Introduction

1.1 BASIC DESCRIPTION

The study of time series is concerned with time correlation structures. It has
diverse applications ranging from oceanography o finance. The celebrated
CAPM wmodel and the stochastic volatility model are examples of financial
models that contain a time series component. When we think of a time series,
we usually think of a collection of values {X; : ¢ = 1,...,n} in which the
subseript ¢ indicates the time at which the datum X; is observed. Although
inénitively clear, a number of nonstandard features of X; can be elaborated.

UNBEQUALLY SPACED DATA {MISSING VALUES). For example, if the series
is about daily refurns of a security, values are not available during nonirading
days such as holidays.

CONTINUQUS-TIME SERIES. In many physical phenomena, the underlying
quaniity of interest is governed by a continuously evolving mechanisin and the
data observed should be modeled by a continuous time series X (2). In finance,
we can think of tick-by-tick data as a close approximation to the continuous
evolution of the market.

AGGREGATION, The series ohserved may represent an accumulation of un-
derlying guantities over a period of time. For example, daily returns can be
thought of as the aggregation of tick-by-tick returns within the same day.

REPLICATED SERIES. The data may represent repeated measuremenis of
the same quantity across different subjecis. For example, we might monitor
the total weekly spending of each of a number of customers of a supermarket
chain over time.
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MULTIPLE TiIME SERIES. Instead of being a one-dimensional scalar, X, can
be a vector with each component representing an individual time series. For
example, the returns of a portfolio that consist of p equities can be expressed
as Xy = (Xut, ..., Xpe)', where each X, ¢ = 1,.. ., p, represents the returns of
each equity in the portfolio. In this case, we will be interested not only in the
serial correlation structures within each equity, but also the cross-correlation
structures among different equities.

NONLINEARITY, NONSTATIONARITY, AND HETERQOGENEITY. Many of the
time series encountered in practice may behave nonlinearly. Sometimes trans-
formation may help, but we often have to build elaborate models to account
for such nonstandard features. For example, the asvmmetric behavior of stock
returns motivates the study of GARCH models.

Although these features are important, in this book we deal primarily with
standard scalar time series. Only after a thorough understanding of the tech-
niques and difficulties involved in analyzing a regularly spaced scalar time
series will we be able to tackle some of the nonstandard features.

In classical statistics, we usually assume the X's to be independent. In
a time series context, the X's are usually serially correlated, and one of the
objectives in time series apalysis is to make use of this serial correlation struc-
ture to help us build better models. The following example illustrates this
point in a confidence interval context.

Example 1.1 Lef X; be generated by the following model:

.Xg =i + ap - 9{}.;_1, ay ~ N(O, 1) iid.

Clearly, B(X;) = p and varX, = 1 + 82, Thus,

cov(Xe, Xook) = B(Xe— @) (Xemi — 1)
E(a: — Ba;_1 (ot — 62:e—x—1)

_91 |k| = 11
= 1+6% k=0,
0, otherwise.

Let X = (371 Xi)/n. By means of the formula

n t=1

1o 1 o 2
var (; ;Xg) = n—_.z ;V&r(x;) + ﬂ,_Q Z ZCOV(X{,X}')}

=1 j=1
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Table 1.} Lengths of Confidence Intervals for n = 50

8 L{9)

-1 L{(-1)=(4-2)}}/2=2

—0.5 1.34
] i

0.5 0.45
1 0.14

it is easily seen that
% = var X

1 2
= ?-1?”(1 + 92) - ;;'z'(ﬂ - 1)9

1(1+92—2e+ 2—9)
(17

7t

= %[{1—9)2+2n—9]‘

Therefore, X ~ N{u, {r-}} Hence, an approrimate 95% confidence interval
{Ch Jor p is

_ 9 29142
X422 =X+--|(1-H2+= )
7X ﬁ[( )+-n]

=, 2
X 4=
+ 7
coineiding with the independent identically distributed (i.4.d4.) case. The dif-
ference in the Cls between 8 =0 and 6 # 0 can be expressed as

If 8 =0, this CI becomes

L{#) = [(1 -2+ 2—5] v

Table 1.1 gives numerical values of the differences for n = 50. For example,
i 8 =1 and if we were to use a CI of zero for 0, the wrongly constructed CI
would be much longer than it is supposed to be. The time correlation structure
given by the model helps to produce beiter inference in this sétuation. a

Example 1.2 As a second example, we consider the equity-style timing model
discussed in Heao and Shumaker (1999). In this article the authors try to
explain the spread between velue and growth stocks using several fundamenial
guantities. Among them, the most interesiing variable is the earnings—yield



Feturn Diffarential

4 INTRODUCTION

ol Siyte Sp d §S;L1b§agéeni 1%-_%?érgalue Reiura - Growth Retum)

8 4 RN
s, L e
1eaacs
awmar -
w7 7, anew . BT
o TEEPID tgaea e YIREIC W2 ygran
Pl waTio e T -
= sdaron -
PR Y - iERTIY a0
- 10 . -
= BTy am 5‘320"‘”“;\9
9ETIE ., = A e %
e . LT awaras agsen
L T ) o ey 03
Temane T L I
PR Ly, s OT
wwazgn *roenre = e wsis v Tmmeen - fEAEE
Py .
e i R A NI T - -
L B S . . . > F O AEREG
= Tomaao B Razst 4 % o o ovmm s, RS
0. LA I L
[T el | g . -
e fiebcn e Y e e - e PRl
vscar G | o ¢ T¥a et n e . R 1TE
th i o taTEOR
LT, A T e e » 1wRS0E 19ra0e
.- e
o . " Tosena araz . W w
T . L] + Sowzar
= DS * PR I
- o0y . wreE
B G N i » TeaacE =R,
- 19ERE
Wi *
ikt
I { - 150 v
» @Al o
= e,
o
[ELTER
....... S—— — . .
3 -2 O 2 4

Earnings-Yield Gap

Fig. 1.1 Equity-style timing.

gap reported in Figure 4 of their paper. This variable explains almost 30%
of the variation of the spread between value and growih and suggests that the
earnings—yield gap might be a highly informative regressor. Further descrip-
tion of this date sel is given in their article. We repeal this particudar analysis,
but taking into account the time order of the observations. The dafe between
January 79 Lo June 97 are stored in the file eygap.dat on the Web page for
this book, which can be found al

http://www.sta.cuhk.edu.hk/datal/staff /nhchan/isbook. html

For the time being, we restrict our aettention to reproducing Figure 4 of Kao
and Shumaker (1998). The plot and SPLUS /R commands are as follows:

>eyield<-read.table("eygap.dat" header=T)

>plot (eyield[,2],eyield[,3],xlab="Earnings-Yield Gap",
+ ylab="Return Differential")

>title("Scatterplot of Style Spreads (Subsequent

+ 12-month Value Return - Growth Return)

+ against Earnings-Yield Gap, Jan 79- Jun 97",cex=0.6)
>identify(eyieldl,2] ,eyieldl[,3],eyield[,1],cex=0.5)

As dlustrated in Figure 1.1, the scattergram can be separated into lwo
clouds, those belonging to the first iwo years of data and those belenging to
subsequent years. When time i3 taken into account, i seems thatl finding
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an B? = 0.3 depends crucially on the daia cloud between 79 and 80 ot fhe
lower right-hand corner of Figure 1.1. Accordingly, the finding of such o high
explanatory power from the earnings—yield gap seems to be spurious. This
example demonstrates that importent information mey be missing when the
time dimension is not {aken properly into account. (]

1.2 SIMPLE DESCRIPTIVE TECHNIQUES

In general, a time series can be decomposed into a macroscopic component
and a microscopic component. The macroscopic component can usually be
described through a trend or seasonality, whereas the microscopic component
may require more sophisticated methods to describe it. In this seciion we deal
with the macroscopic component through some simple descriptive techniques
and defer the study of the microscopic component to later chapters. Consider
in general that the time series {X,} is decomposed into a time trend part Ty,
a seasonal part 5;, and a microscopic part given by the noise N;. Formally,

Xy = L+ 8+ N

1.2.1 Trends

Suppose that the seasonal part is absent and we have only a simple time irend
gtincture, so that T; can be expressed as a parametric funciion of ¢, T} = a4,
for example. Then T} can be identified through several simple devices.

LEAST SQUARES METHOD. We can use the least squares (LS) procedure
to estimate Ty easily [i.e., ind « and 3 such that Y (X, — 7})? is minimized).
Although this method is convenient, there are several drawbacks.

1. We need to assume a fixed trend for the entire span of the data set,
which may not be true in general. In reality, the form of the trend may
also be changing over time and we may need an adaptive method to
accommodate this change. An immediate example is the daily price of
a given stock. For a fixed time span, the prices can be modeled pretty
satisfactorily through a linear trend. Bui everyone knows that the fixed
trend will give disastrous prediciions in the long run.

2. For the L8 methed to be effective, we can only deal with a simple
restricted form of T%.

FILTERING. In addition to using the LS method, we can filker or smooth
the series to estimate the trend, that is, use a smoother or a moving average
filter, such as

g
Y; = Sm(Xg) = Z G-rXt_;_»;-.

r=—g
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We can represent the relationship between the output ¥; and the input X; as

X, — — Sm(X;) = Y.

The weights {a.} of the filters are usually assumed to be symmetric and
normalized {i.c., @, = a., and > a, = 1}. An obvious example is the simple
moving average filter given by

1 g
YE:2Q+1 ZXt+r‘

r==—gq

The length of this filter is determined by the number ¢. When ¢ = 1 we have
a simple three-point moving average. The weights do not have to be the same
at each point, however. An early example of unequal weights is given by the
Spencer 15-point filter, introduced by an English actuary, Spencer, in 1904.

The idea is to use the 15-point filter to approximaie the filter that passes
through a cubic trend. Specifically, define the weights {a,} as

Gr = Gy,
a = 0, |7 |>7,
{ao, a1,...,a7) = z=(74, 67, 46, 21, 3, -5, —6, —3).

Ti can easily be shown that the Spencer 15-point filter does not distort a cubic
trend; that is, for T, = at® + b2 + et + d,

7 7
Sm(Xy) = Y aTirr+ Y arNwr
=7 r=—7
7
= Z arTiyn
F=—7
= 2}.

In general, it can be shown that a linear filter with weights {a,} passes a
polynomial of degree k in {, 2?:0 ¢it?, without distortion if and only if the
weights {a,} satisfy two conditions, as described next.

Proposition 1.1 T; = 3" a.Tiy,, for all kth-degree polynomials Ty = co +
et + -+ ept® if and only if

3
2

T=—=5

Z-rja.‘P = 0, for j=1,...,k

r==2z

i
o

The reader is asked to provide a proof of this result in the exercises. Using this
result, it is straightforward to verify that the Spencer 15-point filter passes a
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cubic polynomial withoui distortion. For the time being, let us illustrate the
main idea on how a filter works by means of the simple case of a linear trend
where X; = T; + N;, T; = o + 5t. Consider applying a (2¢ + 1}-point moving
average filter {smoother) to X, :

1 q
i = Smi{X;)= Zat1 Z D, P

TE=—g

1

Z [ + Bt + 7)) + Newr

r=—g

if Zfﬁ >t Nitr 2 0. In other words, if we use ¥; to estimate the trend,

it does a preity good job. We use the notation ¥; = Sm(X,) = 7, and
Res(X;) = X, — To= X, — Sm(X;)} 22 N;. In this case we have what is known
as a low-pass filter [i.e., a filter that passes through the low-frequency part
(the smeoth part) and filters out the high-frequency part, V¢]. In contrast,
we can construet a high-pass filter that filters out the trend. One drawback
of a low-pass filter is that we can only uge the middle section of the data. If
end-points are needed, we have to modify the filter accordingly. For example,

consider the filter ”

Sm(X:) =Y et —ay X,
3=0
where 0 < o < 1. Known as the exponential smocthing technique, this plays
a crucial role in many empirical studies. Experience suggests that « is chosen
between 0.1 and 0.3. Finding the best filter for a specific trend was once an
important topic in time series. Tables of weights were constructed for different
kinds of lower-order trends. Further discussion of this poii can be found in
Kendall and Ord {1990).
DirFERENCING. The preceding methods aim at estimating the trend by
a smoother 73. In many practical applications, the trend may be known in
advance, so it is of less importance to esiimate it. Insiead, we might be
interested in removing its effect and conceniraie on analyzing the microscopic
ecomponent. In this case it will be more desirable io eliminate or annihilaie
the effect of a trend. We can do this by looking at the residuals Res(X;) =
Xy —Sm(X;). A more convenient method, however, will be to eliminate the
trend from the series directly. The simplest method is differencing. Let B be
the backshift operator such that BX, = X;_;. Define

AX; = (1-B)X,=X;— X1,
AJXg (I—B)jX;,j:1,2,....

Iif Xg = T: + .Nrg, with T; = Z?=0 Gjtj, then A‘}Xt = j!ﬂ_? + A"Ng and Tz is
eliminated. Therefore, differencing is a form of high-pass filter that filiers out
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the low-frequency signal, the trend T}, and passes through the high-frequency
part, N;. In principle, we can eliminaie any polynomial trend by differencing
the series enough times. But this method suffers one drawback in practice.
Each time we difference the series, we lose one data point. Consequently, it
is not advisable to difference the data too often.

LOCAL CURVE FITTING. If the trend turns out to be more complicated,
local curve sinoothing techniques beyond a simple moving average may be
required to obtain good estimates. Some commonly used methods are spline
curve fitting and nonparameiric regression. Interested readers can find a luecid
discussion about spline smoothing in Diggle (1990).

1.2.2 Seasonal Cycles

When the seasonal component S; is present in equation (1.1}, the methods of
Section 1.2.1 have to be modified to accommodate this seasonality. Broadly
speaking, the seasonal component can be either additive or multiplicative,
according fo the following formulations:

X, — Ty + 8 + N;, additive case,
YT TSN, multiplicative case.

Again, depending on the goal, we can either estimate the seasonal part by
some kind of seasonal smoother or eliminate it from the data by a seasonal
differencing operation. Assume that the seasonal part has a period of 4 (i.e.,

Std = Se Zj_—_l S; = 0).

(A} Moving average method. We first estimate the trend part by a moving
average filter running over a complete cycle so that the effect of the
seasonality is averaged out. Depending on whether 4 is odd or even, we
perform one of the following two steps:

1. If d = 2g, iet Tg = %(%Xt——q'i'Xt—q-l-l +'“+Xg+q_1+%Xg+q)
fort=¢g+1,...,n—aq.

2. fd=2¢+1. let Ty =437 Xy fore=g+1,...,n—q.

After estimating T, filier it out from the data and estimate the seasonal
part from the residual X, — 7T,. Several methods are available to attain
this last step, the most common being the moving average method.
Interesied readers are referred to Brockwell and Davis (1991) for further
discussions and illustrations of this method. We illustrate this method
by means of an example in Section 1.4,

{B) Seasonal differencing. On the other hand, we can apply seasonal dif-
ferencing to eliminate the seasonal eifect. Consider the dih differencing
of the data X; — X;_4. This differencing eliminaies the effect of 8; in
equation {1.1). Again, we have to be cautious about differencing the
data seasonabiy since we will lose data points.
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Fig. 1.2 Time series plots.

1.3 TRANSFORMATIONS

If the data exhibit an increase in variance over time, we may need to iransform
the data before analyzing them. The Box—Cox transformations can be applied
here. Experience suggests, however, that log is the most commenly found
transformation. Other types of transformations are more problematie, which
can lead to serious difficulties in terms of interpretations and forecasting,

1.4 EXAMPLE

In this section we illusiraie the idea of using descriptive techniques to analyze
a time seriez. Figure 1.2 shows a time series plot of the guarterly operating
revenues of Washingion Water Power Company, 19801986, an eleciric and
natural gas utility serving eastern Washington and northern Idaho. We start
by plotting ihe data. Several conclusions can be drawn by inspecting the plot.

» As can be seen, there is a slight increasing trend. This appears to drop
around 1985-1986.

s There is an annual {12-month) cycle that is pretty clear. Revenues are
almost always lowest in the third quarter {July-September) and highest
in the first quarter {January—-March). Perhaps in this past of the country
there is not much demand {and hence not much revenue) for electrical
power in the summer (for air conditioning, say), but winters are cold
and there is a lot of demand {and revenue) for natural gas and electric
heat at that time.
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¢ Figure 1.3 shows box plots for each year’s operating revenues. The
medians seem to rise from year to year and then fall back after the third
vear. The interquariile range (IQR) gets larger as the median grows and
gets smaller as the median falls back; the range does the same. Most of
the box plots are symmetric or very slightly positively skewed. There
are no outliers.

¢ In Figure 1.3 we can draw a smooth curve connecting the medians of
each year's quarterly operating revenues. We have already deseribed
the longer cycle about the medians; this pattern repeats once over the
seven-year period graphed. This longer-term eycle is quite difficult to
see in the original time series plot.

Agssume that the data set has been stored in the file named washpower. dat.
The SpLuS program that generates this analysis is listed as follows. In the
case of R, replace the command “ris” in SPLUS by the command “ts”. The
rest of the commands in R are exactly the same. Readers are encouraged to
work through these commands o get acquainted with the SPLUS /R program.
Further explanaiions of these commands can be found in the books of Krause
and Olson (1997 and Venables and Ripley (1999).

>wash<-rts(scan(‘ ‘washpower.dat’’} ,start=1980,freq=4)
>wash.ma<-filter(wash,c(1/3,1/3,1/3))
>leg.names<-c(*Data’, 'Smoothed Data’)
>ts.plot(wash,wash.ma,lty=c(1,2),

+ main=’Washingiton Water Power Co

Continue string: Operating Revenues: 1980-1986°,

+ ylab='Thousands of Dollars’,xlab=’Year?)
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>legend(locator{l),leg . names,lty=c(1,2}}
>wagh.mat<-matrix{wash,nrow=4)
>boxplot{as.data.frame(wash.mat) ,names=as . character(seq(1980,

+

1986}, boxcol=-1,medcol=i,main=’Washington Water Power Ce

Continue string: Operating Revenues: 1980-19867,

+

ylab=’Thousands of Dollars’)

To assess the seasonality, we perform the following steps in the moving

average method.

VYV VYV e+ttt VYV

1. Estimate the trend through one complete cycle of the series with n =
23.d=4, and ¢ = 2 to form X; — T : £ = 3,...,26. The 7} is denoted
by washsea.ma in the program.

2. Compute the averages of the deviations {X;—7;} over the entire span of
the data. Then estimate the seasonal part §,:i=1,...4 by computing
the demeaned values of these averages. Finally, for ¢ = 1,...,4 let
Sf+4}' = 8;: 7 =1,...,6. The estimated seasonal component S’g 18
denoted by wash.sea in the program, and the deseasonalized part of
the data X; — &, is denoted by wash.nosea.

3. The third step involves reestimating the trend irom the deseasonalized
data wash.nozea. This is accomplished by applying a filter or any
convenient method to reestimake the trend by ﬁ, which is denoted by
wash.ma?2 in the program.

4. Finally, eheck the residual X; —’f} - gﬁ, which iz dencted by wash.res in
the program, to detect further structures. The SPLUS /R code follows.

washsea.ma<-filter(wash,c(1/8,rep{1/4,3),1/8})
wash.sea<-¢{0,0,0,0}
for(i in 1:2){
for(j in 1:6) {
vash.sea[il<-wash.sea[il+
(wash[i+4%j] [[1]]-washsea.ma[i+4*j1[[1]])
}
}
for(i in 3:4){
for (j im 1:6){
wash.seali]l<-wash.seali]+
(wash[i+4+*{j-1)] [[1]]-vashsea.mafi+4x(j-1D1[[11]
}
}
wagh.sea<-{wash.sea-mean(wash.sea))/6
wash.seal<-rep(wash.sea,7)
wash.nosea<-wash-wash.sea
wash.ma2<-filter(wash.nosea,c{1/8,rep{1/4,3),1/8})
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Fig. 1.4 Moving average method of seasonal decompaosition.

> wash.res<-wash-wash.ma2-wash.sea

> write(wash.seal, file=’out.dat’)

> wash.seatime<-ris(scan{’out.dat’),start=1980,freq=4)

% This step converts a non-time series object intoc a time
% series object.

> tg.plot(wash,wash.nosea,wash.seatime)

Figure 1.4 gives the time series plot, which contains the dais, the desea-
sonalized data, and the seasonal part. If needed, we can also plot the residual
wash.res to detect further struciures. But it is pretty clear that most of the
structures in this example have been identified.

Note that SPLUS /R also has its own seasonal decomposition function stl.
Details of this can be found with the help command. To execute it, use

> wash.stl<-stl(wash, 'periecdic’®)
> dwash<-diff(wash,4)
> ts.plot{wash,wash.stl$sea,wash.stldrem,dwash)

Figure 1.5 gives the plot of the data, the deseasonal part, and the seasonal
part. Comparing Figures 1.4 and 1.5 indicates that these two methods ac-
complish the same task of seasonal adjustments. As a final illusiration we can
difference the data with four lags to eliminate the seasonal effect. The plot of
this differenced series is also drawn in Figure 1.5.
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Fig. 1.5 SpLUS stl seasonal decomposition.

1.5 CONCLUSIONS

I this chapter we studied several descriptive methods to identify the macro-
scopic component (trend and seasonality) of a time series. Most of the time,
thege comnponents can be identified and interpreted easily and there is no
reason to fit unnecessarily complicated models to them. From now on we
will agsumse that this preliminary data analysis step has been completed and
we focus on analyzing the residual part N; for microseopic structures. To
accomplish this goal, we need to build more sophisticated models.

1.6 EXERCISES

1. {a) Show that a linear filier {a;} passes an arbitrary polynomial of
degree k without distortion, thai is,

g = E A3,
3

for all kth-degree polynomials m, = ¢y + 1t 4+ - -+ cxt* if and only
if

Zaj =1, and era.j =0 forr=1,..,k
¥ 3

(b} Show that the Spencer 15-point moving average filter does not
distort & cubic trend.
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2. fmy = Zi:u ckt® t = 0.1, .., show that Am; is a polynomial of

degree (p — 1) in ¢ and hence AP*lm, = 0.

. In 8pPLus, get hold of the yearly airline passenger data set by assigning

it to an object. You can use the command
x<-rts(scan{’airline.dat’),freq=12,start=1949)

The data are now stored in the objeect z, which forms the time series
{X.:}. This data set consists of monthly totals (in thousands) of interna-
tional airline passengers from January 1949 to December 1960 [details
can be found in Brockwell and Davis (1991)]. It is stored under the
file airline.dat on the Web page for this book.

{a} Do a time series plot of this data set. Are there any obvious trends?

(b) Is it necessary to transform the data? If a transformation is needed,
what would you suggesi?

{¢} Do a yearly running median for this daia set. Sketch the box plots
for each year to detect any other irends.

(d) Fiud a trend estimate by using a moving average filier. Plot this
trend.

{e) Estimate the seasonal component S, if any.

(f} Consider the deseasonalized data dy = X; — 5;,t=1,..,n Rees
timate a trend from {d;} by applying a moving average filter to
{d:}; call it #h,, say.

(g} Plot the residuals vy = X, — #hy — Sg. Does it look like a white noise
sequence? If not, can you make any suggestions?



