interval. In particular, using equation (1.7) at age 50 the estimated
logistic probability is

π̂(50) = eĝ(50)

1 + eĝ(50)
= e−5.31+0.111×50

1+e−5.31+0.111×50
= 0.560 (1.20)

and the endpoints of a 95 percent confidence interval are obtained from the
respective endpoints of the confidence interval for the logit. The endpoints of the
100(1 − α)% Wald-based confidence interval for the fitted value are

eĝ(x)±z1−α/2ŜE[ĝ(x)]

1 + eĝ(x)±z1−α/2ŜE[ĝ(x)]
. (1.21)
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Using the example at age 50 to demonstrate the calculations, the lower limit is

e−0.260

1 + e−0.260
= 0.435,

and the upper limit is
e0.740

1 + e0.740
= 0.677.

We have found that a major mistake often made by data analysts new to logis-
tic regression modeling is to try and apply estimates on the probability scale to
individual subjects. The fitted value computed in equation (1.20) is analogous to a
particular point on the line obtained from a linear regression. In linear regression
each point on the fitted line provides an estimate of the mean of the dependent
variable in a population of subjects with covariate value “x”. Thus the value of
0.56 in equation (1.20) is an estimate of the mean (i.e., proportion) of 50-year-old
subjects in the population sampled that have evidence of CHD. An individual 50-
year-old subject either does or does not have evidence of CHD. The confidence
interval suggests that this mean could be between 0.435 and 0.677 with 95 percent
confidence. We discuss the use and interpretation of fitted values in greater detail
in Chapter 3.

One application of fitted logistic regression models that has received a lot of
attention in the subject matter literature is using model-based fitted values similar
to the one in equation (1.20) to predict the value of a binary dependent value in
individual subjects. This process is called classification and has a long history in
statistics where it is referred to as discriminant analysis. We discuss the classifica-
tion problem in detail in Chapter 4. We also discuss discriminant analysis within
the context of a method for obtaining estimators of the coefficients in the next
section.

The coverage∗† of the Wald-based confidence interval estimators in
equations (1.15) and (1.16) depends on the assumption that the distribution of the
maximum likelihood estimators is normal. Potential sensitivity to this assumption
is the main reason that the likelihood ratio test is recommended over the Wald test
for assessing the significance of individual coefficients, as well as for the overall
model. In settings where the number of events (y = 1) and/or the sample size
is small the normality assumption is suspect and a log-likelihood function-based
confidence interval can have better coverage. Until recently routines to compute
these intervals were not available in most software packages. Cox and Snell
(1989, p. 179–183) discuss the theory behind likelihood intervals, and Venzon
and Moolgavkar (1988) describe an efficient way to calculate the end points.

∗The remainder of this section is more advanced material that can be skipped on first reading of the
text.
†The term coverage of an interval estimator refers to the percent of time confidence intervals computed
in a similar manner contain the true parameter value. Research has shown that when the normality
assumption does not hold, Wald-based confidence intervals can be too narrow and thus contain the true
parameter with a smaller percentage than the stated confidence coefficient.
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Royston (2007) describes a STATA [StataCorp (2011)] routine that implements
the Venzon and Moolgavkar method that we use for the examples in this text. The
SAS package’s logistic regression procedure [SAS Institute Inc. (2009)] has the
option to obtain likelihood confidence intervals.

The likelihood-based confidence interval estimator for a coefficient can be con-
cisely described as the interval of values, β∗, for which the likelihood ratio test
would fail to reject the hypothesis, Ho : β = β∗, at the stated 1 − α percent signif-
icance level. The two end points, βlower and βupper, of this interval for a coefficient
are defined as follows:

2[l(β̂) − lp(βupper)] = 2[l(β̂) − lp(βlower)] = χ2
1−α(1), (1.22)

where l(β̂) is the value of the log-likelihood of the fitted model and lp(β) is the
value of the profile log-likelihood. A value of the profile log-likelihood is computed
by first specifying/fixing a value for the coefficient of interest, for example the slope
coefficient for age, and then finding the value of the intercept coefficient, using the
Venzon and Moolgavkar method, that maximizes the log-likelihood. This process
is repeated over a grid of values of the specified coefficient, for example, values of
β∗, until the solutions to equation (1.22) are found. The results can be presented
graphically or in standard interval form. We illustrate both in the example below.

As an example, we show in Figure 1.3 a plot of the profile log-likelihood for the
coefficient for AGE using the CHDAGE data in Table 1.1. The end points of the
95 percent likelihood interval are βlower = 0.067 and βupper = 0.162 and are shown
in the figure where the two vertical lines intersect the “x” axis. The horizontal line
in the figure is drawn at the value

−55.5964 = −53.6756 −
(
3.8416

2

)
,

where −53.6756 is the value of the log-likelihood of the fitted model from Table 1.3
and 3.8416 is the 95th percentile of the chi-square distribution with 1 degree of
freedom.

The quantity “Asymmetry” in Figure 1.3 is a measure of asymmetry of the
profile log-likelihood that is the difference between the lengths of the upper part
of the interval, βupper − β̂, to the lower part, β̂ − βlower, as a percent of the total
length, βupper − βlower. In the example the value is

A = 100 × (0.162 − 0.111) − (0.111 − 0.067)

(0.162 − 0.067)
∼= 7.5%.

As the upper and lower endpoints of the Wald-based confidence interval in
equation (1.15) are equidistant from the maximum likelihood estimator, it has
asymmetry A = 0.

In this example, the Wald-based confidence interval for the coefficient for age
is (0.064, 0.158). The likelihood interval is (0.067, 0.162), which is only 1.1%
wider than the Wald-based interval. So there is not a great deal of pure numeric
difference in the two intervals and the asymmetry is small. In settings where there
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Figure 1.3 Plot of the profile log-likelihood for the coefficient for AGE in the CHDAGE data.

is greater asymmetry in the likelihood-based interval there can be more substantial
differences between the two intervals. We return to this point in Chapter 3 where
we discuss the interpretation of estimated coefficients. In addition, we include an
exercise at the end of this chapter where there is a pronounced difference between
the Wald and likelihood confidence interval estimators.

Methods to extend the likelihood intervals to functions of more than one coef-
ficient such as the estimated logit function and probability are not available in
current software packages.

1.5 OTHER ESTIMATION METHODS

The method of maximum likelihood described in Section 1.2 is the estimation
method used in the logistic regression routines of the major software packages.
However, two other methods have been and may still be used for estimating the
coefficients. These methods are: (1) noniterative weighted least squares, and (2)
discriminant function analysis.

A linear models approach to the analysis of categorical data proposed by Grizzle
et al. (1969) [Grizzle, Starmer, and Koch (GSK) method] uses estimators based on
noniterative weighted least squares. They demonstrate that the logistic regression
model is an example of a general class of models that can be handled by their meth-
ods. We should add that the maximum likelihood estimators are usually calculated
using an iterative reweighted least squares algorithm, and are also technically “least
squares” estimators. The GSK method requires one iteration and is used in SAS’s
GENMOD procedure to fit a logistic regression model containing only categorical
covariates.
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A major limitation of the GSK method is that we must have an estimate of π(x)

that is not zero or 1 for most values of x. An example where we could use both
maximum likelihood and GSK’s noniterative weighted least squares is the data in
Table 1.2. In cases such as this, the two methods are asymptotically equivalent,
meaning that as n gets large, the distributional properties of the two estimators
become identical. The GSK method could not be used with the data in Table 1.1.

The discriminant function approach to estimation of the coefficients is of histor-
ical importance as it was popularized by Cornfield (1962) in some of the earliest
work on logistic regression. These estimators take their name from the fact that the
posterior probability in the usual discriminant function model is the logistic regres-
sion function given in equation (1.1). More precisely, if the independent variable,
X, follows a normal distribution within each of two groups (subpopulations) defined
by the two values of Y and has different means and the same variance, then the
conditional distribution of Y given X = x is the logistic regression model. That is,
if

X|Y ∼ N(μj , σ
2), j = 0, 1

then P(Y = 1|x) = π(x). The symbol “∼” is read “is distributed” and the
“N(μ, σ 2)” denotes the normal distribution with mean equal to μ and variance
equal to σ 2. Under these assumptions it is easy to show [Lachenbruch (1975)]
that the logistic coefficients are

β0 = ln

(
θ1

θ0

)
− 0.5(μ2

1 − μ2
0)/σ

2 (1.23)

and
β1 = (μ1 − μ0)/σ

2, (1.24)

where θj = P(Y = j), j = 0, 1. The discriminant function estimators of β0 and β1
are obtained by substituting estimators for μj , θj , j = 0, 1 and σ 2 into the above
equations. The estimators usually used are μ̂j = xj , the mean of x in the subgroup
defined by y = j, j = 0, 1, θ1 = n1/n the mean of y with θ̂0 = 1 − θ̂1 and

σ̂ 2 = [(n0 − 1)s20 + (n1 − 1)s21 ]/(n0 + n1 − 2),

where s2j is the unbiased estimator of σ 2 computed within the subgroup of the data
defined by y = j, j = 0, 1. The above expressions are for a single variable x and
multivariable expressions are presented in Chapter 2.

It is natural to ask why, if the discriminant function estimators are so easy to
compute, they are not used in place of the maximum likelihood estimators? Halpern
et al. (1971) and Hosmer et al. (1983) compared the two methods when the model
contains a mixture of continuous and discrete variables, with the general conclusion
that the discriminant function estimators are sensitive to the assumption of normal-
ity. In particular, the estimators of the coefficients for non-normally distributed vari-
ables are biased away from zero when the coefficient is, in fact, different from zero.
The practical implication of this is that for dichotomous independent variables (that
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occur in many situations), the discriminant function estimators overestimate the
magnitude of the coefficient. Lyles et al. (2009) describe a clever linear regression-
based approach to compute the discriminant function estimator of the coefficient
for a single continuous variable that, when their assumptions of normality hold,
has better statistical properties than the maximum likelihood estimator. We discuss
their multivariable extension and some of its practical limitations in Chapter 2.

At this point it may be helpful to delineate more carefully the various uses
of the term maximum likelihood, as it applies to the estimation of the logistic
regression coefficients. Under the assumptions of the discriminant function model
stated above, the estimators obtained from equations (1.23) and (1.24) are maximum
likelihood estimators. The estimators obtained from equations (1.5) and (1.6) are
based on the conditional distribution of Y given X and, as such, are technically
“conditional maximum likelihood estimators”. It is common practice to drop the
word “conditional” when describing the estimators given in equations (1.5) and
(1.6). In this text, we use the word conditional to describe estimators in logistic
regression with matched data as discussed in Chapter 7.

In summary there are alternative methods of estimation for some data configu-
rations that are computationally quicker; however, we use the maximum likelihood
method described in Section 1.2 throughout the rest of this text.

1.6 DATA SETS USED IN EXAMPLES AND EXERCISES

A number of different data sets are used in the examples as well as the exercises
for the purpose of demonstrating various aspects of logistic regression modeling.
Six of the data sets used throughout the text are described below. Other data sets
are introduced as needed in later chapters. Some of the data sets were used in
the previous editions of this text, for example the ICU and Low Birth Weight
data, while others are new to this edition. All data sets used in this text may be
obtained from links to web sites at John Wiley & Sons Inc. and the University of
Massachusetts given in the Preface.

1.6.1 The ICU Study

The ICU study data set consists of a sample of 200 subjects who were part of a
much larger study on survival of patients following admission to an adult intensive
care unit (ICU). The major goal of this study was to develop a logistic regression
model to predict the probability of survival to hospital discharge of these patients.
A number of publications have appeared that have focused on various facets of
this problem. The reader wishing to learn more about the clinical aspects of this
study should start with Lemeshow et al. (1988). For a more up-to-date discussion
of modeling the outcome of ICU patients the reader is referred to Lemeshow and
Le Gall (1994) and to Lemeshow et al. (1993). The actual observed variable values
have been modified to protect subject confidentiality. A code sheet for the variables
to be considered in this text is given in Table 1.5. We refer to this data set as the
ICU data.
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Table 1.5 Code Sheet for the Variables in the ICU Data

Variable Description Codes/Values Name

1 Identification code ID number ID
2 Vital status at hospital discharge 0 = Lived

1 = Died
STA

3 Age Years AGE
4 Gender 0 = Male

1 = Female
GENDER

5 Race 1 = White
2 = Black
3 = Other

RACE

6 Service at ICU admission 0 = Medical
1 = Surgical

SER

7 Cancer part of present problem 0 = No
1 = Yes

CAN

8 History of chronic renal failure 0 = No
1 = Yes

CRN

9 Infection probable at ICU
admission

0 = No
1 = Yes

INF

10 CPR prior to ICU admission 0 = No
1 = Yes

CPR

11 Systolic blood pressure at ICU
admission

mm Hg SYS

12 Heart rate at ICU admission Beats/min HRA
13 Previous admission to an ICU

within 6 months
0 = No
1 = Yes

PRE

14 Type of admission 0 = Elective
1 = Emergency

TYPE

15 Long bone, multiple, neck, single
area, or hip fracture

0 = No
1 = Yes

FRA

16 PO2 from initial blood gases 0 = >60
1 = ≤60

PO2

17 PH from initial blood gases 0 = ≥7.25
1 = <7.25

PH

18 PCO2 from initial blood gases 0 = ≤45
1 = >45

PCO

19 Bicarbonate from initial blood
gases

0 = ≥18
1 = <18

BIC

20 Creatinine from initial blood gases 0 = ≤2.0
1 = >2.0

CRE

21 Level of consciousness at ICU
admission

0 = No coma or
deep stupor

1 = Deep stupor
2 = Coma

LOC
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Table 1.6 Code Sheet for the Variables in the Low Birth Weight Data

Variable Description Codes/Values Name

1 Identification code 1–189 ID
2 Low birth weight 0 = ≥2500 g

1 = <2500 g
LOW

3 Age of mother Years AGE
4 Weight of mother at last menstrual period Pounds LWT
5 Race 1 = White

2 = Black
3 = Other

RACE

6 Smoking status during pregnancy 0 = No
1 = Yes

SMOKE

7 History of premature labor 0 = None
1 = One
2 = Two, etc.

PTL

8 History of hypertension 0 = No
1 = Yes

HT

9 Presence of uterine irritability 0 = No
1 = Yes

UI

10 Number of physician visits during the first
trimester

0 = None
1 = One
2 = Two, etc.

FTV

11 Recorded birth weight Grams BWT

1.6.2 The Low Birth Weight Study

Low birth weight, defined as birth weight less than 2500 grams, is an outcome
that has been of concern to physicians for years. This is because of the fact that
infant mortality rates and birth defect rates are higher for low birth weight babies.
A woman’s behavior during pregnancy (including diet, smoking habits, and receiv-
ing prenatal care) can greatly alter the chances of carrying the baby to term, and,
consequently, of delivering a baby of normal birth weight.

Data were collected as part of a larger study at Baystate Medical Center in
Springfield, Massachusetts. This data set contains information on 189 births to
women seen in the obstetrics clinic. Fifty-nine of these births were low birth weight.
The variables identified in the code sheet given in Table 1.6 have been shown
to be associated with low birth weight in the obstetrical literature. The goal of
the current study was to determine whether these variables were risk factors in
the clinic population being served by Baystate Medical Center. Actual observed
variable values have been modified to protect subject confidentiality. We refer to
this data set as the LOWBWT data.

1.6.3 The Global Longitudinal Study of Osteoporosis in Women

The Global Longitudinal Study of Osteoporosis in Women (GLOW) is an interna-
tional study of osteoporosis in women over 55 years of age being coordinated at the
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Table 1.7 Code Sheet for Variables in the GLOW Study

Variable Description Codes/Values Name

1 Identification code 1–n SUB_ID
2 Study site 1–6 SITE_ID
3 Physician ID code 128 unique codes PHY_ID
4 History of prior fracture 1 = Yes

0 = No
PRIORFRAC

5 Age at enrollment Years AGE
6 Weight at enrollment Kilograms WEIGHT
7 Height at enrollment Centimeters HEIGHT
8 Body mass index kg/m2 BMI
9 Menopause before age 45 1 = Yes

0 = No
PREMENO

10 Mother had hip fracture 1 = Yes
0 = No

MOMFRAC

11 Arms are needed to stand from
a chair

1 = Yes
0 = No

ARMASSIST

12 Former or current smoker 1 = Yes
0 = No

SMOKE

13 Self-reported risk of fracture 1 = Less than others of the
same age

2 = Same as others of the same
age

3 = Greater than others of the
same age

RATERISK

14 Fracture risk score Composite risk scorea FRACSCORE
15 Any fracture in first year 1 = Yes

0 = No
FRACTURE

aFRACSCORE = 0 × (AGE ≤ 60) + 1 × (60 < AGE ≤ 65) + 2 × (65 < AGE ≤ 70) + 3 × (70 <

AGE ≤ 75) + 4 × (75 < AGE ≤ 80) + 5 × (80 < AGE ≤ 85) + 6 × (AGE > 85) + (PRIORFRAC
= 1) + (MOMFRAC = 1) + (WEIGHT < 56.8) + 2 × (ARMASSIST = 1) + (SMOKE = 1).

Center for Outcomes Research (COR) at the University of Massachusetts/Worcester
by its Director, Dr. Frederick Anderson, Jr. The study has enrolled over 60,000
women aged 55 and older in ten countries. The major goals of the study are to use
the data to provide insights into the management of fracture risk, patient experience
with prevention and treatment of fractures and distribution of risk factors among
older women on an international scale over the follow up period. Complete details
on the study as well as a list of GLOW publications may be found at the Center
for Outcomes Research web site, www.outcomes-umassmed.org/glow.

Data used here come from six sites in the United States and include a few
selected potential risk factors for fracture from the baseline questionnaire. The
outcome variable is any fracture in the first year of follow up. The incident first-
year fracture rate among the 21,000 subjects enrolled in these six sites is about 4
percent. In order to have a data set of a manageable size, n = 500, for this text
we have over sampled the fractures and under sampled the non-fractures. As a
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result associations and conclusions from modeling these data do not apply to the
study cohort as a whole. Data have been modified to protect subject confidentiality.
We thank Dr. Gordon Fitzgerald of COR for his help in obtaining these data sets.
A code sheet for the variables is shown in Table 1.7. This data set is named the
GLOW500 data.

1.6.4 The Adolescent Placement Study

Fontanella et al. (2008) present results from a study of determinants of aftercare
placement for psychiatrically hospitalized adolescents and have made the data, suit-
ably modified to protect confidentiality, available to us. It is not our intent to repeat

Table 1.8 Code Sheet for Variables in the Adolescent Placement Study

Variable Description Codes/Values Name

1 Identification code 1–508 ID
2 Placement 0 = Outpatient

1 = Day treatment
2 = Intermediate residential
3 = Residential

PLACE

3 Placement combined 0 = Outpatient or day treatment
1 = Intermediate residential
2 = Residential

PLACE3

3 Age at admission Years AGE
4 Race 0 = White

1 = Nonwhite
RACE

5 Gender 0 = Female
1 = Male

GENDER

6 Neuropsychiatric disturbance 0 = None
1 = Mild
2 = Moderate
3 = Severe

NEURO

7 Emotional disturbance 0 = Not severe
1 = Severe

EMOT

8 Danger to others 0 = Unlikely
1 = Possible
2 = Probable
3 = Likely

DANGER

9 Elopement risk 0 = No risk
1 = At risk

ELOPE

10 Length of hospitalization Days LOS
11 Behavioral symptoms scorea 0–9 BEHAV
12 State custody 0 = No

1 = Yes
CUSTD

13 History of violence 0 = No
1 = Yes

VIOL

aBehavioral symptom score is based on the sum of three symptom subscales (oppositional behavior,
impulsivity, and conduct disorder) from the CSPI.
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the detailed analyses reported in their paper, but rather to use the data to motivate
and describe methods for modeling a multinomial or ordinal scaled outcome using
logistic regression models. As such, we selected a subset of variables, which are
described in Table 1.8. This data set is referred to as the APS data.

1.6.5 The Burn Injury Study

The April 2008 release (Version 4.0) of the National Burn Repository research
dataset (National Burn Repository 2007 Report, Dataset Version 4.0 accessed on
12/05/2008 at: http://www.ameriburn.org/2007NBRAnnualReport.pdf) includes
information on a total of 306,304 burn related hospitalizations that occurred
between 1973 and 2007. Available information included patient demographics,
total burn surface area, presence of inhalation injury, and blinded trauma center
identifiers. The outcome of interest is survival to hospital discharge. Osler et al.
(2010) selected a subset of approximately 40,000 subjects treated between 2000
and 2007 at 40 different burn facilities to develop a new predictive logistic
regression model (see the paper for the details on how this subset was selected).
To obtain a much smaller data set for use in this text we over sampled subjects
who died in hospital and under sampled subjects who lived to obtain a data set
with n = 1000 and achieve a sample with 15 percent in hospital mortality. As
such, all analyses and inferences contained in this text do not apply to the sample
of 40,000, the original data from the registry or the population of burn injury
patients as a whole. These data are used here to illustrate methods when prediction
is the final goal as well as to demonstrate various model building techniques. The
variables are described in Table 1.9 and the data are referred to as the BURN1000
data.

Table 1.9 Code Sheet for Variables in the Burn Study

Variable Description Codes/Values Name

1 Identification code 1–1000 ID
2 Burn facility 1–40 FACILITY
3 Hospital discharge status 0 = Alive

1 = Dead
DEATH

4 Age at admission Years AGE
5 Gender 0 = Female

1 = Male
GENDER

6 Race 0 = Non-White
1 = White

RACE

7 Total burn surface area 0–100% TBSA
8 Burn involved inhalation injury 0 = No

1 = Yes
INH_INJ

9 Flame involved in burn injury 0 = No
1 = Yes

FLAME
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Table 1.10 Code Sheet for Variables in the Myopia Study

Variable Variable Description Values/Labels Variable Name

1 Subject identifier Integer (range 1–1503) ID
2 Year subject entered the study Year STUDYYEAR
3 Myopia within the first 5 yr of

follow upa

0 = No
1 = Yes

MYOPIC

4 Age at first visit Years AGE
5 Gender 0 = Male

1 = Female
GENDER

6 Spherical equivalent refractionb Diopter SPHEQ
7 Axial lengthc mm AL
8 Anterior chamber depthd mm ACD
9 Lens thicknesse mm LT
10 Vitreous chamber depthf mm VCD
11 How many hours per week

outside of school the child
spent engaging in
sports/outdoor activities

Hours per week SPORTHR

12 How many hours per week
outside of school the child
spent reading for pleasure

Hours per week READHR

13 How many hours per week
outside of school the child
spent playing video/computer
games or working on the
computer

Hours per week COMPHR

14 How many hours per week
outside of school the child
spent reading or studying for
school assignments

Hours per week STUDYHR

15 How many hours per week
outside of school the child
spent watching television

Hours per week TVHR

16 Composite of near-work
activities

Hours per week DIOPTERHR

17 Was the subject’s mother
myopic?g

0 = No
1 = Yes

MOMMY

18 Was the subject’s father
myopic?

0 = No
1 = Yes

DADMY

aMYOPIC is defined as SPHEQ <= −0.75D.
bA measure of the eye’s effective focusing power. Eyes that are “normal” (don’t require glasses or
contact lenses) have spherical equivalents between −0.25 diopters (D) and +1.00 D. The more negative
the spherical equivalent, the more myopic the subject.
cThe length of eye from front to back.
dThe length from front to back of the aqueous-containing space of the eye between the cornea and the
iris.
eThe length from front to back of the crystalline lens.
f The length from front to back of the aqueous-containing space of the eye in front of the retina.
gDIOPTERHR = 3 × (READHR + STUDYHR) + 2 × COMPHR + TVHR.
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Table 1.11 Variables in the Modified NHANES Data Set

Variable Description Code/values Name

1 Identification code 1–6482 ID
2 Gender 0 = Male,

1 = Female
GENDER

3 Age at screening Years AGE
4 Marital status 1 = Married

2 = Widowed
3 = Divorced
4 = Separated
5 = Never married
6 = Living together

MARSTAT

5 Statistical weight 4084.478–153810.3 SAMPLEWT
6 Pseudo-PSU 1, 2 PSU
7 Pseudo-stratum 1–15 STRATA
8 Total cholesterol mg/dl TCHOL
9 HDL-cholesterol mg/dl HDL
10 Systolic blood pressure mm Hg SYSBP
11 Diastolic blood pressure mm Hg DBP
12 Weight kg WT
13 Standing height cm HT
14 Body mass index kg/m2 BMI
15 Vigorous work activity 0 = Yes,

1 = No
VIGWRK

16 Moderate work activity 0 = Yes,
1 = No

MODWRK

17 Walk or bicycle 0 = Yes,
1 = No

WLKBIK

18 Vigorous recreational activities 0 = Yes,
1 = No

VIGRECEXR

19 Moderate recreational activities 0 = Yes,
1 = No

MODRECEXR

20 Minutes of sedentary activity
per week

Minutes SEDMIN

21 BMI > 35 0 = No,
1 = Yes

OBESE

1.6.6 The Myopia Study

Myopia, more commonly referred to as nearsightedness, is an eye condition where
an individual has difficulty seeing things at a distance. This condition is primarily
because the eyeball is too long. In an eye that sees normally, the image of what is
being viewed is transmitted to the back portion of the eye, or retina, and hits the
retina to form a clear picture. In the myopic eye, the image focuses in front of the
retina, so the resultant image on the retina itself is blurry. The blurry image creates
problems with a variety of distance viewing tasks (e.g., reading the blackboard,
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Table 1.12 Code Sheet for the Variables in the Polypharmacy Data Set

Variable Description Codes/Values Name

1 Subject ID ID number 1–500 ID
2 Outcome; taking drugs from

more than three different
classes

0 = Not taking drugs
from more than three
classes

1 = Taking drugs from
more than three classes

POLYPHARMACY

3 Number of outpatient mental
health visits (MHV)

0 = None
1 = One to five
2 = Six to fourteen
3 = Greater than 14

MHV4

4 Number of inpatient mental
health visits (MHV)

0 = None
1 = One
2 = More than one

INPTMHV3

5 Year 2002–2008 YEAR
6 Group 1 = Covered families and

children (CFC)
2 = Aged, blind or
disabled (ABD)

3 = Foster care (FOS)

GROUP

7 Location 0 = Urban
1 = Rural

URBAN

8 Comorbidity 0 = No
1 = Yes

COMORBID

9 Any primary diagnosis (bipolar,
depression, etc.)

0 = No
1 = Yes

ANYPRIM

10 Number of primary diagnosis 0 = None
1 = One
2 = More than one

NUMPRIMRC

11 Gender 0 = Female
1 = Male

GENDER

12 Race 0 = White
1 = Black
2 = Other

RACE

13 Ethnic category 0 = NonHispanic
1 = Hispanic

ETHNIC

14 Age Years and months (two
decimal places)

AGE

doing homework, driving, playing sports) and requires wearing glasses or contact
lenses to correct the problem. Myopia onset is typically between the ages of 8 and
12 years with cessation of the underlying eye growth that causes it by age 15–16
years.

The risk factors for the development of myopia have been debated for a long
time and include genetic factors (e.g., family history of myopia) and the amount
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and type of visual activity that a child performs (e.g., studying, reading, TV watch-
ing, computer or video game playing, and sports/outdoor activity). There is strong
evidence that having myopic parents increases the chance that a child will become
myopic, and weaker evidence that certain types of visual activities (called near
work, e.g., reading) increase the chance that a child will become myopic.

These data are a subset of data from the Orinda Longitudinal Study of Myopia
(OLSM), a cohort study of ocular component development and risk factors for
the onset of myopia in children, which evolved into the Collaborative Longitudinal
Evaluation of Ethnicity and Refractive Error (CLEERE) Study, and both OLSM and
CLEERE were funded by the National Institutes of Health/National Eye Institute.
OLSM was based at the University of California, Berkeley [see Zadnik et al. (1993,
1994)]. Data collection began in the 1989–1990 school year and continued annually
through the 2000–2001 school year. All data about the parts that make up the eye
(the ocular components) were collected during an examination during the school
day. Data on family history and visual activities were collected yearly in a survey
completed by a parent or guardian.

The dataset used in this text is from 618 of the subjects who had at least five
years of followup and were not myopic when they entered the study. All data are
from their initial exam and includes 17 variables. In addition to the ocular data
there is information on age at entry, year of entry, family history of myopia and
hours of various visual activities. The ocular data come from a subject’s right eye.
A subject was coded as myopic if they became myopic at any time during the first
five years of followup. We refer to this data set, in Table 1.10, as the MYOPIA data.

1.6.7 The NHANES Study

The National Health and Nutrition Examination Survey (NHANES), a major effort
of the National Center for Health Statistics, was conceived in the early 1960s to
provide nationally representative and reliable data on the health and nutritional
status of adults and children in the United States. NHANES has since evolved
into a ongoing survey program that provides the best available national estimates
of the prevalence of, and risk factors for, targeted diseases in the United States
population. The survey collects interview and physical exam data on a nationally
representative, multistage probability sample of about 5,000 persons each year, who
are chosen to be representative of the civilian, non-institutionalized, population in
the US.

For purposes of illustrating fitting logistic regression models to sample sur-
vey data in Section 6.4 we chose selected variables, shown in Table 1.11, from
the 2009–2010 cycle of the National Health and Nutrition Examination Study
[NHANES III Reference Manuals and Reports (2012)] and made some modifica-
tions to the data. We refer to this data set as the NHANES data.

1.6.8 The Polypharmacy Study

In Chapter 9, we illustrate model building with correlated data using data on
polypharmacy described in Table 1.12. The outcome of interest is whether the
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patient is taking drugs from three or more different classes (POLYPHARMACY),
and researchers were interested in identifying factors associated with this outcome.
We selected a sample of 500 subjects from among only those subjects with obser-
vations in each of the seven years data were collected. Based on the suggestions of
the principal investigator, we initially treated the covariates for number of inpatient
and outpatient mental health visits (MHVs) with categories described in Table 1.12.
In addition we added a random number of months to the age, which was recorded
only in terms of the year in the original data set. As our data set is a sample, the
results in this section do not apply to the original study. We refer to this data set
as the POLYPHARM data.

EXERCISES

1. In the ICU data described in Section 1.6.1 the primary outcome variable is
vital status at hospital discharge, STA. Clinicians associated with the study felt
that a key determinant of survival was the patient’s age at admission, AGE.
(a) Write down the equation for the logistic regression model of STA on

AGE. Write down the equation for the logit transformation of this logistic
regression model. What characteristic of the outcome variable, STA, leads
us to consider the logistic regression model as opposed to the usual linear
regression model to describe the relationship between STA and AGE?

(b) Form a scatterplot of STA versus AGE.
(c) Using the intervals (15, 24), (25, 34), (35, 44), (45, 54), (55, 64), (65, 74),

(75, 84), (85, 94) for age, compute the STA mean over subjects within
each age interval. Plot these values of mean STA versus the midpoint of
the age interval using the same set of axes as was used in 1(b). Note: this
plot may done “by hand” on a printed copy of the plot from 1(b).

(d) Write down an expression for the likelihood and log-likelihood for the
logistic regression model in Exercise 1(a) using the ungrouped, n = 200,
data. Obtain expressions for the two likelihood equations.

(e) Using a logistic regression package of your choice obtain the maximum
likelihood estimates of the parameters of the logistic regression model in
Exercise 1(a). These estimates should be based on the ungrouped, n = 200,
data. Using these estimates, write down the equation for the fitted values,
that is, the estimated logistic probabilities. Plot the equation for the fitted
values on the axes used in the scatterplots in 1(b) and 1(c).

(f) Using the results of the output from the logistic regression package used
for 1(e), assess the significance of the slope coefficient for AGE using the
likelihood ratio test, the Wald test, and if possible, the score test. What
assumptions are needed for the p-values computed for each of these tests
to be valid? Are the results of these tests consistent with one another?
What is the value of the deviance for the fitted model?

(g) Using the results from 1(e) compute 95 percent confidence intervals for the
slope coefficient for AGE. Write a sentence interpreting this confidence.
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(h) Obtain from the package used to fit the model in 1(e) the estimated covari-
ance matrix. Compute the logit and estimated logistic probability for a
60-year-old subject. Evaluate the endpoints of the 95 percent confidence
intervals for the logit and estimated logistic probability. Write a sentence
interpreting the estimated probability and its confidence interval.

2. In the Myopia Study described in Section 1.6.2, one variable that is clearly
important is the initial value of spherical equivalent refraction.(SPHREQ).
Repeat steps (a)–(g) of Exercise 1, but for 2(c) use eight intervals containing
approximately equal numbers of subjects (i.e., cut points at 12.5%, 25%, . . . ,
etc.).

3. Using the data from the ICU study create a dichotomous variable NONWHITE
(NONWHITE = 1 if RACE = 2 or 3 and NONWHITE = 0 if RACE = 1).
Fit the logistic regression of STA on NONWHITE and show that the 95 per-
cent profile likelihood confidence interval for the coefficient for nonwhite has
asymmetry of −13% and that this interval is 26% wider than the Wald-based
interval. This example points out that even when the sample size and number
of events are large n = 200, and n1 = 40 there can be substantial asymmetry
and differences between the two interval estimators. Explain why this is the
case in this example.
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