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C H A P T E R 1
MATHEMATICAL CONCEPTS

1.1 INTRODUCTION

Pharmacy as a profession is art, business, and science. The science of pharmacy,
also known as pharmaceutical science, requires knowledge of mathematics. Exper-
imentation in pharmaceutical science produces quantitative measures with specific
values. Handling these measures mathematically depends on how to apply rules to
define them. In turn, these definitions of measures lead to a description of experi-
mental entities. For example, to define a solution’s pH, a pH meter is normally used
in the measurement. Knowledge of the pH value can define the concentration of
hydronium ions present in the solution. The relationship that allows transformation
of the pH value to a concentration term is a mathematical expression known as
Sörensen’s equation:

pH = − log[H3O+] (1.1)

If the pH meter reads pH 10.8 for the solution, equation (1.1) may be used for the
determination of [H3O+]:

10.8 = − log[H3O+]

[H3O+] = 1.58 × 10−11 M

Thus, the concentration of hydronium ions in solution was computed from
equation (1.1) by mathematical manipulation employing the rules of logarithms.

Mathematical rules can also aid a pharmaceutical scientist in describing the
blood profile following administration of a drug in patients. Following intravenous
administration of a drug, the drug is placed in circulation and achieves its high-
est concentration immediately following injection. The concentration of the drug
decreases thereafter through distribution to tissues and via metabolic pathways.
The drug disappearance from the circulation over time may be described by an
exponential function following the general expression

Cblood = Cinitiale
−kt (1.2)

where Cblood is the drug concentration at time t , Cinitial is the initial concentration of
the drug in the blood immediately following administration, and k is the elimination
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4 CHAPTER 1 MATHEMATICAL CONCEPTS

rate constant. Equation (1.2) can be made linear by converting it to its logarithmic
form:

ln Cblood = ln Cinitial − kt (1.3)

The transformation of equation (1.2) to equation (1.3) requires knowledge of the
rules of logarithms. Pharmacokinetics , which is the study of drug absorption,
distribution, and elimination, uses these mathematical manipulations of data to
improve patients’ therapeutic outcomes. Equation (1.3) describes a linear relation-
ship between the natural logarithm of drug blood concentration and time. This
linear relationship is not only important in pharmacokinetics but its applications
are well utilized in physical pharmacy applications.

In this chapter we cover the major important mathematical concepts that
pharmaceutical scientists utilize in their studies. With the advancement of computer
technology, many of these mathematical applications are handled by a computer
software program or even by a basic scientific calculator.

1.2 THE SIMPLE LINEAR RELATIONSHIP

When two variables x and y vary with each other linearly, their function may be
written as

y = a + bx (1.4)

where y is the dependent variable and x is the independent variable. The slope of
the line is b and the y-intercept is a . The coefficient b can be positive or negative in
value. When b is positive, an increase in x results in an increase in y . Conversely,
if b is negative, an increase in x produces a decrease in y . Although equation (1.4)
can be found manually, the usual method is to input the y and x values into a
computer program to generate a linear equation. For example, the following data
were obtained from a spectrophotometric experiment measuring the concentration
of aspirin in solution:

Concentration (mg/mL) Absorbance

0.0325 0.003
0.0650 0.006
0.1250 0.011
0.2500 0.023
0.5000 0.049

To obtain the linear relationship between concentration and absorbance, a
simple scientific calculator may be used. The following equation is obtained:

absorbance = −0.000771 + 0.098565 × concentration (mg/mL) (1.5)

Comparing equation (1.4) to equation (1.5), the absorbance value is the dependent
variable and the concentration is the independent variable. The y-intercept is
negative in this case, and statistically speaking, is not different from zero. The
coefficient b is positive, which is expected from relationships that represent
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Concentration (mg/mL)
0 0.1 0.2 0.3 0.4 0.5

Absorbance = 0.000771 +
0.098565 * Concentration
(mg/mL)
R-Square = 0.998334
P < 0.0001
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FIGURE 1.1 Positive linear relationship between the concentration of aspirin in solution
and absorbance readings. Data points are experimental values, and the solid line is the best-fit
line for the data.

Beer’s law (Figure 1.1). It is important always to check whether or not the
mathematical relationship adheres to the scientific norms. In using equation (1.5),
the concentration of aspirin in an unknown solution may be estimated. For
example, if the absorbance of an unknown solution of aspirin is 0.015, the
estimated concentration of aspirin in solution is

0.015 = −0.000771 + 0.098565 × concentration (mg/mL)

concentration (mg/mL) = 1.6

Note that the y-intercept of −0.000771 was used in estimating the concentration.
Based on Beer’s law, the absorbance value is the logarithm of the ratio I0/I ,

where I0 and I are the intensities of the incident and emitted light, respectively.
The absorbance value is logarithmic; however, the spectrophotometer readily cal-
culates its value and the operator does not need to handle logarithmic calculations.
Equation (1.5) follows the general format of Beer’s law:

absorbance = absorptivity × pathlength of light × concentration (1.6)

Comparing equation (1.4) to equation (1.6), the theoretical y-intercept value must
be zero, and the coefficient b is absorptivity × pathlength of light. The pathlength
of light is predetermined by the instrument’s tube holder (normally, 2 cm in length),
and thus the slope of line b allows calculation of the absorptivity value, which is an
important physical characteristic of a drug. (The absorptivity value varies with the
solvent, the temperature, and the wavelength being used in the experiment.) Under
the conditions of this experiment, the absorptivity may be calculated as follows,
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FIGURE 1.2 Exponential decrease in drug blood concentration vs . time.

assuming that the pathlength was 2 cm:

b = absorptivity × pathlength of light

0.098565 = absorptivity × 2

absorptivity = 0.049 mL/(mg · cm)

For some linear relationships, the slope of the line is negative. For example,
equation (1.3) has a negative slope. The negative slope of equation (1.3) indi-
cates that concentration of the drug in blood decreases with time. It should be
emphasized, however, that the linear relationship is between the logarithm of the
drug concentration and time, not the concentration of the drug vs. time. Thus, when
presented with data such as drug concentration vs. time (Figure 1.2), convert the
drug concentration to logarithmic terms (natural or base 10) and then plot ln (drug
blood concentration)] vs. time. The resulting graph is a straight line (Figure 1.3).

Time (h) Concentration (μg/mL) ln (concentration)

0.25 10 2.30258509
4 1 0
6 0.2 −1.6094379
8 0.1 −2.3025851

10 0.08 −2.5257286
12 0.05 −2.9957323

The equation that relates the drug blood concentration vs. time is presented as

ln(concentration) = 1.8561797 − 0.4538628 × time (h) (1.7)
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In (concentration) = 1.8561797 -
0.4538628 * Time (hours)
R-square = 0.905165
p = 0.0022
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FIGURE 1.3 Linear relationship of the natural logarithm of drug blood concentration vs .
time.

From this equation, the first-order rate constant for elimination may be calculated
from the slope:

slope = −04538628 = −kel

Therefore,

kel = 0.454 h−1

The value of kel indicates that 45.4% of the drug concentration remaining is elim-
inated each hour.

1.3 EXPONENTIAL RULES

In physical pharmacy expressions, many of the calculations require handling terms
with exponents. The rules for handling exponents are (Stein, 1977; Anton, 1980):

1. Any number raised to the power of zero results in a value of 1 : x0 = 1

2. Any number raised to the power of 1 will equal its value: x1 = x

3. xn × xm = xn+m

4. xn/xm = xn−m

5. 1/xn = x−n

6. (xn)2 = x2n

In preparing buffer solutions, the ability of the resulting solution to resist a
change in its pH is known as the buffer capacity . In calculating the buffer capacity
value, the hydronium ion concentration, the acid dissociation constant, and the total
buffer concentration must be known. Assuming that the total buffer concentration
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was 1 M, [H3O+] = 10−4 M, and Ka = 1.47 × 10−4, the buffer capacity value can
be estimated from these values. The equation for calculating the buffer capacity is
(Martin et al., 1983)

buffer capacity = 2.303C
Ka [H3O+]

{Ka + [H3O+]}2

= (2.303)(1)
(1.47x 10−4)(10−4)

[(1.47 × 10−4) + (10−4)]2

= 0.56

The higher the value of the buffer capacity, the higher the resistance of the buffer
is to a change in pH.

1.4 LOGARITHMIC RULES

For most pharmaceutical applications, the logarithmic function serves to convert
a nonlinear relationship to a linear one. Linearity allows easier calculations for
coefficients from a mathematical model. Logarithmic functions are thought of as
exponential equations; thus, y = xz translates into z = logx y (logx = logarithm
of base x ). There are two important logarithm symbols: log and ln; log is the
logarithm to the base 10, whereas ln denotes a natural logarithmic function to
the base e (e = 2.71828 . . .). When handling logarithmic terms in an equation, the
following mathematical rules apply (Stein, 1977; Anton, 1980):

1. ln x = 2.303 log x

2. log(x × z ) = log x + log z

3. log(x/z ) = log x − log z

4. log x = z or x = 10z

5. ln x = z or x = ez

6. log xz = z log x

7. ln e = 1

8. log 10 = 1

For example, consider equation (1.7) and convert the equation to its log form
of base 10:

ln(concentration) = 1.8561797 − 0.4538628 × time (h) (1.7)

2.303 log(concentration) = 1.8561797 − 0.4538628 × time (h)

log(concentration) = 0.806 − 0.197 × time (h) (1.8)

Equations (1.7) and (1.8) are identical mathematically, and they produce the same
value for the elimination rate constant. In using equation (1.8) to calculate k , the
slope of the equation is used:

slope = −0.197 = −k

2.303
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Therefore, k = (2.303) × (0.197) = 0.454 h−1, which is the same value as that
obtained using equation (1.7).

In Chapter 8, concepts related to the shelf-life determination of drug products
are introduced. One area of concern is the effect of a change in storage temperature
on the stability of a drug. One equation uses the logarithm of the ratio of degradation
rate constants at two different temperatures: log(k2/k1). The following calculations
illustrate the use of logarithmic rules in solving such equations:

k1 = 0.034 min−1

k2 = unknown

log
k2

k1
= 0.842

To find k2 we use,

log
k2

0.034
= 0.842

log k2 − log(0.034) = 0.842

log k2 = 0.842 + log(0.034) = −0.6265

k2 = 10−0.6265 = 0.236 min−1

Since drug degradation occurs with faster rates at higher temperatures than at lower
ones, k2 must occur at a temperature much higher than that observed with k1.

Methods for the sterilization of pharmaceutical units may be divided into
thermal and nonthermal. Thermal methods utilize heat as a means of achieving
the destruction of microorganisms. The rate at which microbes get killed may be
described by

M = M0e−kt (1.9)

where M0 and M are the initial microbial population and that at time t , respectively.
The rate constant for the process of microorganism killing is k . Equation (1.9) can
be rearranged to read

M

M0
= e−kt

Taking the natural logarithm of both sides of the equation results in

ln
M

M0
= ln(e−kt ) = −kt (1.10)

Equation (1.10) allows calculations of the rate constant if M0 and M are known. For
example, the initial population of spores was 104 mL−1; following 60 s of exposure
to a temperature of 120◦C, the population was reduced to 10 mL−1. Calculate the
rate constant:

ln
10

104
= −k(60 s)

k = 0.115 s−1

This means that 11.5% of the remaining population of microorganisms is destroyed
every second at 120◦C.
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1.5 DIFFERENTIAL EQUATIONS

Differential equations may be employed to solve rate-related problems such as
when studying drug degradation at a given rate and order of reaction. Integration
is viewed as summation and is the opposite of differentiation. In pharmaceutical
sciences, the notion of differentiation is commonly applied to topics that involve
rates, such as drug degradation over time, drug diffusion through a membrane
over time, and the rate by which a drug disappears from circulation following
administration. The general format for the rate using a differential format is dA/dt ,
where d indicates a small quantity. Thus, dA/dt indicates that a small change in
A occurs for every small change in t . When applied to a differential equation,
integration (symbol = ∫) “sums up” all these small changes, thus, integration is
considered to be a summation process.

The solutions for some important differential equations in physical pharmacy
can be summarized as follows (Stein, 1977; Anton, 1980):

1. Zero-order :
dA

dt
= −k0A0

dA = −k0dt∫ A

0
dA = −k0

∫ t

0
dt (1.11)

A − A0 = −k0(t − t0)

given t0 = 0

A = A0 − k0t

2. First-order : dA

dt
= −k1A1

dA

A
= −k1dt

∫ A

0

dA

A
= −k1

∫ t

0
dt (1.12)

ln A − ln A0 = −k1(t − t0)

given t0 = 0

ln A = ln A0 − k1t

3. Second-order : dA

dt
= −k2A2

dA

A2
= −k2 dt

∫ A

0

dA

A2
= −k2

∫ t

0
dt
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− 1

A
− −1

A0
= −k2(t − t0)

Given t0 = 0
1

A
= 1

A0
+ k2t (1.13)

4. Partial derivatives (Adamson, 1969): When a variable such as y is a
function of two or more other variables (q , x , w, . . .), the notion of partial deriva-
tives (∂) is applicable. Thus, we express y with respect to q , x , as follows (the
subscripts indicate that these variables are held constant during the differentiation
calculation): (

∂y

∂q

)
x ,w(

∂y

∂x

)
q ,w(

∂y

∂w

)
q ,x

For example, the diffusion coefficient (D) is a function of temperature (T), viscosity
of solution (η), and radius of particles (r). A is Avogadro’s number and R is the
gas constant:

D = RT

πηrA
(1.14)

Thus, to write D as a function of T , η, and r , the following expressions may be
used: (

∂D

∂T

)
η,r(

∂D

∂η

)
T ,r(

∂D

∂r

)
T ,η

When all variables change simultaneously,

dD =
(

∂D

∂T

)
η,r

dT +
(

∂D

∂η

)
T ,r

dη +
(

∂D

∂r

)
T ,η

dr

Assuming that the temperature is held constant, D is a function of viscosity, and
the radius of particles, D = f (η, r). From equation (1.14),

D = RT

πA
η−1r−1

= (constant)η−1r−1 (1.15)

Dη = −(constant)η−2r−1

Dr = −(constant)η−1r−2
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where Dη is the partial derivative of D with respect to the viscosity of the solu-
tion, and Dr is the partial derivative of D with respect to the radius of the
particles.

5. Second-order partial derivatives: With the temperature held constant,
equation (1.15) can be written as a function of the viscosity of solution and the
particle radius:

D = f (η, r)

∂(∂f /∂η)

∂r
= ∂2f

∂η∂r
(1.16)

Equation (1.16) is the form of a second-order partial derivative.
For example, given D at 25◦C, we have

D = 31.31 × 10−23η−1r−1

To find ∂2D/(∂η∂r) we write

∂2D

∂η ∂r
= ∂(∂D∂r)

∂η
= ∂(−(constant)η−1r−2)

∂η

= (constant)η−2r−2 = 31.31 × 10−23η−2r−2

In thermodynamics (see Chapter 2), a change of volume of an ideal gas at a constant
temperature does not result in a change in the internal energy of the system. Thus,

(
∂E

∂V

)
T

= 0 (1.17)

In addition, from the gas law expression , PV = nRT , and at a given constant
pressure, the following partial differential equation may be written for the change
of volume with a change in temperature:(

∂V

∂T

)
P

(1.18)

Equation (1.18) and the gas law expression lead to(
∂V

∂T

)
P

= nR

P
(1.19)

And for 1 mol of an ideal gas (n = 1), (∂V /∂T )P = R/P = constant (Adamson,
1969).

1.6 EXPANDING AND REDUCING FORMULAS

Pharmacists and pharmaceutical scientists are often asked to prepare volumes or
quantities different from those given in a prescription or formula. When faced with
either expanding or reducing formulas, a simple proportion method is sufficient to
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solve the problem. For example, a technician was asked to prepare 200 mL of the
following buffer solution:

K2HPO4 0.50 g
KH2PO4 0.35 g
Purified water, enough to make 500 mL

Using 200/500 as a proportion, each value in the formula is multiplied by this
ratio:

(0.50 g)(200/500) = 0.20 g

(0.35 g)(200/500) = 0.14 g

(500 mL)(200/500) = 200 mL

In preparing the buffer solution, the technician mixes 0.20 g of K2HPO4 and
0.14 g of KH2PO4 and dissolves them in enough purified water to make 200 mL
of solution. If the volume of the solution to be prepared were 1 L instead of
200 mL, the calculations above would be repeated using the ratio 1000/500 in the
calculations.

Another possible use of formula expansion or reduction is to be asked
to calculate the amount of solute needed for a given volume of solution.
Assume that a pharmacist was asked to prepare 500 mL of the following
solution:

Na+ 8 mEq
Purified water, enough to make 100 mL

Following the method described above, multiply the quantities in the formula by
the ratio 500/100:

Na+ (8)(500/100) = 40 mEq
Purified water, enough to make (100)(500/100) = 500 mL

If the pharmacist were to use NaCl (molecular mass = 58.44 g/mol) as the salt to
provide sodium ions in solution, 40 mEq of NaCl equals (40)(0.05844) or 2.34 g.
Thus, the pharmacist dissolves 2.34 g of NaCl in enough purified water to make
500 mL of solution.
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GLOSSARY

Beer’s law States that the absorbance value of a drug solution is directly and
linearly proportional to the concentration of the drug in solution.
The Beer’s law equation is given as Abs = As × l × C , where Abs
is the absorbance, As the absorptivity, l the pathlength, and C the
concentration of the drug in solution.

Buffer capacity An indicator of the degree of resistance that a buffer has toward a
change in its pH upon challenging it with acids or bases. The higher
the value of the buffer capacity, the higher the resistance of the
buffer is to a change in pH.

Differential equations May be employed to solve rate-related problems, such as when study-
ing drug degradation at a given rate and order of reaction. The
general format for the rate using a differential format is dA/dt ,
where d indicates a small quantity. Thus, dA/dt indicates that a
small change in A occurs for every small change in t .

Gas law equation for an
ideal gas

PV = nRT , where P is the pressure, V is the volume, n the number
of moles, R the gas constant, and T the temperature in kelvin.

Integration Viewed as summation; the opposite of differentiation. When applied
in a differential equation, integration (∫) “sums up” all these small
changes.

Logarithmic functions Thought of as exponential equations; thus, y = xz translates into z =
logx y (logx = logarithm of base x ).

Microbial population
estimation for
sterilization processes

The rate at which microbes get killed may be described by the equation
M = M0e−kt , where M0 and M are the initial microbial population
and that at time t , respectively. The rate constant for the process of
microorganism killing is k .

Partial derivatives When a variable such as y is a function of two or more other variables
(q , x , w, . . .), the notion of partial derivatives (∂) is applicable.

pH The pH scale is used to measure the concentration of hydronium ions
[H3O+] in solution.


