
JWST502-c01 JWST502-Tripathy September 5, 2014 6:33 Printer Name: Trim: 6.125in × 9.25in

1
BASIC CONCEPTS AND
PRELIMINARIES

Another flaw in the human character is that everybody wants to build and nobody wants
to do maintenance.

—Kurt Vonnegut, Jr.

1.1 EVOLUTION VERSUS MAINTENANCE

In 1965, Mark Halpern introduced the concept of software evolution to describe the
growth characteristics of software [1]. Later, the term “evolution” in the context of
application software was widely used. The concept further attracted the attentions
of researchers after Belady and Lehman published a set of principles determining
evolution of software systems [2, 3]. The principles were very general in nature. In
his landmark article entitled “The Maintenance ‘Iceberg’,” R. G. Canning compared
software maintenance to an “iceberg” to emphasize the fact that software developers
and maintenance personnel face a large number of problems [4]. A few years later,
in 1976, Swanson introduced the term “maintenance” by grouping the maintenance
activities into three basic categories: corrective, adaptive, and perfective [5]. In the
early 1970s, IBM called them “maintenance engineers” or “maintainers” who had
been making intentional modifications to running code that they had not developed
themselves. The main reason for using nondevelopment personnel in maintenance
work was to free up the software development engineers or programmers from support

Software Evolution and Maintenance: A Practitioner’s Approach, First Edition.
Priyadarshi Tripathy and Kshirasagar Naik.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

1

CO
PYRIG

HTED
 M

ATERIA
L



JWST502-c01 JWST502-Tripathy September 5, 2014 6:33 Printer Name: Trim: 6.125in × 9.25in

2 BASIC CONCEPTS AND PRELIMINARIES

activities [6]. In this book, we will use maintainer, maintenance engineer, developer,
and programmer interchangeably.

Bennett and Rajlich [7] researched the term “software evolution” and found that
there is no widely accepted definition of the term. In addition, some researchers
and practitioners used the phrases “software evolution” and “software maintenance”
interchangeably. However, key semantic differences exist between the two. The two
are distinguished as follows:

� The concept of software maintenance means preventing software from failing
to deliver the intended functionalities by means of bug fixing.

� The concept of software evolution means a continual change from a lesser,
simpler, or worse state to a higher or better state ([8], p. 1).

Bennett and Xu [9] made further distinctions between the two as follows:

� All support activities carried out after delivery of software are put under the
category of maintenance.

� All activities carried out to effect changes in requirements are put under the
category of evolution.

In general, maintenance and evolution are generally differentiated as follows [10]:

� Maintenance of software systems primarily means fixing bugs but preserving
their functionalities. Maintenance tasks are very much planned. For example,
bug fixing must be done and it is a planned activity. In addition to the planned
activities, unplanned activities are also necessitated. For example, a new usage
of the system may emerge. Generally, maintenance does not involve making
major changes to the architecture of the system. In other words, maintenance
means keeping an installed system running with no change to its design [11].

� Evolution of software systems means creating new but related designs from
existing ones. The objectives include supporting new functionalities, making
the system perform better, and making the system run on a different operating
system. Basically, as time passes, the stakeholders develop more knowledge
about the system. Therefore, the system evolves in several ways. As time passes,
not only new usages emerge, but also the users become more knowledgeable.
As Mehdi Jazayeri observed: “Over time what evolves is not the software but
our knowledge about a particular type of software” ([12], p. 3).

While we are on the topic of maintenance, it is useful to glance at the maintenance
of physical systems. Maintenance of physical systems often requires replacing broken
and worn-out parts. For example, owners replace the worn-out tires and broken lamps
of their cars. Similarly, a malfunctioning memory card is replaced with a good one.
On the other hand, software maintenance is different than hardware maintenance.
In hardware maintenance, a system or a component is returned to its original good
state. On the other hand, in software maintenance, a software system is moved from



JWST502-c01 JWST502-Tripathy September 5, 2014 6:33 Printer Name: Trim: 6.125in × 9.25in

EVOLUTION VERSUS MAINTENANCE 3

its original erroneous state to an expected good state [13]. Software maintenance
comprises all activities associated with the process of changing software for the
purposes of:

� fixing bugs; and/or
� improving the design of the system so that future changes to the system are less

expensive.

1.1.1 Software Evolution

Although the phrase “software evolution” had been used previously by other
researchers, fundamental work in the field of software evolution was done by Lehman
and his collaborators. Based on empirical studies [2, 14], Lehman and his collabo-
rators formulated some observations and they introduced them as laws of evolution.
The “laws” themselves have “evolved” from three in 1974 to eight by 1997 [15, 16].
Those laws are the results of studies of the evolution of large-scale proprietary or
closed source software (CSS) systems. The laws concern a category of software
systems called E-type systems. The eight laws are briefly explained as follows:

1. Continuing change. Unless a system is continually modified to satisfy emerging
needs of users, the system becomes increasingly less useful.

2. Increasing complexity. Unless additional work is done to explicitly reduce the
complexity of a system, the system will become increasingly more complex
due to maintenance-related changes.

3. Self-regulation. The evolution process is self-regulating in the sense that the
measures of products and processes, that are produced during the evolution,
follow close to normal distributions.

4. Conservation of organizational stability. The average effective global activity
rate on an evolving system is almost constant throughout the lifetime of the
system. In other words, the average amount of additional effort needed to
produce a new release is almost the same.

5. Conservation of familiarity. As a system evolves all kinds of personnel, namely,
developers and users, for example, must gain a desired level of understanding
of the system’s content and behavior to realize satisfactory evolution. A large
incremental growth in a release reduces that understanding. Therefore, the
average incremental growth in an evolving system remains almost the same.

6. Continuing growth. As time passes, the functional content of a system is con-
tinually increased to satisfy user needs.

7. Declining quality. Unless the design of a system is diligently fine-tuned and
adapted to new operational environments, the system’s qualities will be per-
ceived as declining over the lifetime of the system.

8. Feedback system. The system’s evolution process involves multi-loop, multi-
agent, multi-level feedback among different kinds of activities. Developers
must recognize those complex interactions in order to continually evolve an
existing system to deliver more functionalities and higher levels of qualities.



JWST502-c01 JWST502-Tripathy September 5, 2014 6:33 Printer Name: Trim: 6.125in × 9.25in

4 BASIC CONCEPTS AND PRELIMINARIES

In circa 1988, Pirzada [17] was the first one to study the differences between
the evolution of the Unix operating system developed by Bell Laboratories and the
systems studied by Lehman and Belady [18]. Pirzada argued that the differences
in academic and industrial software development could lead to differences in the
evolutionary pattern. In circa 2000, after a gap of 12 years, empirical study of
evolution of free and open source software (FOSS) was conducted by Godfrey and
Tu [19]. The authors provided the trend of growth of the popular FOSS operating
system Linux during 1994–1999. They showed the growth rate to be super-linear that
is greater than linear. Robles et al. [20] later replicated the study of Godfrey and Tu
and concluded that Lehman’s laws Nos. 3, 4, and 5 do not hold for large-scale FOSS
systems such as Linux. These studies reveal the changing nature of both software
and software development processes. Lehman’s studies mostly examined proprietary,
monolithic systems developed by a team of developers within a company, whereas
FOSS systems and their developments follow a different evolution paradigm.

Remark: FOSS is available to all with relaxed or nonexistent copyrights. FOSS is
commonly used as a synonym for free software even though “free” and “open” have
different semantics. The term “free” means the freedom to modify and redistribute the
system under the terms of the original agreement, while “open” means accessibility
to the source code.

1.1.2 Software Maintenance

More likely than not, there are defects in delivered software applications, because
defect removal and quality control processes are not perfect. Therefore, mainte-
nance is needed to repair those defects in released software. E. Burton Swanson
[5] initially defined three categories of software maintenance activities, namely, cor-
rective, adaptive, and perfective. Those definitions were later incorporated into the
standard software engineering–software life cycle processes–Maintenance [21] and
introduced a fourth category called preventive maintenance. The reader may note
that some researchers and developers view preventive maintenance as a subset of
perfective maintenance.

Swanson’s classification of maintenance activities is intention based because the
maintenance activities reflect the intents of the developer to carry out specific main-
tenance tasks on the system. In the intention-based classification of maintenance
activities, the intention of an activity depends upon the motivations for the change.
An alternative way of classifying modifications to software is to simply categorize
the modifications in terms of activities performed [22]:

� Activities to make corrections. If there are discrepancies between the expected
behavior of a system and the actual behavior, then some activities are performed
to eliminate or reduce the discrepancies.

� Activities to make enhancements. A number of activities are performed to imple-
ment a change to the system, thereby changing the behavior or implementation



JWST502-c01 JWST502-Tripathy September 5, 2014 6:33 Printer Name: Trim: 6.125in × 9.25in

EVOLUTION VERSUS MAINTENANCE 5

of the system. This category of activities is further refined into three subcate-
gories:

– enhancements that modify existing requirements;

– enhancements that create new requirements; and

– enhancements that modify the implementation without changing the require-
ments.

Chapin et al. [6] expanded the typology of Swanson into an evidence-based classi-
fication of 12 different types of software maintenance: training, consultive, evaluative,
reformative, updative, groomative, preventive, performance, adaptive, reductive, cor-
rective, and enhancive. The three objectives for classifying the types of software
maintenance are as follows:

� It is more informative to classify maintenance tasks based on objective evidence
that can be verified with observations and/or comparisons of software before
and after modifications. This does not require accessing the knowledge of the
personnel who originally developed the system.

� The granularity of the proposed classification can be made to accurately reflect
the actual mix of activities observed in the practice of software maintenance
and evolution.

� The classification groups are independent of hardware platform, operating sys-
tem choice, design methodology, implementation language, organizational prac-
tices, and the availability of the personnel doing the original development.

Maintenance of COTS-Based Systems Many present-day software systems are
built from components previously developed for other systems or to be reused in many
systems. In this approach, new components are developed by combining commercial
off-the-shelf (COTS) components, custom-built (in-house) components, and open
source software components. The components are obtained from a variety of sources
and maintained by different vendors, possibly from different countries [23]. The
motivations for performing software maintenance are the same for both component-
based software systems (CBS) and custom-built software systems. However, there
are noticeable differences between the activities in the two approaches. The major
sources of the differences are as follows [24, 25]:

� Skills of system maintenance teams. Maintenance of CBS requires specialized
skills to monitor and integrate COTS products. Those skills are different than the
skills required to perform the more traditional maintenance functions: analyze
and modify source code developed in-house. Maintainers view a CBS as a group
of black-box components, and not as a compiled set of source code modules,
thereby requiring a different set of maintenance skills. The differences in skills
are neither pros nor cons, but it is important that the differences are taken into
consideration for planning, staffing, and training.



JWST502-c01 JWST502-Tripathy September 5, 2014 6:33 Printer Name: Trim: 6.125in × 9.25in

6 BASIC CONCEPTS AND PRELIMINARIES

� Infrastructure and organization. Running a support group for in-house products
is necessary to manage a large product. This additional cost may be shared with
other projects.

� COTS maintenance cost. This cost includes the costs of purchasing compo-
nents, licensing components, upgrading components, and training maintenance
personnel. From the perspective of a system’s life cycle, much cost is shifted
from in-house development to license and maintenance fees, thereby increasing
the overall maintenance cost.

� Larger user community. COTS users are part of a broad community of users,
and the community of users can be considered as a resource, which is a positive
factor. However, being part of a community means having less control over
changes and improvements to COTS products.

� Modernization. In general, vendors of COTS components keep pace with chang-
ing technology and continually update the components. As a result, the system
does not become obsolete. However, the flip side is that the costs and risks
of making changes keep increasing even if the application does not require
any changes. In general, control over the evolution and maintenance of signif-
icant portions of the system is relinquished to third-party COTS developers.
Those third-party developers may be motivated to pursue their own commercial
self-interest. In addition, the third-party vendors control not only the nature of
maintenance to be done on the products, but also when it is to be done. Therefore
reliance on third-party products impacts both the type and timing of the main-
tenance performed by COTS-based developers. In a nutshell, unfortunately,
upgrades to products are necessitated by technology and vendor economics.

� Split maintenance function. A COTS product is maintained by its vendor,
whereas the overall system that uses the COTS product is maintained by the sys-
tem’s host organization. As a result, multiple, independent maintenance teams
exist. The advantage of COTS-based development is that the system maintain-
ers receive additional support from the COTS vendors. On the other hand, the
drawback of the approach is that the different COTS pieces need tighter coor-
dination, and the product vendors may stray in all directions with respect to
functionality and standard.

� More complex planning. If a system depends upon multiple technologies and
COTS products, the unpredictability and risk of change become high, and
planning becomes complicated because coordination among a large number of
vendors is more difficult.

1.2 SOFTWARE EVOLUTION MODELS AND PROCESSES

There is much confusion about the terms “software maintenance” and “software
evolution.” The confusion is partly due to a lack of attention paid to models for
sustaining software systems and partly due to considering maintenance to be another
activity in software development. For example, consider the classical Waterfall model
for software development proposed by Winston Royce in circa 1970 [26]. The final



JWST502-c01 JWST502-Tripathy September 5, 2014 6:33 Printer Name: Trim: 6.125in × 9.25in

SOFTWARE EVOLUTION MODELS AND PROCESSES 7

phase of the Waterfall model is known as maintenance, which implies that software
maintenance is a part of software development. In this regard it is worth quoting
Norman Schneidewind [27]: “The traditional view of the software life cycle has
done a disservice to maintenance by depicting it solely as a single step at the end of
the cycle” (p. 304). Therefore, software maintenance should have its own software
maintenance life cycle (SMLC) model [28]. A number of SMLC models with some
variations are available in literature [8, 29–35]. Three common features of the SMLC
models found in the literature are:

� understanding the code;
� modifying the code; and
� revalidating the code.

Other models view software development as iterative processes and based on the
idea of change mini-cycle [7, 36–39] as explained in the following:

� Iterative models. The iterative models share the ideas that a complete set of
requirements for a system cannot be completely understood, or the developers
do not know how to build the full system. Therefore, systems are constructed
in builds, each of which is a refinement of requirements of the previous build.
A build is refined by considering feedback from users [40]. One may note that
maintenance and evolution activities do not exist as distinct phases. Rather, they
are closely intertwined.

� Change mini-cycle models. First proposed by Yau et al. [36] in the late 1970s,
these models were recently re-visited by Bennet et al. [7] and Mens [41] among
others. These models consist of five major phases: change request, analyze and
plan change, implement change, verify and validate, and documentation change.
In this process model, several important activities were identified, such as pro-
gram comprehension, impact analysis, refactoring, and change propagation.

A different kind of software evolution model, called staged model of maintenance
and evolution, has been proposed by Rajlich and Bennett [42]. The model is descrip-
tive in nature, and its primary objective is to improve the understanding of how
long-lived software evolves. The model considers four distinct, sequential stages of
the lifetime of a system, as explained below:

1. Initial development. When the initial version of the system is produced, detailed
knowledge about the system is fresh. Before delivery of the system, it undergoes
many changes. Eventually, a system architecture emerges and soon it stabilizes.

2. Evolution. After the initial stability, it is easy to perform simple changes to
the system. Significant changes involve higher cost and higher risk. In the
period immediately following the initial delivery, knowledge about the system
is still almost fresh in the minds of the developers. It is possible that the
development team as a whole does not exist, because many original developers
have taken up new responsibilities in the organization and some might have left



JWST502-c01 JWST502-Tripathy September 5, 2014 6:33 Printer Name: Trim: 6.125in × 9.25in

8 BASIC CONCEPTS AND PRELIMINARIES

the organization. In general, for many systems, their lifespan are spent in this
stage, because the systems continue to be of importance to the organizations.

3. Servicing. When the knowledge about the system has significantly decreased,
the developers mainly focus on maintenance tasks, such as fixing bugs, whereas
architectural changes are rarely effected. The developers do not consider the
system to be a key asset. In this stage, the effects of changes are very difficult to
predict. Moreover, the costs and risks of making changes are very significant.

4. Phaseout. When even minimal servicing of a system is not an option, the system
enters its very final stage. The organization decides to replace the system for
various reasons: (i) it is too expensive to maintain the system; or (ii) there is a
newer solution available. Therefore, the organization develops an exit strategy
to move from the current system to a new system. Moving from an existing,
difficult-to-maintain system to a modern solution system has its own challenges
involving wrapping and data migration. After the new system keeps running
satisfactorily, sometimes in parallel with the old system, the old system is
finally completely shut down.

Software Maintenance Standards A well-defined process for software mainte-
nance can be observed and measured, and thus improved. In addition, adoption of
processes allows the dissemination of effective work practices more quickly than
gaining personal experience. Process centric software maintenance is more of an
engineering activity, with predictable time and effort constraints, and less of an art.
Therefore, software maintenance standards have been formulated by ISO and IEEE.
The maintenance standard document from ISO is called ISO/IEC 14764 [21] which
is a part of the standard document ISO/IEC 12207 [43] for life cycle processes. The
maintenance standard document from IEEE is called IEEE/EIA 1219 [44].

Both the standards describe processes for managing and executing activities for
maintenance. The IEEE/EIA 1219 standard organizes the maintenance process in
seven phases: problem identification, analysis, design, implementation, system test,
acceptance test, and delivery. As a quick summary, the standard identifies the different
phases and the sequence of their executions. Next, for each phase, the standard
identifies the input and output deliverables, the supporting processes and the related
activities, and a set of evaluation metrics. Both the standards, namely ISO/IEC 14764
and IEEE/EIA 1219, use the same terminology to describe software maintenance,
with a little difference in their depictions. An iterative process has been described
in ISO/IEC 14764 to manage and execute maintenance activities. The activities
comprising the maintenance process are:

� process implementation;
� problem and modification analysis;
� modification implementation;
� maintenance review/acceptance;
� migration; and
� retirement.



JWST502-c01 JWST502-Tripathy September 5, 2014 6:33 Printer Name: Trim: 6.125in × 9.25in

REENGINEERING 9

Each of the aforementioned activities is made up of tasks described with specific
inputs, outputs, and actions.

Software Configuration Management Configuration management (CM) is the dis-
cipline of managing changes in large systems. The goal of CM is to manage and
control the various extensions, adaptations, and corrections that are applied to a sys-
tem over its lifetime. It handles the control of all products/configuration items and
changes to those items. Software configuration management (SCM) is the config-
uration management applied to software systems. SCM is the means by which the
process of software evolution is managed. SCM has been defined in the IEEE 1042
standard [45] as “software configuration management (SCM) is the discipline of man-
aging and controlling change in the evolution of software systems.” SCM provides a
framework for managing changes in a controlled manner. The purpose of SCM is to
reduce communication errors among personnel working on different aspects of the
software project by providing a central repository of information about the project and
a set of agreed upon procedures for coping with changes. It ensures that the released
software is not contaminated by uncontrolled or unapproved changes. Early SCM
tools had limited capabilities in terms of functionality and applicability. However,
modern SCM systems provide advanced capabilities through which many different
artifacts are managed. For example, modern SCM systems support their users in
building an executable program out of its versioned source files. Moreover, it must
be possible to regenerate old versions of the software system. In general, an SCM
system has four different elements, each element addressing a distinct user need as
follows [46, 47]:

� Identification of software configurations. This includes the definitions of the
different artifacts, their baselines or milestones, and the changes to the artifacts.

� Control of software configurations. This element is about controlling the ways
artifacts or configurations are altered with the necessary technical and adminis-
trative support.

� Auditing software configurations. This element is about making the current sta-
tus of the software system in its life cycle visible to management and determining
whether or not the baselines meet their requirements.

� Accounting software configuration status. This element is about providing an
administrative history of how the software system has been altered, by recording
the activities necessitated by the other three SCM elements.

1.3 REENGINEERING

Hongji Yang and Martin Ward [48] defined software evolution as “… the process
of conducting continuous software reengineering” (p. 23). Reengineering implies a
single cycle of taking an existing system and generating from it a new system, whereas
evolution can go forever. In other words, to a large extent, software evolution can



JWST502-c01 JWST502-Tripathy September 5, 2014 6:33 Printer Name: Trim: 6.125in × 9.25in

10 BASIC CONCEPTS AND PRELIMINARIES

be seen as repeated software reengineering. Reengineering is done to transform an
existing “lesser or simpler” system into a new “better” system. Chikofsky and Cross
II [49] define reengineering as “the examination and alteration of a subject system to
reconstitute it in a new form and the subsequent implementation of the new form.”

Therefore, reengineering includes some kind of reverse engineering activities to
design an abstract view of a given system. The new abstract view is restructured,
and forward engineering activities are performed to implement the system in its new
form. The aforementioned process is captured by Jacobson and Lindstörm [50] with
the following expression:

Reengineering = Reverse engineering + Δ + Forward engineering.

Let us analyze the right-hand portion of the above equation. The first element “reverse
engineering” is the activity of defining a more abstract and easier to understand
representation of the system. For example, the input to the reverse engineering process
is the source code of the system, and the output is the system architecture. The core
of reverse engineering is the process of examination of the system, and it is not
a process of change. Therefore it does not involve changing the software under
examination. The third element “forward engineering” is the traditional process of
moving from a high-level abstraction and logical, implementation-independent design
to the physical implementation of the system. The second element “Δ” captures
alterations performed to the original system.

While performing reverse engineering on a large system, tools and method-
ologies are generally not stable. Therefore, a high-level organizational paradigm
enables repetitions of processes so that maintenance engineers learn about the system.
Benedusi et al. [51] have proposed a repeatable paradigm, called Goals/Models/Tools,
that describes reverse engineering in three successive stages, namely, Goals, Models,
and Tools.

Goals. In this phase, one analyzes the motivations for setting up the process
to identify the information needs of the process and the abstractions to be
produced.

Models. In this phase, one analyzes the abstractions to construct representation
models that capture the information needed for their production.

Tools. In this phase, software tools are defined, acquired, enhanced, integrated,
or constructed to: (i) execute the Models phase and (ii) transform the program
models into the abstractions identified in the Goals phase.

It is important to note that fact-finding and information gathering from the source
code are keys to the Goal/Models/Tools paradigm. In order to extract information
that is not explicitly available in source code, automated analysis techniques, such
as lexical analysis, syntactic analysis, control flow analysis, data flow analysis, and
program slicing are used to facilitate reverse engineering.



JWST502-c01 JWST502-Tripathy September 5, 2014 6:33 Printer Name: Trim: 6.125in × 9.25in

LEGACY SYSTEMS 11

The increased use of data mining techniques in support systems have given rise to
an interest in data reverse engineering (DRE) technology. DRE tackles the question of
what information is stored and how this information can be used in a different context.
DRE is defined by Peter Aiken as “the use of structured techniques to reconstitute
the data assets of an existing system” [52]. The two vital aspects of the DRE process
are to: (i) recover data assets that are useful or valuable and (ii) reconstitute the
recovered data assets to make them more useful. Therefore, DRE can be regarded as
adding value to the existing data assets, making it easier for organizations to conduct
business efficiently and effectively.

1.4 LEGACY SYSTEMS

A legacy software system is an old program that continues to be used because
it still meets the users’ needs, in spite of the availability of newer technology or
more efficient methods of performing the task. More often than not, a legacy system
includes outdated procedures or terminology, and it is very difficult for new developers
to understand the system. Organizations continue to use legacy systems because those
are vital to them and the systems significantly resist modification and evolution to meet
new and constantly changing business requirements [53, 54]. A legacy system falls in
the Phase out stage of the software evolution model of Rajlich and Bennet described
earlier. Organizations in business for a long time generally possess a sizable number
of legacy systems. To manage legacy systems, a number of options are available.
Some commonly chosen options are as follows [55, 56]:

� Freeze. An organization decides to perform no further work on a legacy system.
This implies that either the services of the system are no longer needed or a new
system completely replaces a legacy system.

� Outsource. An organization may decide that supporting legacy software—or
for that matter any software—is not its core business. As an alternative, it may
outsource the support service to a specialist organization.

� Carry on maintenance. In this approach, the organization continues to maintain
the system for another period of time, despite all the difficulties in doing so.

� Discard and redevelop. In this approach, the application is redeveloped once
again from scratch, using new hardware and software platforms, new software
architecture and databases, and modern tools. When the new system is available,
the legacy system is simply discarded.

� Wrap. In this approach, a legacy system is wrapped around with a new software
layer, thereby hiding the unwanted complexity of the existing data, individual
programs, application systems, and interfaces. The old system performs the
actual computations, but users interact with the system in better ways. The
notion of “wrapper” was first introduced by Dietrich et al. at IBM in the late
1980s [57]. Wrapping is a black-box reengineering task, because only the legacy
interface is analyzed while ignoring the system’s internals. A wrapper does



JWST502-c01 JWST502-Tripathy September 5, 2014 6:33 Printer Name: Trim: 6.125in × 9.25in

12 BASIC CONCEPTS AND PRELIMINARIES

not directly modify the source code, but it indirectly modifies the software
functionality of the legacy component. Wrapping lets organizations reuse well-
tested components that they trust and leverage their massive investments in
the system. As a result, the lifetime of the legacy system is increased. Many
researchers have proposed techniques for wrapping legacy systems [58–60].

� Migrate. In this approach, an operational legacy system is moved to a new
hardware and/or software platform, while still retaining the legacy system’s
functionality. The idea is to minimize any disruption to the existing business
environment.

Migration is the best alternative if wrapping is unsuitable and redevelopment
is not acceptable due to substantial risk. Migration involves changes to the legacy
system, including restructuring the system and enhancing the functionality of
the system. However, it retains the basic functionality of the existing system
without having to completely redevelop it. Migration projects require careful
planning for smooth execution. Harry M. Sneed [61] suggested five steps for a
good plan: project justification, portfolio analysis, cost estimation, cost-benefit
analysis, and contracting. Project justification is the first step in any planning.
Justifying the project requires analysis of the existing products, the maintenance
process, and the business value of the applications. Portfolio analysis prioritizes
applications to be reengineered according to their business value and technical
quality. Cost estimation gives us an idea about the cost of the migration project.
Cost-benefit analysis tells us the costs of the migration project and the expected
returns. Contracting entails the identification of tasks and the distribution of
efforts. Given the scale, complexity, and risk of failure of migration projects,
a well-defined, easily implementable, detailed approach is essential to their
success. Several migration approaches can be found in the literature: Cold
Turkey, Database First, Database Last, Composite Database, Chicken Little,
Butterfly, and Iterative [62–64].

1.5 IMPACT ANALYSIS

Impact analysis is the task of identifying portions of the software that can potentially
be affected if a proposed change to the system is effected. The outcome of impact
analysis can be used when planning for changes, making changes, and tracking the
effects of changes in order to localize the sources of new faults. Impact analysis
techniques can be categorized into two classes as follows [65]:

� Traceability analysis. In this approach, the high-level artifacts, such as require-
ments, design, code, and test cases related to the feature to be changed, are
identified. A model of associations among artifacts, such that each artifact links
to other artifacts, is constructed. This helps in locating the corresponding por-
tions of the design, code, and test cases that need to be maintained.

� Dependency analysis. Dependency analysis attempts to assess the effects of a
change on the semantic dependencies between program entities. This is achieved



JWST502-c01 JWST502-Tripathy September 5, 2014 6:33 Printer Name: Trim: 6.125in × 9.25in

REFACTORING 13

by identifying the syntactic dependencies that may signal the presence of such
semantic dependencies [66]. The two dependency-based impact analysis tech-
niques are [67]: call graph-based analysis and dependency graph-based analysis.
Dependency analysis is also known as source code analysis.

The following two additional notions are found to be keys to understanding impact
analysis:

� Ripple effect analysis. Ripple effect analysis emphasizes the tracing repercus-
sions in source code when the code is changed. It measures the impact of a
change to a particular module on the rest of the program [68]. Impact can be
stated in terms of the problems being created for the rest of the program because
of the change. Analysis of ripple effect can provide information regarding what
changes are occurring and where they are occurring. Measurement of ripple
effect can provide knowledge about the system as a whole through its evolu-
tion: (i) the amount of increase or decrease of its complexity since the previous
version; (ii) the levels of complexity of individual parts of a system in relation
to other parts of the system; and (iii) the effect that a new module has on the
complexity of a system as a whole when it is added.

� Change propagation. Change propagation activities ensure that a change made
in one component is propagated properly throughout the entire system [69–71].
Misunderstanding, lack of experience, and unexpected dependencies are some
reasons for failing to propagate changes throughout the development and main-
tenance cycles of source code. If a change is not propagated correctly, the project
risks the introduction of new interface defects [72].

1.6 REFACTORING

Refactoring means performing changes to the structure of software to make it eas-
ier to comprehend and cheaper to make subsequent changes without changing the
observable behavior of the system. A similar idea for non-object-oriented systems
is called restructuring. Refactoring is achieved through removal of duplicate code,
simplification of code, and moving code to a different class, among others. With-
out continual refactoring, the internal structure of software will eventually deform
beyond comprehension, due to periodic maintenance. Therefore, regular refactoring
helps the system to retain its basic structure [73]. In an agile software methodology,
such as eXtreme Programming (XP), refactoring is continuously applied to: (i) make
the architecture of the software stable; (ii) render the code readable; and (iii) make
the tasks of integrating new functionalities into the system flexible.

An important characteristic of refactoring is that it must preserve the “observ-
able behavior” of the system. Preservation of the observable behavior is verified
by ensuring that all the tests passing before refactoring must pass after refactoring.
Regression testing is used to ensure that the system did not deviate from the original



JWST502-c01 JWST502-Tripathy September 5, 2014 6:33 Printer Name: Trim: 6.125in × 9.25in

14 BASIC CONCEPTS AND PRELIMINARIES

system during refactoring. Refactoring does not normally involve code transforma-
tion to implement new requirements. Rather, it can be performed without adding new
requirements to the existing system. Another aspect of refactoring is to enhance the
internal structure of the system. In addition, the concept of program restructuring can
be applied to transform legacy code into a more structured form and migrate it to a
different programming language. That is, restructuring and refactoring can be used
to reengineer software systems.

Refactoring techniques put emphasis on the development of a list of basic refac-
torings, which can be combined to form complex refactorings [74, 75]. The original
list of basic refactorings contained transformations on object-oriented code: (i) add
a class, method, or attribute; (ii) rename a class, method, or attribute; (iii) move an
attribute or method up or down the hierarchy; (iv) remove a class, method, or attribute;
and (v) extract chunks of code into separate methods. Most complex refactoring sce-
narios require small code changes for the refactorings to work correctly. Primitive
refactorings are rarely used in isolation.

1.7 PROGRAM COMPREHENSION

The purpose of program comprehension is to understand an existing software system
for planning, designing, coding, and testing changes. T. A. Corbi [76] observed in
1989 that program comprehension accounts for 50% of the total effort expended
throughout the life cycle of a software system. Therefore, good understanding of the
software is key to raising its quality by means of maintenance at a lower cost. In terms
of concrete activities, program comprehension involves building mental models of an
underlying system at different levels of abstractions, varying from low-level models of
the code to very high-level models of the underlying application domain [77]. Mental
models have been studied by cognitive scientists to understand how human beings
know, perceive, make decisions, and construct behavior in a real world [78, 79]. In
the domain of program comprehension, a mental model describes a programmer’s
mental representation of the program to be comprehended.

Program comprehension involves constructing a mental model of the program by
applying various cognitive processes. A key step in developing mental models is
generating hypotheses, or conjectures, and investigating their validity. Hypotheses
are a way for a programmer to understand code in an incremental manner. After
some understanding of the code, the programmer forms a hypothesis and verifies it
by reading code. Verification of hypothesis results in either accepting the hypothesis
or rejecting it. Sometimes, a hypothesis may not be completely correct because of
incomplete understanding of code by the programmer. By continuously formulating
new hypotheses and verifying them, the programmer understands more and more
code and in increasing details.

One can apply several strategies to arrive at meaningful hypotheses, such as
bottom–up, top–down, and opportunistic combinations of the two. A bottom–up
strategy works by beginning with the code, whereas a top–down strategy operates



JWST502-c01 JWST502-Tripathy September 5, 2014 6:33 Printer Name: Trim: 6.125in × 9.25in

SOFTWARE REUSE 15

by working from a high-level goal. A strategy is formulated by identifying actions
to achieve a goal. Strategies guide two mechanisms, namely, chunking and cross-
referencing to produce higher-level abstraction structures. Chunking creates new,
higher-level abstraction structures from lower-level structures. Cross-referencing
means being able to make links between elements of different abstraction levels. This
helps in building a mental model of the program under study at different levels of
abstractions. In general, understanding a program involves a knowledge base, which
represents the expertise and background knowledge a programmer brings to the table,
a mental model, and an assimilation process [80]. The assimilation process guides
the programmer to look at certain pieces of information, such as a code segment or
a comment, and move forward/backward while reading the code. The assimilation
process can work in three ways: top–down, bottom–up, and opportunistic.

1.8 SOFTWARE REUSE

The 1968 NATO (North Atlantic Treaty Organization) conference on software engi-
neering is viewed to have germinated the ever growing field of software engineering
[81]. The conference focused on software crises—the problem of building large, reli-
able software systems in a controlled way. In that conference, the term software crisis
was coined for the first time. Even in the first forum on software systems, software
reuse was pronounced as a means for tackling software crisis. The idea of software
reuse was first introduced by Dough McIlroy in a seminal paper [82] in 1968. He
proposed to realize reuse by means of library components and automated ways for
customizing components to varying degrees of robustness and precision.

Other significant early reuse research developments include David Parnas’s idea
of program families [83] and Jim Neighbors’ introduction of the concepts of domain
analysis [84]. A program family is a set of programs whose common properties are
so extensive that it becomes advantageous to study the common properties of these
programs before analyzing individual differences. On the other hand, domain analysis
is an activity of identifying objects and operations of a class of similar systems in a
particular problem domain.

Simply stated, software reuse means using existing software knowledge or artifacts
during the development of a new system. Reusable assets can include both artifacts
and software knowledge. Note that reuse is not constrained to source code fragments.
Rather, Capers Jones identified four broad types of artifacts for reuse [85]:

� Data reuse. This involves a standardization of data formats. Reusable func-
tions imply a standard data interchange format. Therefore, one of the critical
precursors to full reusable software is that of reusable data.

� Architectural reuse. This consists of standardizing a set of design and program-
ming conventions dealing with the logical organization of software. The goal is
to define a complete set of functional elements which will be needed to create
new systems from standard components.



JWST502-c01 JWST502-Tripathy September 5, 2014 6:33 Printer Name: Trim: 6.125in × 9.25in

16 BASIC CONCEPTS AND PRELIMINARIES

� Design reuse. This deals with the reuse of abstract designs that do not include
implementation details. These are then implemented specifically to fit the appli-
cation requirements.

� Program reuse. This deals with reusing running code. The software units that
are reused may be of different sizes. The whole of software system may be
reused by incorporating it without change into other system (COTS product
reuse).

Reusability is a property of software assets, which indicates the degree to which
the software can be reused. For a software component to be reusable, it must exhibit
the following characteristics: high cohesion, low coupling, adaptability, understand-
ability, reliability, and portability. Those characteristics encourage the component’s
reuse in similar situations. There are two advantages of reusing previously written
code [86–88]:

� Better quality. If previously tested modules are reused in a new software project,
the reused modules are likely to have less faults than new modules. This reduces
the overall failure rate of the new software.

� Increased productivity. Organizations can save time and other resources by
reusing operational modules, thereby increasing their overall productivity. How-
ever, the quantum of increase depends upon the size and complexity of the com-
ponents being reused and the overall size and complexity of the new software
which reuses those components. The development cost of any software project
is only about 40% of the total cost over its entire life cycle [89]. Significant
maintenance benefit also results from reusing quality software. The empirical
study conducted by Stephen R. Schach shows that the cost savings during main-
tenance, as a consequence of reuse, are nearly twice the corresponding savings
during development [90].

1.9 OUTLINE OF THE BOOK

Having given the aforementioned brief introduction to software evolution and main-
tenance, now we provide an outline of the remaining chapters. Each chapter focuses
on a specific topic in software evolution and maintenance, and it explains the topic
by covering the technical, process, model, and/or practical aspects of the topic. Con-
sequently, the reader gains a broad understanding of the main concepts in software
evolution and maintenance.

In Chapter 2 we explain three major maintenance classification schemes based
on intention, activity, and evidence. Then we describe Lehman’s classification of
properties of closed source software (CSS) of type S (Specified), P (Problem),
and E (Evolving). The eight laws of software evolution for the E-type CSS sys-
tem including empirical studies and its practical implications have been introduced.
We discuss the origin of FOSS movement and the differences between CSS and



JWST502-c01 JWST502-Tripathy September 5, 2014 6:33 Printer Name: Trim: 6.125in × 9.25in

OUTLINE OF THE BOOK 17

FOSS systems with respect to: (i) team structure; (ii) processes; (iii) releases; and
(iv) global factors. In addition, we discuss the empirical research results about the
Linux FOSS system to study the laws of evolution, originally proposed for CSS sys-
tems. We conclude this chapter with a brief discussion on maintenance of component
off-the-shelf-based systems.

Chapter 3 introduces three types of evolution models, namely, reuse-oriented,
staged, and change mini-cycle. Next, we discuss the IEEE/EIA 1219 and the ISO
IEC 14764 maintenance processes. We explain a framework to make a plan for SCM
to control software evolution processes. We close this chapter with a presentation of
a state transition model to track the individual change requests as those flow through
the organization.

Chapter 4 introduces the concepts of software reengineering based on three basic
principles: abstraction, refinement, and alteration. We discuss five basic reengineer-
ing approaches: big bang, incremental, partial, iterative, and evolutionary. Next, we
discuss two specific models for software reengineering: source code reengineering
reference model and phase reengineering model. With the reengineering approaches
and models in place, we introduce the concepts and objectives of reverse engineer-
ing with an introduction to the Goals/Models/Tools paradigm that divides a process
for reverse engineering into three successive phases: Goals, Models, and Tools. In
addition, we examine some low-level reverse engineering tasks such as decompilers
and disassemblers. DRE for data-oriented applications is explained toward the end
of the chapter.

Chapter 5 identifies the problems an organization faces in dealing with legacy
information systems and discusses six viable solutions to the problems: freeze, out
source, carry on, discard and redevelop, wrap, and migrate. We study four types of
wrapping techniques in detail: database wrapper, system service wrapper, application
wrapper, and function wrapper. In addition, we discuss five different levels of encap-
sulations: process level, transaction level, program level, module level, and procedural
level. Next, we focus our attention on migration of information systems. First we dis-
cuss the migration issues, followed by 13 steps for migration planning to minimize
the risk of modernization effort. We discuss seven available migration approaches:
Cold Turkey, Database First, Database Last, Composite Database, Chicken Little,
Butterfly, and Iterative.

Chapter 6 presents the fundamentals of impact analysis, including the related
concepts of ripple effect and change propagation. The reader learns the strengths
and limitations of impact analysis techniques. We have selected topics to provide a
foundation for enduring value of impact analysis and change propagation.

In Chapter 7, we introduce to the reader different refactoring activities. Different
formalisms and techniques to support these activities have been discussed. In addition,
we discuss the initial work on software restructuring, such as elimination-of-goto,
system sandwich, localization and information hiding, and clustering approaches.

Chapter 8 considers the issues and solutions that underpin program understanding
during maintenance. We discuss different models proposed by different researchers.
In addition, the concept of protocol analysis is introduced to the readers. The chapter
ends with a brief discussion of visualization for software comprehension.



JWST502-c01 JWST502-Tripathy September 5, 2014 6:33 Printer Name: Trim: 6.125in × 9.25in

18 BASIC CONCEPTS AND PRELIMINARIES

In Chapter 9, we introduce the readers to reuse and domain engineering. Software
reuse has the potential to reduce the maintenance cost more than development cost of
software projects. We present a taxonomy of reuse, followed by a detailed description
of domain and application engineering concepts, including real domain engineering
approaches: DARE, FAST, and Koala. Finally, we discuss maturity and cost models
associated with reuse.

In the glossary section we have defined all the keywords that have been used in
the book. The reader will find about 10 practice questions at the end of each chapter.
A carefully chosen list of references is given at the end of each chapter for those
who are more curious about the details of some of the topics. Finally, each of the
following chapters contains a section on further reading. The further reading section
provides pointers to more advanced materials concerning the topics of the chapter.

REFERENCES

[1] M. I. Halpern. 1965. Machine independence: its technology and economics. Communi-
cations of the ACM, 8(12), 782–785.

[2] L. A. Belady and M. M. Lehman. 1976. A model of large program development. IBM
Systems Journal, 15(1), 225–252.

[3] M. M. Lehman. 1980. Programs, life cycles, and laws of software evolution. Proceedings
of the IEEE, September, 1060–1076.

[4] R. G. Canning. 1972. The maintenance “iceberg”. EDP Analyzer, 10(10), 1–14.

[5] E. B. Swanson. 1976. The Dimensions of Maintenance. Proceedings of the 2nd Interna-
tional Conference on Software Engineering (ICSE), October 1976, San Francisco, CA.
IEEE Computer Society Press, Los Alamitos, CA. pp. 492–497.

[6] N. Chapin, J. F. Hale, K. M. Khan, J. F. Ramil, and W. G. Tan. 2001. Types of software
evolution and software maintenance. Journal of Software Maintenance and Evolution:
Research and Practice, 13, 3–30.

[7] K. H. Bennett and V. T. Rajlich. 2000, Software Maintenance and Evolution: A Roadmap.
ICSE, The Future of Software Engineering, June 2000, Limerick, Ireland. ACM, New
York. pp. 73–87.

[8] L. J. Arthur. 1988. Software Evolution: The Software Maintenance Challenge. John Wiley
& Sons.

[9] K. H. Bennett and J. Xu. 2003. Software Services and Software Maintenance. Proceedings
of the 7th European Conference on Software Maintenance and Reengineering, March
2003, Benevento, Italy. IEEE Computer Society Press, Los Alamitos, CA. pp. 3–12.

[10] M. W. Godfrey and D. M. German. 2008. The Past, Present, and Future of Software
Evolution. Proceedings of the 2008 Frontiers of Software Maintenance (FoSM), October
2008, Beijing, China. IEEE Computer Society Press, Los Alamitos, CA. pp. 129–138.

[11] D. L. Parnas. 1994. Software Aging. Proceedings of 16th International Conference on
Software Engineering, May 1994, Sorrento, Italy. IEEE Computer Society Press, Los
Alamitos, CA. pp. 279–287.

[12] M. Jazayeri. 2005. Species Evolve, Individuals Age. Proceedings of 8th International
Workshop on Principles of Software Evolution (IWPSE), September 2005, Lisbon,
Portugal. IEEE Computer Society Press, Los Alamitos, CA. pp. 3–9.



JWST502-c01 JWST502-Tripathy September 5, 2014 6:33 Printer Name: Trim: 6.125in × 9.25in

REFERENCES 19

[13] P. Stachour and D. C. Brown. 2009. You don’t know jack about software maintenance.
Communications of the ACM, 52(11), 54–58.

[14] M. M. Lehman, D. E. Perry, and J. F. Ramil. 1998. On Evidence Supporting the Feast
Hypothesis and the Laws of Software Evolution. Proceedings of the 5th International
Software Metrics Symposium (Metrics), November 1998. IEEE Computer Society Press,
Los Alamitos, CA. pp. 84–88.

[15] M. M. Lehman and J. F. Ramil. 2006. Software evolution. In: Software Evolution and
Feedback (Eds N. H. Madhavvji, J. F. Ramil, and D. Perry). John Wiley, West Sussex,
England.

[16] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M. Turski. 1997. Metrics
and Laws of Software Evolution—The Nineties View. Proceedings of the 4th International
Symposium on Software Metrics (Metrics 97), November 1997. IEEE Computer Society
Press, Los Alamitos, CA, pp. 20–32.

[17] S. S. Pirzada. 1988. A statistical examination of the evolution of the Unix system. PhD
Thesis, Department of Computing, Imperical College, London, England.

[18] M. M. Lehman and L. A. Belady. 1985. Program Evolution: Processess of Software
Change. Academic Press, London.

[19] M. W. Godfrey and Q. Tu. 2000. Evolution in Open Source Software: A Case Study.
Proceedings of the International Conference on Software Maintenance, October 2000.
IEEE Computer Society Press, Los Alamitos, CA, pp. 131–142.

[20] G. Robles, J. J. Amor, J. M. Gonzalez-Barahona, and I. Herraiz. 2005. Evolution and
Growth in Large Libre Software Projects. Proceedings of the 8th International Workshop
on Principles of Software Evolution (IWPSE), September 2005, Lisbon, Portugal. IEEE
Computer Society Press, Los Alamitos, CA. pp. 165–174.

[21] ISO/IEC 14764:2006 and IEEE Std 14764-2006. 2006. Software Engineering–Software
Life Cycle Processes–Maintenance. Geneva, Switzerland.

[22] B. A. Kitchenham, G. H. Travassos, A. N. Mayrhauser, F. Niessink, N. F. Schneidewind, J.
Singer, S. Takada, R. Vehvilainen, and H. Yang. 1999. Towards an ontologyy of software
maintenance. Journal of Software Maintenance and Evolution: Research and Practice,
11, 365–389.

[23] G. Ramesh and R. Bhattiprolu. 2006. Software Maintenance. Tata McGraw-Hill, New
Delhi.

[24] M. Vigder and A. Kark. 2006. Maintaining Cots-Based Systems: Start with Design.
Proceedings of the 5th International Conference on Commercial-Off-The-Shelf (COTS)-
Based Software Systems, February 2006, Orlando, Florida. IEEE Computer Society
Press, Los Alamitos, CA. pp. 11–18.

[25] D. Hybertson, A. Ta, and W. Thomas. 1997. Maintenance of cots-intensive software
systems. Journal of Software Maintenance and Evolution: Research and Practice, 9,
203–216.

[26] W. W. Royce. 1970. Managing the Development of Large Software System: Concepts
and Techniques. Proceeding of IEEE WESCON, August 1970, pp. 1–9, Republished in
ICSE, Monterey, CA, 1987, pp. 328–338.

[27] N. Schneidewind. 1987. The state of software maintenance. IEEE Transactions on Soft-
ware Engineering, March, 303–309.

[28] N. Chapin. 1988. Software Maintenance Life Cycle. Proceedings of the International
Conference on Software Maintenance (ICSM), October 1988, Phoenix, Arizona. IEEE
Computer Society Press, Los Alamitos, CA, pp. 6–13.



JWST502-c01 JWST502-Tripathy September 5, 2014 6:33 Printer Name: Trim: 6.125in × 9.25in

20 BASIC CONCEPTS AND PRELIMINARIES

[29] W. K. Sharpley. 1977. Software Maintenance Planning for Embedded Computer Systems.
Proceedings of the IEEE COMPSAC, November 1977, IEEE Computer Society Press,
Los Alamitos, CA, pp. 520–526.

[30] G. Parikh. 1982. The world of software manitenance. In: Techniques of Program and
System Maintenance (Ed. G. Parikh), pp. 9-13. Little, Brown and Company, Boston,
MA.

[31] J. Martin and C. L. McClure. 1983. Software Maintenance: The Problem and Its Solution.
Prentice-Hall, Englewood Cliffs, NJ.

[32] S. Chen, K. G. Heisler, W. T. Tsai, X. Chen, and E. Leung. 1990. A model for assembly
program maintenance. Journal of Software Maintenance: Research and Practice, March,
pp. 3–32.

[33] D. R. Harjani and J. P. Queille. 1992. A Process Model for the Maintenance of Large Space
Systems Software. Proceedings of the International Conference on Software Maintenance
(ICSM), November 1992, Orlando, FL. IEEE Computer Society Press, Los Alamitos,
CA. pp. 127–136.

[34] S. S. Yau, R. A. Nicholi, J. Tsai, and S. Liu. 1988. An integrated life-cycle model for
software maintenance. IEEE Transactions on Software Engineering, August, pp. 1128–
1144.

[35] S. S. Yau and I. S. Collofello. 1980. Some stability measures for software maintenance.
IEEE Transactions on Software Engineering, November, pp. 545–552.

[36] S. S. Yau, J. S. Collofello, and T. MacGregor. 1978. Ripple Effect Analysis of Software
Maintenance. COMPSAC, Chicago, Illinois. IEEE Computer Society Press, Piscataway,
NJ. pp. 60–65.

[37] B. W. Boehm. 1988. A spiral model of software development and maintenance. IEEE
Computer, May, pp. 61–72.

[38] V. R. Basili. 1990. Viewing maintenance as reuse-oriented software development. IEEE
Software, January, pp. 19–25.

[39] R. G. Martin. 2002. Agile Software Development: Principles, Patterns, and Practices.
Prentice-Hall.

[40] T. Gilb. 1988. Principles of Software Engineering Management. Addison-Wesley, Read-
ing, MA.

[41] T. Mens. 2008. Introduction and roadmap: history and challenges of software evolution.
In: Software Evolution (Eds. T. Mens and S. Demeyer). Springer Verlag, Berlin.

[42] V. T. Rajlich and K. H. Bennett. 2000. A staged model for the software life cycle. IEEE
Computer, July, pp. 2–8.

[43] ISO/IEC 12207:2006 and IEEE Std 12207-2006. 2008. System and Software
Engineering–Software Life Cycle Processes. Geneva, Switzerland.

[44] IEEE Standard 1219-1998. 1998. Standard for Software Maintenance. IEEE Computer
Society Press, Los Alamitos, CA.

[45] IEEE Std 1042-1987. 1988. IEEE Guide to Software Configuration Management. IEEE,
Inc., New York, NY.

[46] K. Narayanaswamy and W. Scacchi. 1987. Maintaining configuration of evolving soft-
ware systems. IEEE Transactions of Software Engineering, March, 13(3), 324–334.

[47] D. Leblang. 1994. The CM challenge: configuration management that works. In: Config-
uration Management, Chapter 1 (Ed. W. F. Tichy). John Wiley, Chichester.



JWST502-c01 JWST502-Tripathy September 5, 2014 6:33 Printer Name: Trim: 6.125in × 9.25in

REFERENCES 21

[48] H. Yang and M. Ward. 2003. Successful Evolution of Software Systems. Artech House,
Boston, MA.

[49] E. J. Chikofsky and J. H. Cross II. 1990. Reverse engineering and design recovery. IEEE
Software, January, pp. 13–17.

[50] I. Jacobson and F. Lindstrȯm. 1991. Re-engineering of Old Systems to an Object-
oriented Architecture. Proceedings of the ACM Conference on Object Oriented Program-
ming Systems Languages and Applications, October 1991. ACM Press, New York, NY,
pp. 340–350.

[51] P. Benedusi, A. Cimitile, and U. De Carlini. 1992. Reverse engineering processes, design
document production, and structure charts. Journal of Systems Software, 19, 225–245.

[52] P. Aiken. 1996. Data Reverse Engineering: Staying the Legacy Dragon. McGraw-Hill,
Boston, New York, NY.

[53] K. H. Bennett. 1995. Legacy systems: coping with success. IEEE Software, January,
pp. 19–23.

[54] M. Brodie and M. Stonebraker. 1995. Migrating Legacy Systems. Morgan Kaufmann,
San Mateo, CA.

[55] A. Cimitile, H. Mu̇ller, and R. Klosch (Eds.) 1997. Pulling Together. Proceedings of the
International Conference on Software Engineering, Workshop on Migration Strategies
for Legacy Systems, Available as Technical Report TUV-1841-97-06 from Technical
University University of Vienna, Vienna, Austria.

[56] K. Bennett, M. Ramage, and M. Munro. 1999. Decision Model for Legacy Systems. IEEE
Proceedings on Software, June, pp. 153–159.

[57] W. C. Dietrich Jr., L. R. Nackman, and F. Gracer. 1989. Saving a legacy with objects.
Proceedings of the 1989 ACM OOPSLA Conference on Object-Oriented Programming,
24(10), 77–83. ACM SIGPLAN Notices, ACM, New York, NY.

[58] H. M. Sneed. 1996. Encapsulating Legacy Software for Use in Client/Server Systems. 3rd
Working Conference on Reverse Engineering, Washington, DC. IEEE Computer Society
Press, Los Alamitos, CA. pp. 104–119.

[59] S. Comella-Dorda, K. Wallnau, R. C. Seacord, and J. Robert. 2000. A Survey of Black-box
Modernization Approaches for Information Systems. Proceedings of the International
Conference on Software Maintenance, October, 2000, San Jose, CA. IEEE Computer
Society Press, Los Alamitos, CA. pp. 173–183.

[60] F. P. Coyle. 2000. Legacy integration—changing perpectives. IEEE Software, March/
April, 37–41.

[61] H. M. Sneed. 1995. Planning the reengineeirng of legacy systems. IEEE Software,
January, pp. 24–34.

[62] J. Bisbal, D. Lawless, B. Wu, J. Grimson, V. Wade, R. Richardson, and D. O’Sullivan.
1997. A survey of research into legacy system migration. Technical Report TCD-CS-
1997-01, Computer Science Department, Trinity College, Dublin, January, pp. 39.

[63] M. Battaglia, G. Savoia, and J. Favaro. 1998. Renaissance: A Method to Migrate from
Legacy to Immortal Software Systems. Proceedings of Second Euromicro Conference on
Software Maintenance and Reengineering, 1998, Florence, Italy. IEEE Computer Society
Press, Los Alamitos, CA. pp. 197–200.

[64] A. Bianchi, D. Caivano, V. Marengo, and G. Visaggio. 2003. Iterative reengineering of
legacy systems. IEEE Transactions on Software Engineering, March, 225–241.



JWST502-c01 JWST502-Tripathy September 5, 2014 6:33 Printer Name: Trim: 6.125in × 9.25in

22 BASIC CONCEPTS AND PRELIMINARIES

[65] S. A. Bohner and R. S. Arnold. 1996. An introduction to software change impact analysis.
In: Software Change Impact Analysis (Eds. S. A. Bohner and R. S. Arnold). IEEE
Computer Society Press, Los Alamitos, CA.

[66] A. Podgurski and L. Clrke. 1990. A formal model of program dependencies and its
implications for software testing, debugging, and maintenance. IEEE Transactions of
Software Engineering, September, 16(9), 965–979.

[67] M. J. Harrold and B. Malloy. 1993. A unified interprocedural program representation for
maintenance environment. IEEE Transactions of Software Engineering, 19(6), 584–593.

[68] S. Black. 2008. Deriving an approximation algorithm for automatic computation of ripple
effect measures. Information and Software Technology, 50, 723–736.

[69] V. Rajlich. 1997. A Model for Change Propagation Based on Graph Rewriting. Proceed-
ings of the International Conference on Software Maintenance (ICSM), October 1997,
Bari, Italy. IEEE Computer Society Press, Los Alamitos, CA. pp. 84–91.

[70] A. E. Hassan and R. C. Holt. 2004. Predicting Change Propagation in Software Systems.
Proceedings of the International Conference on Software Maintenance (ICSM), October
2004, Chicago, USA. IEEE Computer Society Press, Los Alamitos, CA. pp. 284–293.

[71] N. Ibrahim, W. M. N. Kadir, and S. Deris. 2008. Comparative Evaluation of Change
Propagation Approaches Towards Resilient Software Evolution. Proceedings of the Third
International Conference on Software Engineering Advances, pp. 198–204.

[72] D. E. Perry and W. M. Evangelist. 1987. An Empirical Study of Software Interface Faults—
An Update. Proceedings of the Twentieth Annual Hawaii International Conference on
Systems Sciences, January 1987, Volume II, pp. 113–126.

[73] M. Fowler. 1999. Refactoring: Improving the Design of Existing Programs. Addison-
Wesley.

[74] W. F. Opdyke. 1992. Refactoring: A program restructuring aid in designing object-
oriented application framework. PhD thesis, University of Illinois at Urbana-Champaign.

[75] S. Demeyer. 2008. Object-oriented reengineering. In: Software Evolution (Eds. T. Mens
and S. Demeyer). Springer Verlag, Berlin.

[76] T. A. Corbi. 1989. Program understanding: challenge for the 1990s. IBM Systems Journal,
28(2), pp. 294–306.

[77] H. A. Mu̇ller. 1996. Understanding Software Systems Using Reverse Engineering Tech-
nologies: Research and Practice. Department of Computer Science, University of
Victoria. Available at http://www.rigi.csc.uvic.ca/uvicrevtut/uvicrevtut.html.

[78] P. N. Johnson-laird. 1983. Mental Model. Harvard University Press, Cambridge, MA.

[79] K. J. W. Craik. 1943. The Nature of Explanation. Cambridge University Press,
Cambridge, UK.

[80] S. Letovsky. 1986. Cognitive Processes in Program Comprehension. Proceedings of the
First Workshop in Empirical Studies of Programmers, pp. 58–79.

[81] P. Nauer, B. Randell, and J. N. Buxton (Eds). 1969. Software engineering. Report on
a Conference by the NATO Science Committee, NOATO Scientific Affairs Division,
Brussels, Belgium, Available through Petrocelli-Charter, New York.

[82] M. D. McIlroy. 1969. Mass Produced Software Components. Proceedings of Software
Engineering Concepts and Techniques, 1968 NATO Conference on Software Engineer-
ing (Eds. P. Naur, B. Randell, and J. N. Buxton ), pp. 138–155. Petrocelli-Charter,
New York, NY.



JWST502-c01 JWST502-Tripathy September 5, 2014 6:33 Printer Name: Trim: 6.125in × 9.25in

EXERCISES 23

[83] D. L. Parnas. 1976. On the design and development of program families. IEEE Transac-
tions of Software Engineering, 2(1), 1–9.

[84] J. M. Neighbors. 1980. Software construction using components. Technical Report 160,
Department of Information and Computer Sciences, University of California, Irvine.

[85] T. C. Jones. 1984. Reusability in programming: a survey of the state of the art. IEEE
Transactions of Software Engineering, 10(5), 488–494.

[86] J. E. Gaffney and T. A. Durek. 1989. Software reuse - key to enhanced productivity:
some quantitative models. Information and Software Technology, 31(5), 258–267.

[87] R. D. Banker and R. J. Kauffman. 1991. Reuse and productivity in integrated computer-
aided software engineering: an emprical study. MIS Quarterly, 15(3), 374–401.

[88] V. R. Basili, L. C. Brand, and W. L. Melo. 1996. Machine independence: Its technology
and economics. Communications of the ACM, 39(10), pp. 104–116.

[89] Gartner Group Inc. 1991. Software engineering strategies. Strategic Analysis Report,
Stamford, CT, April.

[90] S. R. Schach. 1994. The economic impact of software reuse on maintenance. Jour-
nal of Software Maintenance and Evolution: Research and Practice, July/August, 6(4),
pp. 185–196.

EXERCISES

1. Discuss the differences between software evolution and software maintenance.

2. Explain why a software system which is used in a real-world environment must
be changed to not become progressively less useful.

3. What are some characteristics of maintaining software as opposed to new soft-
ware systems?

4. You are asked to make a change to a system that leaves its functional specification
unchanged but affects the design and source code of the system. This can be any
of the four types of maintenance mentioned earlier except one. Identify the
exception and justify your answer.

(a) Corrective maintenance

(b) Adaptive maintenance

(c) Perfective maintenance

(d) Preventive maintenance

5. Discuss the major differences between COTS-based software development and
traditional in-house software development activities.

6. One of the key sources of risks in COTS-based development is the reliance on
one or more third-party software vendors. However, this dependence can also
present new challenges for the evolution of such systems. Which of the following
evolution challenges can be directly attributed to reliance on the vendor?

(a) Lack of control over when errors in components are fixed.



JWST502-c01 JWST502-Tripathy September 5, 2014 6:33 Printer Name: Trim: 6.125in × 9.25in

24 BASIC CONCEPTS AND PRELIMINARIES

(b) Number and complexity of inter-component interfaces.

(c) Diversity of inter-component interfaces.

(d) Lack of experience and tools for evolving COTS-based systems.

7. What are the objectives of SCM?

8. A feature of any complex change to an existing software system is that it is likely
to introduce new defects, even if the aim of the change is to remove defects. When
considering whether or not to implement a change request, should this feature
be considered as a cost, benefit, or risk associated with the change request?

9. System A is a mission critical legacy system that captures and stores detailed data
on product sales. Data from system A must be regularly extracted and loaded into
a new system (B), which is to be used to help managers understand the changes
in sales patterns from week to week. Initial estimates suggest that the data for
1 week can be extracted and transformed in around 3 hours. What migration
frequency would you choose for this new application?

(a) Migrate on update.

(b) Migrate daily, every evening at 2.00 a.m.

(c) Migrate weekly, every Sunday evening at 2.00 a.m.

(d) Migrate monthly, on the last Sunday of every month at 2.00 a.m.

10. What are some of the risks of not doing an impact analysis before effecting a
change?

11. What actions can be taken to minimize the impact of fixing defects?

12. What problems do maintainers face when rewriting or reengineering a piece of
code? What are the causes of those problems?

13. Explain the term hypotheses in the context of program understanding.

14. What benefits can be derived from reusing software?


