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1.1 INTRODUCTION

Three-dimensional atomic structures of protein molecules provide rich information
for understanding how these working molecules of a cell carry out their biologi-
cal functions. With the amount of solved protein structures rapidly accumulating,
computation of geometric properties of protein structure becomes an indispensable
component in studies of modern biochemistry and molecular biology. Before we
discuss methods for computing the geometry of protein molecules, we first briefly
describe how protein structures are obtained experimentally.

There are primarily three experimental techniques for obtaining protein structures:
X-ray crystallography, solution nuclear magnetic resonance (NMR), and recently
freeze-sample electron microscopy (cryo-EM). In X-ray crystallography, the diffrac-
tion patterns of X-ray irradiation of a high-quality crystal of the protein molecule are
measured. Since the diffraction is due to the scattering of X-rays by the electrons of
the molecules in the crystal, the position, the intensity, and the phase of each recorded
diffraction spot provide information for the reconstruction of an electron density map
of atoms in the protein molecule. Based on independent information of the amino
acid sequence, a model of the protein conformation is then derived by fitting model
conformations of residues to the electron density map. An iterative process called
refinement is then applied to improve the quality of the fit of the electron density
map. The final model of the protein conformation consists of the coordinates of each
of the non-hydrogen atoms [46].
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The solution NMR technique for solving protein structure is based on measuring
the tumbling and vibrating motion of the molecule in solution. By assessing the
chemical shifts of atomic nuclei with spins due to interactions with other atoms in the
vicinity, a set of estimated distances between specific pairs of atoms can be derived
from NOSEY spectra. When a large number of such distances are obtained, one can
derive a set of conformations of the protein molecule, each being consistent with all
of the distance constraints [10]. Although determining conformations from either X-
ray diffraction patterns or NMR spectra is equivalent to solving an ill-posed inverse
problem, a technique such as Bayesian Markov chain Monte Carlo with parallel
tempering has been shown to be effective in obtaining protein structures from NMR
spectra [52].

1.2 THEORY AND MODEL

1.2.1 Idealized Ball Model

The shape of a protein molecule is complex. The chemical properties of atoms in
a molecule are determined by their electron charge distribution. It is this distribu-
tion that generates the scattering patterns of the X-ray diffraction. Chemical bonds
between atoms lead to transfer of electronic charges from one atom to another, and
the resulting isosurfaces of the electron density distribution depend not only on the
location of individual nuclei but also on interactions between atoms. This results in
an overall complicated isosurface of electron density [2].

The geometric model ofmacromolecule amenable to convenient computation is an
idealized model, where the shapes of atoms are approximated by three-dimensional
balls. The shape of a protein or a DNA molecule consisting of many atoms is
then the space-filling shape taken by a set of atom balls. This model is often
called the interlocking hard-sphere model, the fused ball model, the space-filling
model [32,47,49,51], or the union of ball model [12]. In this model, details in the
distribution of electron density (e.g., the differences between regions of covalent
bonds and noncovalent bonds) are ignored. This idealization is quite reasonable, as
it reflects the fact that the electron density reaches maximum at a nucleus and its
magnitude decays almost spherically away from the point of the nucleus. Despite
possible inaccuracy, this idealized model has found wide acceptance, because it en-
ables quantitative measurement of important geometric properties (such as area and
volume) of molecules. Insights gained from these measurements correlate well with
experimental observations [9,21,32,48--50].

In this idealization, the shape of each atom is that of a ball, and its size parameter
is the ball radius or atom radius. There are many possible choices for the parameter
set of atomic radii [47,56]. Frequently, atomic radii are assigned the values of their
van der Waals radii [7]. Among all these atoms, the hydrogen atom has the smallest
mass and has a much smaller radius than those of other atoms.

For simplification, the model of united atom is often employed to approximate
the union of a heavy atom and the hydrogen atoms connected by a covalent bond.
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In this case, the radius of the heavy atom is increased to approximate the size of
the union of the two atoms. This practice significantly reduces the total number of
atom balls in the molecule. However, this approach has been questioned for possible
inadequacy [60].

The mathematical model of this idealized model is that of the union of balls [12].
For a molecule 𝑀 of 𝑛 atoms, the 𝑖th atom is modeled as a ball 𝑏𝑖, whose center
is located at 𝒛𝑖 ∈ ℝ3, and the radius of this ball is 𝑟𝑖 ∈ ℝ, namely, we have 𝑏𝑖 ≡

{𝒙|𝒙 ∈ ℝ3, ||𝒙 − 𝒛𝑖|| ≤ 𝑟𝑖} parameterized by (𝒛𝑖, 𝑟𝑖). The molecule𝑀 is formed by
the union of a finite number 𝑛 of such balls defining the set B:

𝑀 =
⋃

B =
𝑛⋃

𝑖=1

{
𝑏𝑖
}
.

It creates a space-filling body corresponding to the union of the excluded volumes
vol

(⋃𝑛

𝑖=1
{
𝑏𝑖
})

[12]. When the atoms are assigned the van der Waals radii, the
boundary surface 𝜕

⋃B of the union of balls is called the van der Waals surface.

1.2.2 Surface Models of Proteins

Protein folds into native three-dimensional shape to carry out its biological functional
roles. The interactions of a protein molecule with other molecules (such as ligand,
substrate, or other protein) determine its functional roles. Such interactions occur
physically on the surfaces of the protein molecule.

The importance of the protein surface was recognized very early on. Lee and
Richards developed the widely used solvent accessible surface (SA) model, which
is also often called the Lee--Richards surface model [32]. Intuitively, this surface is
obtained by rolling a ball of radius 𝑟𝑠 everywhere along the van der Waals surface of
the molecule. The center of the solvent ball will then sweep out the solvent accessible
surface. Equivalently, the solvent accessible surface can be viewed as the boundary
surface 𝜕

⋃B𝑟𝑠
of the union of a set of inflated balls B𝑟𝑠

, where each ball takes the
position of an atom, but with an inflated radius 𝑟𝑖 + 𝑟𝑠 (Fig. 1.1a).

The solvent accessible surface in general has many sharp crevices and sharp
corners. In hope of obtaining a smoother surface, one can take the surface swept out
by the front instead of the center of the solvent ball. This surface is the molecular
surface (MS model), which is also often called the Connolly’s surface after Michael
Connolly, who developed the first algorithm for computing molecular surface [9].
Both solvent accessible surface and molecular surface are formed by elementary
pieces of simpler shape.

Elementary Pieces. For the solvent accessible surfacemodel, the boundary surface of
a molecule consists of three types of elements: the convex spherical surface pieces,
arcs or curved line segments (possibly a full circle) formed by two intersecting
spheres, and a vertex that is the intersection point of three atom spheres. The whole
boundary surface of the molecules can be thought of as a surface formed by stitching
these elements together.
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(b)(a) (c)

FIGURE 1.1 Geometric models of protein surfaces. (a) The solvent accessible surface (SA
surface) is shown in the front. The van der Waals surface (beneath the SA surface) can be
regarded as a shrunken version of the SA surface by reducing all atomic radii uniformly by
the amount of the radius of the solvent probe 𝑟𝑠 = 1.4Å. The elementary pieces of the solvent
accessible surface are the three convex spherical surface pieces, the three arcs, and the vertex
where the three arcs meet. (b) The molecular surface (MS, beneath the SA surface) also has
three types of elementary pieces: the convex spherical pieces, which are shrunken version of
the corresponding pieces in the solvent accessible surface, the concave toroidal pieces, and
concave spherical surface. The latter two are also called the re-entrant surface. (c) The toroidal
surface pieces in the molecular surface correspond to the arcs in the solvent accessible surface,
and the concave spherical surface to the vertex. The set of elements in one surface can be
continuously deformed to the set of elements in the other surface.

Similarly, the molecular surface swept out by the front of the solvent ball can also
be thought of as being formed by elementary surface pieces. In this case, they are
the convex spherical surface pieces, the toroidal surface pieces, and the concave or
inverse spherical surface pieces (Fig. 1.1b). The latter two types of surface pieces are
often called the ‘‘re-entrant surfaces’’ [9,49].

The surface elements of the solvent accessible surface and the molecular surface
are closely related. Imagine a process where atom balls are shrunk or expanded.
The vertices in solvent accessible surface becomes the concave spherical surface
pieces, the arcs become the toroidal surfaces, and the convex surface pieces become
smaller convex surface pieces (Fig. 1.1c). Because of this mapping, these two types
of surfaces are combinatorially equivalent and have similar topological properties;
that is, they are homotopy equivalent.

However, the SA surface and the MS surface differ in their metric measurement.
In concave regions of a molecule, often the front of the solvent ball can sweep
out a larger volume than the center of the solvent ball. A void of size close to
zero in the solvent accessible surface model will correspond to a void of the size
of a solvent ball (4𝜋𝑟3

𝑠
∕3). It is therefore important to distinguish these two types

of measurement when interpreting the results of volume calculations of protein
molecules. The intrinsic structures of these fundamental elementary pieces are closely
related to several geometric constructs we describe below.

1.2.3 Geometric Constructs

Voronoi Diagram. Voronoi diagram (Fig. 1.2a), also known as Voronoi tessellation,
is a geometric construct that has been used for analyzing protein packing in the early
days of protein crystallography [18,20,47]. For two-dimensional Voronoi diagram,
we consider the following analogy. Imagine a vast forest containing a number of
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void

(a) (c)(b)

FIGURE 1.2 Geometry of a simplified two-dimensional model molecule to illustrate the
geometric constructs and the procedure mapping the Voronoi diagram to the Delaunay trian-
gulation. (a) The molecule is formed by the union of atom disks of uniform size. Voronoi
diagram is in dashed lines. (b) The shape enclosed by the boundary polygon is the convex
hull. It is tessellated by the Delaunay triangulation. (c) The alpha shape of the molecule is
formed by removing those Delaunay edges and triangles whose corresponding Voronoi edges
and Voronoi vertices do not intersect with the body of the molecule. A molecular void is
represented in the alpha shape by two empty triangles.

fire observation towers. Each fire ranger is responsible for putting out any fire closer
to his/her tower than to any other tower. The set of all trees for which a ranger is
responsible constitutes the Voronoi cell associated with his/her tower, and the map of
ranger responsibilities, with towers and boundaries marked, constitutes the Voronoi
diagram.

We formalize this for three-dimensional space. Consider the point set 𝑆 of atom
centers in three-dimensional space ℝ3. The Voronoi region or Voronoi cell 𝑉𝑖 of an
atom 𝑏𝑖 with atom center 𝒛𝑖 ∈ ℝ3 is the set of all points that are at least as close to 𝒛𝑖
as to any other atom centers in S:

𝑉𝑖 = {𝒙 ∈ ℝ3|||𝒙 − 𝒛𝑖|| ≤ ||𝒙 − 𝒛𝑗||, 𝒛𝑗 ∈ S}.
We can have an alternative view of the Voronoi cell of an atom 𝑏𝑖. Consider the
distance relationship between atom center 𝒛𝑖 and the atom center 𝒛𝑘 of another atom
𝑏𝑘. The plane bisecting the line segment connecting points 𝒛𝑖 and 𝒛𝑘 divides the
full ℝ3 space into two half-spaces, where points in one half-space is closer to 𝒛𝑖

than to 𝒛𝑘, and points in the other allspice is closer to 𝒛𝑘 than to 𝒛𝑖. If we repeat
this process and take 𝒛𝑘 in turn from the set of all atom centers other than 𝒛𝑖, we
will have a number of half-spaces where points are closer to 𝒛𝑖 than to each of the
atom center 𝒛𝑘. The Voronoi region 𝑉𝑖 is then the common intersections of these
half-spaces, which is convex (see exercises). When we consider atoms of different
radii, we replace the Euclidean distance ||𝒙 − 𝒛𝑖|| with the power distance defined
as 𝜋𝑖(𝒙) ≡ ||𝒙 − 𝒛𝑖||2 − 𝑟2

𝑖
.

Delaunay Tetrahedrization. Delaunay triangulation inℝ2 or Delaunay tetrahedriza-
tion in ℝ3 is a geometric construct that is closely related to the Voronoi diagram
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(Fig. 1.2b). In general, it uniquely tessellates or tile up the space of the convex hull
of the atom centers in ℝ3 with tetrahedra. Convex hull for a point set is the smallest
convex body that contains the point set1. The Delaunay tetrahedrization of a molecule
can be obtained from the Voronoi diagram. Consider that the Delaunay tetrahedriza-
tion is formed by gluing four types of primitive elements together: vertices, edges,
triangles, and tetrahedra. Here vertices are just the atom centers. We obtain a Delau-
nay edge by connecting atom centers 𝒛𝑖 and 𝒛𝑗 if and only if the Voronoi regions
𝑉𝑖 and 𝑉𝑗 have a common intersection, which is a planar piece that may be either
bounded or extended to infinity. We obtain a Delaunay triangle connecting atom
centers 𝒛𝑖, 𝒛𝑗 , and 𝒛𝑘 if the common intersection of Voronoi regions 𝑉𝑖, 𝑉𝑗 and 𝑉𝑘
exists, which is either a line segment, a half-line, or a line in the Voronoi diagram.
We obtain a Delaunay tetrahedra connecting atom centers 𝒛𝑖, 𝒛𝑗 , 𝒛𝑘, and 𝒛𝑙 if and
only if the Voronoi regions 𝑉𝑖, 𝑉𝑗 , 𝑉𝑘, and 𝑉𝑙 intersect at a point.

1.2.4 Topological Structures

Delaunay Complex. The structures in both Voronoi diagram and Delaunay tetra-
hedrization are better described with concepts from algebraic topology. We focus
on the intersection relationship in the Voronoi diagram and introduce concepts for-
malizing the primitive elements. In ℝ3, between two to four Voronoi regions may
have common intersections. We use simplices of various dimensions to record these
intersection or overlap relationships. We have vertices 𝜎0 as 0-simplices, edges 𝜎1
as 1-simplices, triangles 𝜎2 as 2-simplices, and tetrahedra 𝜎3 as 3-simplices. Each of
the Voronoi plane, Voronoi edge, and Voronoi vertices corresponds to a 1-simplex
(Delaunay edge), 2-simplex (Delaunay triangle), and 3-simplex (Delaunay tetrahe-
dron), respectively. If we use 0-simplices to represent the Voronoi cells and add them
to the simplices induced by the intersection relationship, we can think of the Delau-
nay tetrahedrization as the structure obtained by ‘‘gluing’’ these simplices properly
together. Formally, these simplices form a simplicial complex K:

K =

{
𝜎|𝐼|−1|⋂

𝑖∈𝐼
𝑉𝑖 ≠ ∅

}
,

where 𝐼 is an index set for the vertices representing atoms whose Voronoi cells
overlap, and |𝐼| − 1 is the dimension of the simplex.

Alpha Shape and Protein Surfaces. Imagine we can turn a knob to increase or
decrease the size of all atoms simultaneously. We can then have a model of growing

1For a two-dimensional toy molecule, we can imagine that we put nails at the locations of the atom centers
and tightly wrap a rubber band around these nails. The rubber band will trace out a polygon. This polygon
and the region enclosed within is the convex hull of the set of points corresponding to the atom centers.
Similarly, imagine if we can tightly wrap a tin-foil around a set of points in three-dimensional space, the
resulting convex body formed by the tin-foil and space enclosed within is the convex hull of this set of
points in ℝ3.
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(c)(b)(a)

(f)(e)(d)

FIGURE 1.3 The family of alpha shapes or dual simplicial complexes for a two-dimensional
toy molecule. (a) We collect simplices from the Delaunay triangulation as atoms grow by
increasing the 𝛼 value. At the beginning as 𝛼 grows from −∞, atoms are in isolation and
we only have vertices in the alpha shape. (b and c) When 𝛼 is increased such that some
atom pairs start to intersect, we collect the corresponding Delaunay edges. (d) When three
atoms intersect as 𝛼 increases, we collect the corresponding Delaunay triangles. When 𝛼 = 0,
the collection of vertices, edges, and triangles form the dual simplicial complex K0, which
reflects the topological structure of the protein molecule. (e) More edges and triangles from the
Delaunay triangulation are now collected as atoms continue to grow. (f) Finally, all vertices,
edges, and triangles are now collected as atoms are grown to large enough size. We get back
the full original Delaunay complex.

balls and obtain further information from the Delaunay complex about the shape of
a protein structure. Formally, we use a parameter 𝛼 ∈ ℝ to control the size of the
atom balls. For an atom ball 𝑏𝑖 of radius 𝑟𝑖, we modified its radius 𝑟𝑖 at a particular 𝛼
value to 𝑟𝑖(𝛼) = (𝑟2

𝑖
+ 𝛼)1∕2. When −𝑟𝑖 < 𝛼 < 0, the size of an atom is shrunk. The

atom could even disappear if 𝛼 < 0 and |𝛼| > 𝑟𝑖. With this construction of 𝛼, the
weighted Voronoi diagram is invariant with regard to 𝛼 (see exercises). We start to
collect the simplices at different 𝛼 values as we increase 𝛼 from −∞ to +∞ (see
Fig. 1.3 for a two-dimensional example). At the beginning, we only have vertices.
When 𝛼 is increased such that two atoms are close enough to intersect, we collect
the corresponding Delaunay edge that connects these two atom centers. When three
atoms intersect, we collect the corresponding Delaunay triangle spanning these three
atom centers. When four atoms intersect, we collect the corresponding Delaunay
tetrahedron.

At any specific 𝛼 value, we have a dual simplicial complex or alpha complex K𝛼

formed by the collected simplices. If all atoms take the incremented radius of 𝑟𝑖 + 𝑟𝑠
and 𝛼 = 0, we have the dual simplicial complex K0 of the protein molecule. When
𝛼 is sufficiently large, we have collected all simplices and we get the full Delaunay
complex. This series of simplicial complexes at different 𝛼 values form a family of
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FIGURE 1.4 An illustration of a family of alpha shapes of HIV-1 protease as 𝛼 value
increases from left to right and top to bottom. As 𝛼 increases, more edges, triangles, and
tetrahedra enter the collection of simplices. At each 𝛼 value, the collected simplices form a
simplicial complex. When 𝛼 is sufficiently large, we obtain the full Delaunay tetrahedrization.

shapes (Fig. 1.3), called alpha shapes, each faithfully represents the geometric and
topological property of the protein molecule at a particular resolution parameterized
by the 𝛼 value. Figure 1.4 illustrates an example of the alpha shapes of the HIV-1
protease at different 𝛼 values.

An equivalent way to obtain the alpha shape at 𝛼 = 0 is to take a subset of the
simplices, with the requirement that the corresponding intersections of Voronoi cells
must overlap with the body of the union of the balls. We obtain the dual complex or
alpha shape K0 of the molecule at 𝛼 = 0 (Fig. 1.2c):

K0 =

{
𝜎|𝐼|−1 ||| ⋂

𝑖∈𝐼
𝑉𝑖 ∩

⋃
B ≠ ∅

}
.

Alpha shapes provides a guide map for computing geometric properties of the
structures of biomolecules. Take the molecular surface as an example: The re-entrant
surfaces are formed by the concave spherical patch and the toroidal surface. These
can be mapped from the boundary triangles and boundary edges of the alpha shape,
respectively [14]. Recall that a triangle in the Delaunay tetrahedrization corresponds
to the intersection of three Voronoi regions, that is, a Voronoi edge. For a triangle
on the boundary of the alpha shape, the corresponding Voronoi edge intersects with
the body of the union of balls by definition. In this case, it intersects with the solvent
accessible surface at the common intersecting vertex when the three atoms overlap.
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This vertex corresponds to a concave spherical surface patch in the molecular surface.
For an edge on the boundary of the alpha shape, the corresponding Voronoi plane
coincides with the intersecting plane when two atoms meet, which intersect with the
surface of the union of balls on an arc. This line segment corresponds to a toroidal
surface patch. The remaining part of the surface are convex pieces, which correspond
to the vertices, namely, the atoms on the boundary of the alpha shape.

The numbers of toroidal pieces and concave spherical pieces are exactly the
numbers of boundary edges and boundary triangles in the alpha shape, respectively.
Because of the restriction of bond length and the excluded volume effects, the number
of edges and triangles in molecules are roughly on the order of O(𝑛) [38].

1.2.5 Metric Measurements

We have described the relationship between the simplices and the surface elements
of the molecule. Based on this type of relationship, we can compute efficiently
size properties of the molecule. We take the problem of volume computation as an
example.

Consider a grossly incorrect way to compute the volume of a protein molecule
using the solvent accessible surface model. We could define that the volume of the
molecule is the summation of the volumes of individual atoms,whose radii are inflated
to account for solvent probe. By doing so, we would have significantly inflated the
value of the true volume, because we neglected to consider volume overlaps. We
can explicitly correct this by following the inclusion--exclusion formula: When two
atoms overlap, we subtract the overlap; when three atoms overlap, we first subtract
the pair overlaps, and (we then) add back the triple overlap, and so on. This continues
when there are four, five, or more atoms intersecting. At the combinatorial level,
the principle of inclusion--exclusion is related to the Gauss--Bonnet theorem used
by Connolly [9]. The corrected volume 𝑉 (B) for a set of atom balls B can then be
written as

𝑉 (B) =
∑

vol(⋂ 𝑇 )>0
𝑇⊂B

(−1)dim(𝑇 )−1 vol
(⋂

𝑇

)
,

(1.1)

where vol
(⋂

𝑇
)
represents volume overlap of various degree, 𝑇 ⊂ B is a subset of

the balls with nonzero volume overlap: vol
(⋂

𝑇
)
> 0.

However, the straightforward application of this inclusion--exclusion formula does
not work. The degree of overlap can be very high: Theoretical and simulation studies
showed that the volume overlap can be up to 7--8 degrees [29,45]. It is difficult to
keep track of these high degree of volume overlaps correctly during computation.
In addition, it is also difficult to compute the volume of these overlaps, because of
the proliferation of different types of combinations of intersecting balls. That is, we
need to quantify the 𝑘-volume overlap of each of the

(7
𝑘

)
possible overlap patterns

when 𝑘 of the 7 balls overlap. Similarly, the volumes of
(8
𝑘

)
overlapping atoms for

all of 𝑘 = 2,… , 7 need to be quantified [45]. It turns out that for three-dimensional
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molecules, overlaps of five or more atoms at a time can always be reduced to a ‘‘+’’
or a ‘‘−’’ signed combination of overlaps of four or fewer atom balls [12]. This
requires that the 2-body, 3-body, and 4-body terms in Eq. (1.1) enter the formula if
and only if the corresponding edge 𝜎𝑖𝑗 connecting the two balls (1-simplex), triangles
𝜎𝑖𝑗𝑘 spanning the three balls (2-simplex), and tetrahedron 𝜎𝑖𝑗𝑘𝑙 cornered on the four
balls (3-simplex) all exist in the dual simplicial complex K0 of the molecule [12,38].
Atoms corresponding to these simplices will all have volume overlaps. In this case,
we have the simplified exact expansion:

𝑉 (B) =
∑
𝜎𝑖∈K

vol(𝑏𝑖) −
∑
𝜎𝑖𝑗∈K

vol(𝑏𝑖 ∩ 𝑏𝑗)

+
∑

𝜎𝑖𝑗𝑘∈K
vol(𝑏𝑖 ∩ 𝑏𝑗 ∩ 𝑏𝑘) −

∑
𝜎𝑖𝑗𝑘𝑙∈K

vol(𝑏𝑖 ∩ 𝑏𝑗 ∩ 𝑏𝑘 ∩ 𝑏𝑙).

The same idea is applicable for the calculation of surface area of molecules.

An Example. An example of area computation by the alpha shape is shown in
Fig. 1.5. Let 𝑏1, 𝑏2, 𝑏3, 𝑏4 be the four disks. To simplify the notation, we write 𝐴𝑖 for
the area of 𝑏𝑖, 𝐴𝑖𝑗 for the area of 𝑏𝑖 ∩ 𝑏𝑗 , and 𝐴𝑖𝑗𝑘 for the area of 𝑏𝑖 ∩ 𝑏𝑗 ∩ 𝑏𝑘. The
total area of the union, 𝑏1 ∪ 𝑏2 ∪ 𝑏3 ∪ 𝑏4, is

𝐴total = (𝐴1 + 𝐴2 + 𝐴3 + 𝐴4)
− (𝐴12 + 𝐴23 + 𝐴24 + 𝐴34)
+𝐴234.

We add the area of 𝑏𝑖 if the corresponding vertex belongs to the alpha complex
(Fig. 1.5), we subtract the area of 𝑏𝑖 ∩ 𝑏𝑗 if the corresponding edge belongs to the
alpha complex, and we add the area of 𝑏𝑖 ∩ 𝑏𝑗 ∩ 𝑏𝑘 if the corresponding triangle
belongs to the alpha complex. Note that without the guidance of the alpha complex,

b1

b2

b3

b4

(a)

b1

b2

b3

b4

(b)

FIGURE 1.5 An example of analytical area calculation. (A) Area can be computed using the
direct inclusion--exclusion. (B) The formula is simplified without any redundant terms when
using the alpha shape.
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the inclusion-exclusion formula may be written as

𝐴total = (𝐴1 + 𝐴2 + 𝐴3 + 𝐴4)
− (𝐴12 + 𝐴13 + 𝐴14 + 𝐴23 + 𝐴24 + 𝐴34)
+ (𝐴123 + 𝐴124 + 𝐴134 + 𝐴234)
−𝐴1234.

This contains 6 canceling redundant terms: 𝐴13 = 𝐴123, 𝐴14 = 𝐴124, and 𝐴134 =
𝐴1234. Computing these terms would be wasteful. Such redundancy does not occur
when we use the alpha complex: The part of the Voronoi regions contained in
the respective atom balls for the redundant terms do not intersect. Therefore, the
corresponding edges and triangles do not enter the alpha complex. In two dimensions,
we have terms of at most three disk intersections, corresponding to triangles in
the alpha complex. Similarly, in three dimensions the most complicated terms are
intersections of four spherical balls, and they correspond to tetrahedra in the alpha
complex.

Voids and Pockets. Voids and pockets represent the concave regions of a protein
surface. Because shape-complementarity is the basis of many molecular recognition
processes, binding and other activities frequently occur in pocket or void regions
of protein structures. For example, the majority of enzyme reactions take place in
surface pockets or interior voids.

The topological structure of the alpha shape also offers an effective method for
computing voids and pockets in proteins. Consider the Delaunay tetrahedra that are
not included in the alpha shape. If we repeatedly merge any two such tetrahedra on
the condition that they share a 2-simplex triangle, we will end up with discrete sets
of tetrahedra. Some of them will be completely isolated from the outside, and some
of them are connected to the outside by triangle(s) on the boundary of the alpha
shape. The former corresponds to voids (or cavities) in proteins, whereas the latter
corresponds to pockets and depressions in proteins.

A pocket differs from a depression in that it must have an opening that is at least
narrower than one interior cross section. Formally, the discrete flow [17] explains
the distinction between a depression and a pocket. In a two-dimensional Delaunay
triangulation, the empty triangles that are not part of the alpha shape can be classified
into obtuse triangles and acute triangles. The largest angle of an obtuse triangle
is more than 90 degrees, and the largest angle of an acute triangle is less than 90
degrees. An empty obtuse triangle can be regarded as a ‘‘source’’ of empty space
that ‘‘flows’’ to its neighbor, and an empty acute triangle can be regarded to be a
‘‘sink’’ that collects flow from its obtuse empty neighboring triangle(s). In Fig. 1.6a,
obtuse triangles 1, 3, 4, and 5 flow to the acute triangle 2, which is a sink. Each
of the discrete empty spaces on the surface of protein can be organized by the flow
systems of the corresponding empty triangles: Those that flow together belong to the
same discrete empty space. For a pocket, there is at least one sink among the empty
triangles. For a depression, all triangles are obtuse, and the discrete flow goes from
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FIGURE 1.6 Discrete flow of empty space illustrated for two-dimensional disks.

one obtuse triangle to another, from the innermost region to outside the convex hull.
The discrete flow of a depression therefore goes to infinity. Figure 1.6b gives an
example of a depression formed by a set of obtuse triangles.

Once voids and pockets are identified, we can apply the inclusion--exclusion
principle based on the simplices to compute the exact size measurement (e.g., volume
and area) of each void and pocket [17,39]. Figure 1.7 shows the computed binding
surface pockets on Ras21 protein and FtsZ protein.

The distinction between voids and pockets depends on the specific set of atomic
radii and the solvent radius. When a larger solvent ball is used, the radii of all atoms
will be inflated by a larger amount. This could lead to two different outcomes. A
void or pocket may become completely filled and disappear. On the other hand, the
inflated atoms may not fill the space of a pocket, but may close off the opening
of the pocket. In this case, a pocket becomes a void. A widely used practice in the

FIGURE 1.7 The computed surface pockets of binding sites on Ras21 protein and FtsZ
protein.
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past was to adjust the solvent ball and repeatedly compute voids, in the hope that
some pockets will become voids and hence be identified by methods designed for
cavity/void computation. The pocket algorithm [17] and tools such as CASTP [11,40]
often makes this unnecessary.

1.3 ALGORITHM AND COMPUTATION

ComputingDelaunay Tetrahedrization andVoronoi Diagram. It is easier to discuss
the computation of tetrahedrization first. The incremental algorithm developed in [16]
can be used to compute the weighted tetrahedrization for a set of atoms of different
radii. For simplicity,we sketch the outline of the algorithmbelow for two-dimensional
unweighted Delaunay triangulation.

The intuitive idea of the algorithm can be traced back to the original observation
of Delaunay. For the Delaunay triangulation of a point set, the circumcircle of an
edge and a third point forming a Delaunay triangle must not contain a fourth point.
Delaunay showed that if all edges in a particular triangulation satisfy this condition,
the triangulation is a Delaunay triangulation. It is easy to come up with an arbitrary
triangulation for a point set. A simple algorithm to convert this triangulation to the
Delaunay triangulation is therefore to go through each of the triangles and then
make corrections using ‘‘flips’’ discussed below if a specific triangle contains an
edge violating the above condition. The basic ingredients for computing Delaunay
tetrahedrization are generalizations of these observations. We discuss the concept of
locally Delaunay edge and the edge-flip primitive operation below.

Locally Delaunay Edge. We say an edge 𝑎𝑏 is locally Delaunay if either it is on the
boundary of the convex hull of the point set or it belongs to two triangles 𝑎𝑏𝑐 and
𝑎𝑏𝑑, and the circumcircle of 𝑎𝑏𝑐 does not contain 𝑑 (e.g., edge 𝑐𝑑 in Fig. 1.8a).

1−to−3 flip

(b)

2−to−2 flip

a

b

c

d

a

b

c

d

(a)

FIGURE 1.8 An illustration of locally Delaunay edge and flips. (a) For the quadrilateral
𝑎𝑏𝑐𝑑, edge 𝑎𝑏 is not locally Delaunay, as the circumcircle passing through edge 𝑎𝑏 and a third
point 𝑐 contains a fourth point 𝑑. Edge 𝑐𝑑 is locally Delaunay, as 𝑏 is outside the circumcircle
𝑎𝑑𝑐. An edge-flip or 2-to-2 flip replaces edge 𝑎𝑏 by edge 𝑐𝑑, and replace the original two
triangles 𝑎𝑏𝑐 and 𝑎𝑑𝑏 with two new triangles 𝑎𝑐𝑑 and 𝑏𝑐𝑑. (b) When a new vertex is inserted,
we replace the old triangle containing this new vertex with three new triangles. This is called
1-to-3 flip.
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Edge-Flip. If 𝑎𝑏 is not locally Delaunay (edge 𝑎𝑏 in Fig. 1.8a), then the union of
the two triangles 𝑎𝑏𝑐 ∪ 𝑎𝑏𝑑 is a convex quadrangle 𝑎𝑐𝑏𝑑, and edge 𝑐𝑑 is locally
Delaunay. We can replace edge 𝑎𝑏 by edge 𝑐𝑑. We call this an edge-flip or 2-to-2
flip, as two old triangles are replaced by two new triangles.

We recursively check each boundary edge of the quadrangle 𝑎𝑏𝑐𝑑 to see if it is
also locally Delaunay after replacing 𝑎𝑏 by 𝑐𝑑. If not, we recursively edge-flip it.

Incremental Algorithm for Delaunay Triangulation. Assume that we have a finite set
of points (namely, atom centers) S = {𝒛1, 𝒛2,… , 𝒛𝑖,… , 𝒛𝑛}. We start with a large
auxiliary triangle that contains all these points. We insert the points one by one. At
all times, we maintain a Delaunay triangulation D𝑖 up to insertion of point 𝒛𝑖.

After inserting point 𝒛𝑖, we search for the triangle 𝜏𝑖−1 that contains this new
point. We then add 𝒛𝑖 to the triangulation and split the original triangle 𝜏𝑖−1 into three
smaller triangles. This split is called 1-to-3 flip, as it replaces one old triangle with
three new triangles. We then check if each of the three edges in 𝜏𝑖−1 still satisfies
the locally Delaunay requirement. If not, we perform a recursive edge-flip. This
algorithm is summarized in Algorithm I.

Algorithm I Delaunay Triangulation
Obtain random ordering of points {𝒛1,⋯ , 𝒛𝑛};
for 𝑖 = 1 to 𝑛 do

find 𝜏𝑖−1 such 𝒛𝑖 ∈ 𝜏𝑖−1;
add 𝒛𝑖, and split 𝜏𝑖−1 into three triangles (1-to-3 flip);
while any edge 𝑎𝑏 not locally Delaunay do

flip 𝑎𝑏 to other diagonal 𝑐𝑑 (2-to-2 edge flip);
end while

end for

Inℝ3, the algorithm of tetrahedrization becomesmore complex, but the same basic
ideas apply. In this case, we need to locate a tetrahedron instead of a triangle that
contains the newly inserted point. The concept of locally Delaunay is replaced by the
concept of locally convex, and there are flips different than the 2-to-2 flip inℝ3 [16].
Although an incremental approach (i.e., sequentially adding points) is not necessary
for Delaunay triangulation in ℝ2, it is necessary in ℝ3 to avoid non-flippable cases
and to guarantee that the algorithm will terminate. This incremental algorithm has
excellent expected performance [16].

The computation of Voronoi diagram is conceptually easy once the Delaunay
triangulation is available. We can take advantage of the mathematical duality and
compute all of the Voronoi vertices, edges, and planar faces from the Delaunay
tetrahedra, triangles, and edges (see exercises). Because one point 𝒛𝑖 may be an vertex
of many Delaunay tetrahedra, the Voronoi region of 𝒛𝑖 therefore may contain many
Voronoi vertices, edges, and planar faces. The efficient quad-edge data structure can
be used for software implementation [24].



APPLICATIONS 15

Volume and Area Computation. Let 𝑉 and 𝐴 denote the volume and area of the
molecule, respectively,K0 for the alpha complex, 𝜎 for a simplex inK, 𝑖 for a vertex,
𝑖𝑗 for an edge, 𝑖𝑗𝑘 for a triangle, and 𝑖𝑗𝑘𝑙 for a tetrahedron. The algorithm for volume
and area computation can be written as Algorithm II.

Algorithm II Volume and Area Measurement
𝑉 ∶= 𝐴 ∶= 0.0;
for all 𝜎 ∈ K do

if 𝜎 is a vertex 𝑖 then
𝑉 ∶= 𝑉 + vol(𝑏𝑖); 𝐴 ∶= 𝐴 + area(𝑏𝑖);

end if
if 𝜎 is an edge 𝑖𝑗 then

𝑉 ∶= 𝑉 − vol(𝑏𝑖 ∩ 𝑏𝑗); 𝐴 ∶= 𝐴 − area(𝑏𝑖 ∩ 𝑏𝑗);
end if
if 𝜎 is a triangle 𝑖𝑗𝑘 then

𝑉 ∶= 𝑉 + vol(𝑏𝑖 ∩ 𝑏𝑗 ∩ 𝑏𝑘); 𝐴 ∶= 𝐴 + area(𝑏𝑖 ∩ 𝑏𝑗 ∩ 𝑏𝑘);
end if
if 𝜎 is a tetrahedron 𝑖𝑗𝑘𝑙 then

𝑉 ∶= 𝑉 − vol(𝑏𝑖 ∩ 𝑏𝑗 ∩ 𝑏𝑘 ∩ 𝑏𝑙); 𝐴 ∶= 𝐴 − area(𝑏𝑖 ∩ 𝑏𝑗 ∩ 𝑏𝑘 ∩ 𝑏𝑙);
end if

end for

Additional details of volume and area computation can be found in references 14
and 38.

Software. The CASTP webserver for pocket computation can be found at
cast.engr.uic.edu. There are other studies that compute or use Voronoi diagrams
of protein structures [8,23,25], although not all computes the weighted version which
allows atoms to have different radii.

In this short description of algorithm, we have neglected many details important
for geometric computation. For example, the problem of how to handle geometric
degeneracy, namely, when three points are collinear, or when four points are co-
planar. Interested readers should consult the excellentmonograph byEdelsbrunner for
a detailed treatise of these and other important topics in computational geometry [13].

1.4 APPLICATIONS

1.4.1 Protein Packing

An important application of the Voronoi diagram and volume calculation is the
measurement of protein packing. Tight packing is an important feature of protein
structure [47,48] and is thought to play important roles in protein stability and folding
dynamics [33]. The packing density of a protein is measured by the ratio of its van der
Waals volume and the volume of the space it occupies. One approach is to calculate
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FIGURE 1.9 Voids and pockets for a set of 636 proteins representing most of the known
protein folds, and the scaling behavior of the geometric properties of proteins. (left) The
number of voids and pockets detected with a 1.4 Å probe is linearly correlated with the number
of residues in a protein. Only proteins with less than 1000 residues are shown. Solid triangles
and empty circles represent the pockets and the voids, respectively. (right) The van der Waals
(𝑣𝑑𝑤) volume and van der Waals area of proteins scale linearly with each other. Similarly,
molecular surface (𝑚𝑠) volume also scales linearly with molecular surface area using a probe
radius of 1.4 Å. (Data not shown. Figure adapted from reference 37.)

the packing density of buried residues and atoms using the Voronoi diagram [47,48].
This approach was also used to derive radii parameters of atoms [56].

Based on the computation of voids and pockets in proteins, a detailed study
surveying major representatives of all known protein structural folds showed that
there is a substantial amount of voids and pockets in proteins [37]. On average, every
15 residues introduces a void or a pocket (Fig. 1.9 (left side)). For a perfectly solid
three-dimensional sphere of radius 𝑟, the relationship between volume 𝑉 = 4𝜋𝑟3∕3
and surface area 𝐴 = 4𝜋𝑟2 is 𝑉 ∝ 𝐴3∕2. In contrast, Fig. 1.9 (right side) shows that
the van der Waals volume scales linearly with the van der Waals surface areas
of proteins. The same linear relationship holds irrespective of whether we relate
molecular surface volume and molecular surface area, or solvent accessible volume
and solvent accessible surface area. This and other scaling behavior point out that
protein interior is not packed as tight as solid [37]. Rather, packing defects in the
form of voids and pockets are common in proteins.

If voids and pockets are prevalent in proteins, an interesting question is what is
then the origin of the existence of these voids and pockets. This question was studied
by examining the scaling behavior of packing density and coordination number
of residues through the computation of voids, pockets, and edge simplices in the
alpha shapes of random compact chain polymers [62]. For this purpose, a 32-state
discrete state model was used to generate a large ensemble of compact selfavoiding
walks. This is a difficult task, as it is very challenging to generate a large number
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of independent conformations of very compact chains that are self-avoiding. The
results in reference 63 showed that it is easy for compact random chain polymers to
have similar scaling behavior of packing density and coordination number with chain
length. This suggests that proteins are not optimized by evolution to eliminate voids
and pockets, and the existence of many pockets and voids is random in nature and is
due to the generic requirement of compact chain polymers. The frequent occurrence
and the origin of voids and pockets in protein structures raise a challenging question:
How can we distinguish voids and pockets that perform biological functions such as
binding from those formed by random chance? This question is related to the general
problem of protein function prediction.

1.4.2 Predicting Protein Functions from Structures

Conservation of protein structures often reveals a very distant evolutionary relation-
ship, which are otherwise difficult to detect by sequence analysis [55]. Comparing
protein structures can provide insightful ideas about the biochemical functions of
proteins (e.g., active sites, catalytic residues, and substrate interactions) [26,42,44].

A fundamental challenge in inferring protein function from structure is that the
functional surface of a protein often involves only a small number of key residues.
These interacting residues are dispersed in diverse regions of the primary sequences
and are difficult to detect if the only information available is the primary sequence.
Discovery of local spatial motifs from structures that are functionally relevant has
been the focus of many studies.

Graph-BasedMethods for Spatial Patterns in Proteins. To analyze local spatial pat-
terns in proteins, Artymiuk et al. developed an algorithm based on subgraph isomor-
phism detection [1]. By representing residue side-chains as simplified pseudo-atoms,
a molecular graph is constructed to represent the patterns of side-chain pseudo-atoms
and their interatomic distances. A user-defined query pattern can then be searched
rapidly against the Protein Data Bank for similarity relationship. Another widely
used approach is the method of geometric hashing. By examining spatial patterns of
atoms, Fischer et al. developed an algorithm that can detect surface similarity of pro-
teins [19,43]. This method has also been applied by Wallace et al. for the derivation
and matching of spatial templates [59]. Russell developed a different algorithm that
detects side-chain geometric patterns common to two protein structures [53].With the
evaluation of statistical significance of measured root mean square distance, several
new examples of convergent evolution were discovered, where common patterns of
side-chains were found to reside on different tertiary folds.

These methods have a number of limitations. Most require a user-defined template
motif, restricting their utility for automated database-wide search. In addition, the
size of the spatial pattern related to protein function is also often restricted.

Predicting Protein Functions byMatching Pocket Surfaces. Protein functional sur-
faces are frequently associated with surface regions of prominent concavity [30,40].
These include pockets and voids, which can be accurately computed as we have
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discussed. Computationally, one wishes to automatically identify voids and pockets
on protein structures where interactions exist with other molecules such as substrate,
ions, ligands, or other proteins.

Binkowski et al. developed a method for predicting protein function by matching
a surface pocket or void on a protein of unknown or undetermined function to
the pocket or void of a protein of known function [4,6]. Initially, the Delaunay
tetrahedrization and alpha shapes for almost all of the structures in the PDB databank
are computed [11]. All surface pockets and interior voids for each of the protein
structures are then exhaustively computed [17,39]. For each pocket and void, the
residues forming the wall are then concatenated to form a short sequence fragment of
amino acid residues while ignoring all intervening residues that do not participate in
the formation of the wall of the pocket or void. Two sequence fragments, one from the
query protein and another from one of the proteins in the database, both derived from
pocket or void surface residues, are then compared using dynamic programming. The
similarity score for any observed match is assessed for statistical significance using
an empirical randomization model constructed for short sequence patterns.

For promising matches of pocket/void surfaces showing significant sequence sim-
ilarity, we can further evaluate their similarity in shape and in relative orientation.
The former can be obtained by measuring the coordinate root mean square dis-
tance (RMSD) between the two surfaces. The latter is measured by first placing a unit
sphere at the geometric center 𝒛0 ∈ ℝ3 of a pocket/void. The location of each residue
𝒛 = (𝑥, 𝑦, 𝑧)𝑇 is then projected onto the unit sphere along the direction of the vector
from the geometric center: 𝒖 = (𝒛 − 𝒛0)∕||𝒛 − 𝒛0||. The projected pocket is repre-
sented by a collection of unit vectors located on the unit sphere, and the original
orientation of residues in the pocket is preserved. The RMSD distance of the two sets
of unit vectors derived from the two pockets are then measured, which is called
the oRMSD for orientation RMSD [4]. This allows similar pockets with only minor
conformational changes to be detected [4].

The advantage of the method of Binkowski et al. is that it does not assume prior
knowledge of functional site residues and does not require a priori any similarity in
either the full primary sequence or the backbone fold structures. It has no limitation in
the size of the spatially derived motif and can successfully detect patterns small and
large. This method has been successfully applied to detect similar functional surfaces
among proteins of the same fold but low sequence identities and among proteins of
different fold [4,5].

Function Prediction through Models of Protein Surface Evolution. To match lo-
cal surfaces such as pockets and voids and to assess their sequence similarity, an
effective scoring matrix is critically important. In the original study of Binkowski et
al. , the BLOSUM matrix was used. However, this is problematic, as BLOSUM matrices
were derived from analysis of precomputed large quantities of sequences, while the
information of the particular protein of interest has limited or no influence. In ad-
dition, these precomputed sequences include buried residues in protein core, whose
conservation reflects the need to maintain protein stability rather than to maintain
protein function. In references 57 and 58, a continuous time Markov process was
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FIGURE 1.10 Protein function prediction as illustrated by the example of alpha amylases.
Two template binding surfaces are used to search the database of protein surfaces to identify
protein structures that are of similar functions. (a) The phylogenetic tree for the template
PDB structure 1bag from B. subtilis. (b) The template binding pocket of alpha amylase on
1bag. (c) A matched binding surface on a different protein structure (1b2y from human, full
sequence identity 22%) obtained by querying with 1bag. (d) The phylogenetic tree for the
template structure 1bg9 from H. vulgare. (e) The template binding pocket on 1bg9. (f) A
matched binding surface on a different protein structure (1u2y from human, full sequence
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developed to explicitly model the substitution rates of residues in binding pockets.
Using a BayesianMarkov chainMonte Carlo method, the residue substitution rates at
functional pocket are estimated. The substitution rates are found to be very different
for residues in the binding site and residues on the remaining surface of proteins.
In addition, substitution rates are also very different for residues in the buried core
and residues on the solvent exposed surfaces. These rates are then used to generate
a set of scoring matrices of different time intervals for residues located in the func-
tional pocket. Application of protein-specific and region-specific scoring matrices in
matching protein surfaces result in significantly improved sensitivity and specificity
in protein function prediction [57,58].

In a large-scale study of predicting protein functions from structures, a subset of
100 enzyme families are collected from a total of 286 enzyme families containing
between 10 and 50 member protein structures with known Enzyme Classification
(E.C.) labels. By estimating the substitution rate matrix for residues on the active site
pocket of a query protein, a series of scoring matrices of different evolutionary time is
derived. By searching for similar pocket surfaces from a database of 770,466 pockets
derived from the CASTP database (with the criterion that each must contain at least 8
residues), this method can recover active site surfaces on enzymes similar to that
on the query structure at an accuracy of 92% or higher. An example of identifying
human amylase using template surfaces from B. subtilis and from barley is shown
in Fig. 1.10.

The method of surface matching based on evolutionary model is also especially
effective in solving the challenging problems of protein function prediction of or-
phan structures of unknown function (such as those obtained in structural genomics
projects), which have only sequence homologs that are themselves hypothetical pro-
teins with unknown functions.

1.5 DISCUSSION AND SUMMARY

Amajor challenge in studying protein geometry is to understand our intuitive notions
of various geometric aspects of molecular shapes and to quantify these notions
with mathematical models that are amenable to fast computation. The advent of the
union of ball model of protein structures enabled rigorous definition of important
geometric concepts such as solvent accessible surface and molecular surface. It also
led to the development of algorithms for area and volume calculations of proteins.
Deep understanding of the topological structure of molecular shapes is also based on
the idealized union of ball model [12]. A success in approaching these problems is
exemplified in the development of the pocket algorithm [17]. Another example is the
recent development of a rigorous definition of protein--protein binding or interaction
interface and algorithm for its computation [3].

Perhaps a more fundamental problem we face is to identify important structural
and chemical features that are the determinants of biological problems of interest. For
example, we would like to know the shape features that have significant influence
on protein solvation, protein stability, ligand specific binding, and protein conforma-
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tional changes. It is not clear whether our current geometric intuitions are sufficient
or are the correct or the most relevant ones. There may still be important unknown
shape properties of molecules that elude us at the moment.

An important application of geometric computation of protein structures is to
detect patterns important for protein function. The shape of local surface regions on
a protein structure and their chemical texture are the basis of its binding interactions
with other molecules. Proteins fold into specific native structure to form these local
regions for carrying out various biochemical functions. The geometric shape and
chemical pattern of the local surface regions and how they change dynamically are
therefore of fundamental importance in computational studies of proteins.

Another important application is the development of geometric potential functions.
Potential functions are important for generating conformations, for distinguishing
native and near native conformations from other decoy conformations in protein
structure predictions [34,36,54,63] and in protein--protein docking [35]. They are
also important for peptide and protein design [27,35].

We have not described in detail the approach of studying protein geometry using
graph theory. In addition to side-chain pattern analysis briefly discussed earlier, the
graph-based protein geometric model also has led to a number of important insights,
including the optimal design of model proteins formed by hydrophobic and polar
residues [28] and methods for optimal design of side-chain packing [31,61].

Further development of descriptions of geometric shape and topological structure,
as well as algorithms for their computation, will provide a solid foundation for
studying many important biological problems. The other important tasks are then to
show how these descriptors may be effectively used to deepen our biological insights
and to develop accurate predictive models of biological phenomena. For example, in
computing protein--protein interfaces, a challenging task is to discriminate surfaces
that are involved in protein binding from other nonbinding surface regions and to
understand in what fashion this depends on the properties of the binding partner
protein.

Undoubtedly, evolution plays central roles in shaping up the function and stabil-
ity of protein molecules. The method of analyzing residue substitution rates using
continuous-time Markov models [57,58] and the method of surface mapping of con-
servation entropy and phylogeny [22,41] only scratches the surface of this important
issue. Much remains to be done in incorporating evolutionary information in protein
shape analysis for understanding biological functions.

Remark. The original work of Lee and Richards can be found in reference 32,
where they also formulated the molecular surface model [49]. Michael Connolly
developed the first method for the computation of the molecular surface [9]. Tsai et
al. described a method for obtaining atomic radii parameter [56]. The mathematical
theory of the union of balls and alpha shape was developed by Herbert Edelsbrunner
and colleagues [12,15]. Algorithm for computingweightedDelaunay tetrahedrization
can be found in reference 16 or in a concise monograph with in-depth discussion of
geometric computing [13]. Details of area and volume calculations can be found in
references 14, 38 and 39. The theory of pocket computation and applications can be
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found in references 17 and 40. Richards and Lim offered a comprehensive review
on protein packing and protein folding [50]. A detailed packing analysis of proteins
can be found in reference 37. The study on inferring protein function by matching
surfaces is described in references 4,58. The study of the evolutionary model of
protein binding pocket and its application in protein function prediction can be found
in reference 8.

Summary. The accumulation of experimentally solved molecular structures of pro-
teins provides a wealth of information for studying many important biological prob-
lems.With the development of a rigorous model of the structure of protein molecules,
various shape properties, including surfaces, voids, and pockets, and measurements
of their metric properties can be computed. Geometric algorithms have found im-
portant applications in protein packing analysis, in developing potential functions,
in docking, and in protein function prediction. It is likely the further development
of geometric models and algorithms will find important applications in answering
additional biological questions.
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EXERCISES

1.1 For two points 𝒙1,𝒙2 ∈ ℝ𝑑 , the line through 𝒙1 and 𝒙2 can be written as
{𝒙|𝒙 = 𝒙1 + 𝜆(𝒙2 − 𝒙1), 𝜆 ∈ ℝ}. Equivalently, we can define the line as

{𝒙|𝒙 = (1 − 𝜆)𝒙1 + 𝜆𝒙2, 𝜆 ∈ ℝ},

or

{𝒙|𝒙 = 𝑝1𝒙1 + 𝑝2𝒙2, 𝑝1, 𝑝2 ∈ ℝ, 𝑝1 + 𝑝2 = 1}.
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A closed line segment joining 𝒙1 and 𝒙2 is

[𝒙1,𝒙2] = {𝒙|𝒙 = (1 − 𝜆)𝒙1 + 𝜆𝒙2, 0 ≤ 𝜆 ≤ 1}.

Similarly, an open line segment joining 𝒙1 and 𝒙2 is

(𝒙1,𝒙2) = {𝒙|𝒙 = (1 − 𝜆)𝒙1 + 𝜆𝒙2, 0 < 𝜆 < 1}.

A set 𝑆 ⊆ ℝ𝑑 is convex if the closed line segment joining every two points of
𝑆 is in 𝑆. Equivalently, 𝑆 is convex if for 𝒙1,𝒙2 ∈ 𝑆, 𝜆 ∈ ℝ, 0 ≤ 𝜆 ≤ 1
we obtain

(1 − 𝜆)𝒙1 + 𝜆𝒙2 ∈ 𝑆.

For a nonzero vector𝒘 ∈ ℝ𝑑,𝒘 ≠ 𝟎, and 𝑏 ∈ ℝ, the point set {𝒙|𝒙 ∈ ℝ𝑛, 𝒘 ⋅
𝒙 < 𝑏} is an open half-space inℝ𝑑 , and the set {𝒙|𝒙 ∈ ℝ𝑛, 𝑤𝒙 ≤ 𝑏} is a closed
half-space in ℝ𝑑 . Show with proof that:

(a) Both an open half-space and a closed half-space are convex.

(b) If𝐴1,… , 𝐴𝑛 is a family of convex sets inℝ𝑑 , then their intersection
⋂𝑛

𝑖=1 𝐴𝑖

is a convex set. Specifically, the intersection of a set of half-spaces---for
example, a Voronoi cell---is convex.

1.2 We can follow the dual relationship to compute the Voronoi diagram from the
constructed Delaunay triangulation. In three-dimensional space, a Delaunay
vertex corresponds to an atom ball, a Delaunay edge corresponds to a Voronoi
plane, a Delaunay triangle corresponds to a Voronoi edge, and a Delaunay
tetrahedron corresponds to a Voronoi vertex. To obtain the coordinates of a
Voronoi vertex 𝒗 = (𝑣1, 𝑣2, 𝑣3) ∈ ℝ3 from a Delaunay tetrahedron formed by
four atoms 𝑏𝑖(𝒛𝑖, 𝑟𝑖), 𝑏𝑗(𝒛𝑗 , 𝑟𝑗), 𝑏𝑘(𝒛𝑘, 𝑟𝑘), and 𝑏𝑙(𝒛𝑙, 𝑟𝑙), which are located at
𝒛𝑖, 𝒛𝑗 , 𝒛𝑘, and 𝒛𝑙, with radii 𝑟𝑖, 𝑟𝑗 , 𝑟𝑘 and 𝑟𝑙, respectively, we use the fact that
the power distance

𝜋𝑖(𝒗) ≡ ||𝒗 − 𝒛𝑖||2 − 𝑟2
𝑖

from 𝒗 to 𝑏𝑖(𝒛𝑖, 𝑟𝑖) is the same as 𝜋𝑗(𝒗), 𝜋𝑘(𝒗), and 𝜋𝑙(𝒗). Denote this power
distance as 𝑅2.

(a) Write down the set of quadratic equations whose solution will provide
𝒓 = (𝑟1, 𝑟2, 𝑟3) and 𝑅2.

(b) Define functions 𝜆(𝒗) ≡ 𝒗 ⋅ 𝒗 − 𝑅2, and 𝜆(𝒛𝑖) ≡ 𝒛𝑖 ⋅ 𝒛𝑖 − 𝑟2
𝑖
, and define

𝜆(𝒛𝑗), 𝜆(𝒛𝑘), 𝜆(𝒛𝑘), and 𝜆(𝒛𝑙) similarly. Use 𝜆(𝒗)
2 , 𝜆(𝒛𝑖)

2 ,
𝜆(𝒛𝑗 )
2 , 𝜆(𝒛𝑘)

2 , and
𝜆(𝒛𝑙)
2 to simplify the system of quadratic equations into a system of linear

equations, whose solution will give 𝒓 and 𝑅2.

(c) Write down the set of linear equations that determine the Voronoi line dual
to a Delaunay triangle.

(d) Write down the linear equation that determines the Voronoi plane dual to
a Delaunay edge.
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1.3 By growing atom balls using a parameter 𝛼, we can generate a family of
unions of balls, in which the size of each atom is inflated from 𝑟𝑖 to 𝑟𝑖(𝛼) =
(𝑟2

𝑖
+ 𝛼)1∕2 [12,15]. We now examine the corresponding Voronoi diagrams.

(a) In the Voronoi diagram, every point 𝒙 on the separator surface for the
two original atoms (𝒛𝑖, 𝑟𝑖) and (𝒛𝑗 , 𝑟𝑗) has equal power distances 𝜋𝑖(𝒙) and
𝜋𝑗(𝒙) to the two atoms. Write down the equation for the separator surface.
Is the separator surface elliptic, parabolic, or planar?

(b) Now we inflate both atoms by 𝛼 such that we have two new balls with
different radii (𝒛𝑖, 𝑟𝑖(𝛼)) and (𝒛𝑗 , 𝑟𝑗(𝛼)). Write down the equation for the
separator surface.

(c) What is the relationship between these two separator surfaces? What is the
relationship between the two corresponding Voronoi diagrams?

1.4 The Voronoi diagrams can be generalized using different distance functions.
When considering atoms of different radii, instead of replacing the Euclidean
distance ||𝒙 − 𝒛𝑖|| with the power distance 𝜋𝑖(𝒙), we can use the additive
distance:

𝑑𝑖(𝒙) ≡ ||𝒙 − 𝒛𝑖|| − 𝑟𝑖.

The resulting Voronoi diagram is called the additively weighted Voronoi dia-
gram.

(a) Write down the equation for the separator surface formed by the set of
points with equal additive distances to the two atoms (𝒛𝑖, 𝑟𝑖) and (𝒛𝑗 , 𝑟𝑗).
Is the separator surface elliptic, parabolic, or planar?

(b) Now we inflate both atoms by 𝛼 such that we have two new balls with
different radii (𝒛𝑖, 𝑟𝑖 + 𝛼) and (𝒛𝑗 , 𝑟𝑗 + 𝛼). Write down the equation for the
separator surface. Is the separator surface elliptic, parabolic, or planar?

(c) Is there a simple relationship between these two separator surfaces or
between the two corresponding Voronoi diagrams?






