
C H A P T E R 1

The Challenges of Dynamic
Programming

The optimization of problems over time arises in many settings, ranging from the
control of heating systems to managing entire economies. In between are examples
including landing aircraft, purchasing new equipment, managing blood inventories,
scheduling fleets of vehicles, selling assets, investing money in portfolios, and just
playing a game of tic-tac-toe or backgammon. These problems involve making
decisions, then observing information, after which we make more decisions, and
then more information, and so on. Known as sequential decision problems , they
can be straightforward (if subtle) to formulate, but solving them is another matter.

Dynamic programming has its roots in several fields. Engineering and economics
tend to focus on problems with continuous states and decisions (these communities
refer to decisions as controls), which might be quantities such as location, speed,
and temperature. By contrast, the fields of operations research and artificial intel-
ligence work primarily with discrete states and decisions (or actions). Problems
that are modeled with continuous states and decisions (and typically in continuous
time) are often addressed under the umbrella of “control theory,” whereas problems
with discrete states and decisions, modeled in discrete time, are studied at length
under the umbrella of “Markov decision processes.” Both of these subfields set up
recursive equations that depend on the use of a state variable to capture history in a
compact way. There are many high-dimensional problems such as those involving
the allocation of resources that are generally studied using the tools of mathemati-
cal programming. Most of this work focuses on deterministic problems using tools
such as linear, nonlinear, or integer programming, but there is a subfield known as
stochastic programming that incorporates uncertainty. Our presentation spans all of
these fields.

Approximate Dynamic Programming: Solving the Curses of Dimensionality, Second Edition.
Warren B. Powell.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

1

CO
PYRIG

HTED
 M

ATERIA
L

2 the challenges of dynamic programming

q r

1

3

2

17

10

14

53

15

8

Figure 1.1 Illustration of a shortest path problem from origin q to destination r .

1.1 A DYNAMIC PROGRAMMING EXAMPLE:
A SHORTEST PATH PROBLEM

Perhaps one of the best-known applications of dynamic programming is that faced
by a driver choosing a path in a transportation network. For simplicity (and this is
a real simplification for this application), we assume that the driver has to decide
at each node (or intersection) which link to traverse next (we are not going to get
into the challenges of left turns versus right turns). Let I be the set of intersections.
If the driver is at intersection i , he can go to a subset of intersections I+

i at a cost
cij . He starts at the origin node q ∈ I and has to find his way to the destination
node r ∈ I at the least cost. An illustration is shown in Figure 1.1.

The problem can be easily solved using dynamic programming. Let

vi = Cost to get from intersection i ∈ I to the destination node r.

We assume that vr = 0. Initially we do not know vi , and so we start by setting
vi = M , where “M ” is known as “big M” and represents a large number. We can
solve the problem by iteratively computing

vi ← min

{
vi, min

j∈I+
{cij + vj }

}
for all i ∈ I. (1.1)

Equation (1.1) has to be solved iteratively, where at each iteration, we loop over all
the nodes i in the network. We stop when none of the values vi change. It should
be noted that this is not a very efficient way of solving a shortest path problem.
For example, in the early iterations it may well be the case that vj = M for all
j ∈ I+. However, we use the method to illustrate dynamic programming.

Table 1.1 illustrates the algorithm, assuming that we always traverse the nodes
in the order (q , 1, 2, 3, r). Note that we handle node 2 before node 3, which is the
reason why, even in the first pass, we learn that the path cost from node 3 to node
r is 15 (rather than 17). We are done after iteration 3, but we require iteration 4 to
verify that nothing has changed.

Shortest path problems arise in a variety of settings that have nothing to do with
transportation or networks. Consider, for example, the challenge faced by a college

the three curses of dimensionality 3

Table 1.1 Path cost from each node to node r after each node has been visited

Cost from Node

Iteration q 1 2 3 r

100 100 100 100 0
1 100 100 10 15 0
2 30 18 10 15 0
3 26 18 10 15 0
4 26 18 10 15 0

freshman trying to plan her schedule up to graduation. By graduation, she must take
32 courses overall, including eight departmentals, two math courses, one science
course, and two language courses. We can describe the state of her academic
program in terms of how many courses she has taken under each of these five
categories. Let Stc be the number of courses she has taken by the end of semester
t in category c = {Total courses, Departmentals, Math, Science, Language}, and
let St = (Stc)c be the state vector. Based on this state, she has to decide which
courses to take in the next semester. To graduate, she has to reach the state S8 =
(32, 8, 2, 1, 2). We assume that she has a measurable desirability for each course
she takes, and that she would like to maximize the total desirability of all her
courses.

The problem can be viewed as a shortest path problem from the state S0 =
(0, 0, 0, 0, 0) to S8 = (32, 8, 2, 1, 2). Let St be her current state at the beginning
of semester t , and let at represent the decisions she makes while determining what
courses to take. We then assume we have access to a transition function SM(St , at),
which tells us that if she is in state St and takes action at , she will land in state
St+1, which we represent by simply using

St+1 = SM(St , at).

In our transportation problem, we would have St = i if we are at intersection i ,
and at would be the decision to “go to j ,” leaving us in the state St+1 = j .

Finally, let Ct(St , at) be the contribution or reward she generates from being
in state St and taking the action at . The value of being in state St is defined by the
equation

Vt (St) = max
xt

{Ct(St , at) + Vt+1(St+1)} ∀st ∈ St ,

where St+1 = SM(St , at) and where St is the set of all possible (discrete) states
that she can be in at the beginning of the year.

1.2 THE THREE CURSES OF DIMENSIONALITY

All dynamic programs can be written in terms of a recursion that relates the value
of being in a particular state at one point in time to the value of the states that we

4 the challenges of dynamic programming

are carried into at the next point in time. For deterministic problems this equation
can be written

Vt (St) = max
at

(
Ct(St , at) + Vt+1(St+1)

)
. (1.2)

where St+1 is the state we transition to if we are currently in state St and take
action at . Equation (1.2) is known as Bellman’s equation, or the Hamilton–Jacobi
equation, or increasingly, the Hamilton–Jacobi–Bellman equation (HJB for short).
Some textbooks (in control theory) refer to them as the “functional equation” of
dynamic programming (or the “recurrence equation”). We primarily use the term
“optimality equation” in our presentation, but often use the term “Bellman equation”
because this is so widely used in the dynamic programming community.

Most of the problems that we address in this volume involve some form of
uncertainty (prices, travel times, equipment failures, weather). For example, in a
simple inventory problem we might have St DVD players in stock. We might then
order at new DVD players, after which we satisfy a random demand D̂t+1 that
follows some probability distribution. The state variable would be described by the
transition equation

St+1 = max{0, St + at − D̂t+1}.

Assume that Ct(St , at) is the contribution we earn at time t , given by

Ct(St , at , D̂t+1) = pt min{St + at , D̂t+1} − cat .

To find the best decision, we need to maximize the contribution we receive from
at plus the expected value of the state that we end up at (which is random). That
means we need to solve

Vt (St) = max
at

E{Ct(St , at , D̂t+1) + Vt+1(St+1)|St }. (1.3)

This problem is not too hard to solve. Assume that we know Vt+1(St+1) for each
state St+1. We just have to compute (1.3) for each value of St , which then gives us
Vt (St). We can keep stepping backward in time to compute all the value functions.

For the vast majority of problems the state of the system is a vector. For example,
if we have to track the inventory of N different products, where we might have 0,
1, . . . , M −1 units of inventory of each product, then we would have MN different
states. As we can see, the size of the state space grows very quickly as the number of
dimensions grows. This is the widely known “curse of dimensionality” of dynamic
programming and is the most often-cited reason why dynamic programming cannot
be used.

In fact, there are many applications where there are three curses of dimension-
ality. Consider the problem of managing blood inventories. There are eight blood
types (AB+, AB−, A+, A−, B+, B−, O+, O−), which means we have eight
types of blood supplies and eight types of blood demands. Let Rti be the supply of
blood type i at time t (i = 1, 2, . . . , 8), and let Dti be the demand for blood type

the three curses of dimensionality 5

i at time t . Our state variable is given by St = (Rt , Dt), where Rt = (Rti)
8
i=1 (Dt

is defined similarly).
In each time period there are two types of randomness: random blood donations

and random demands. Let R̂ti be the random new donations of blood of type i in
week t , and let D̂ti be the random new demands for blood of type i in week t . We
are going to let Wt = (R̂t , D̂t) be the vector of random information (new supplies
and demands) that becomes known in week t .

Finally, let xtij be the amount of blood type i used to satisfy a demand for
blood of type j . We switch to “x” for the action because this is the standard
notation used in the field of mathematical programming for solving vector-valued
decision problems. There are rules that govern what blood types can substitute for
different demand types, shown in Figure 1.2.

We can quickly see that St and Wt have 16 dimensions each. If we have up to
100 units of blood of any type, then our state space has 10016 = 1032 states. If we
have up to 20 units of blood being donated or needed in any week, then Wt has
2016 = 6.55 × 1020 outcomes. We would need to evaluate 16 nested summations
to evaluate the expectation. Finally, xt has 27 dimensions (there are 27 feasible
substitutions of blood types for demand types). Needless to say, evaluating all
possible values of xt is completely intractable.

This problem illustrates what is, for many applications, the three curses of dimen-
sionality:

1. State space. If the state variable St = (St1, St2, . . . , Sti , . . . , StI) has I dimen-
sions, and if Sti can take on L possible values, then we might have up to LI

different states.

Figure 1.2 Different substitution possibilities between donated blood and patient types (from Cant,
2006).

6 the challenges of dynamic programming

2. Outcome space. The random variable Wt = (Wt1, Wt2, . . . , Wtj , . . . , WtJ)

might have J dimensions. If Wtj can take on M outcomes, then our outcome
space might take on up to MJ outcomes.

3. Action space. The decision vector xt = (xt1, xt2, . . . , xtk, . . . , xtK) might
have K dimensions. If xtk can take on N outcomes, then we might have
up to NK outcomes. In the language of math programming, we refer to the
action space as the feasible region , and we may assume that the vector xt is
discrete (integer) or continuous.

By the time we get to Chapter 14, we will be able to produce high-quality, imple-
mentable solutions not just to the blood problem (see Section 14.2) but for problems
that are far larger. The techniques that we are going to describe have produced pro-
duction quality solutions to plan the operations of some of the largest transportation
companies in the country. These problems require state variables with millions of
dimensions, with very complex dynamics. We will show that these same algorithms
converge to optimal solutions for special cases. For these problems we will pro-
duce solutions that are within 1 percent of optimality in a small fraction of the
time required to find the optimal solution using classical techniques. However, we
will also describe algorithms for problems with unknown convergence properties
that produce solutions of uncertain quality and with behaviors that can range from
the frustrating to the mystifying. This is a very young field.

Not all problems suffer from the three curses of dimensionality. Many problems
have small sets of actions (do we buy or sell?), easily computable expectations (did
a customer arrive or not?), and small state spaces (the nodes of a network). The
field of dynamic programming has identified many problems, some with genuine
industrial applications, that avoid the curses of dimensionality. Our goal is to pro-
vide guidance for the problems that do not satisfy some or all of these convenient
properties.

1.3 SOME REAL APPLICATIONS

Our experiences using approximate dynamic programming have been driven by
problems in transportation with decision vectors with thousands or tens of thousands
of dimensions, and state variables with thousands to millions of dimensions. We
have solved energy problems with 175,000 time periods. Our applications have
spanned applications in air force, finance, and health.

As our energy environment changes, we have to plan new energy resources
(such as the wind turbines in Figure 1.3). A challenging dynamic problem requires
determining when to acquire or install new energy technologies (wind turbines,
solar panels, energy storage using flywheels or compressed air, hydrogen cars)
and how to operate them. These decisions have to be made when considering
uncertainty in the demand, prices, and the underlying technologies for creating,
storing, and using energy. For example, adding ethanol capacity has to include
the possibility that oil prices will drop (reducing the demand for ethanol) or that
government regulations may favor alternative fuels (increasing the demand).

some real applications 7

Figure 1.3 Wind turbines are one form of alternative energy resources (from http://www.nrel.gov/data/
pix/searchpix.cgi).

An example of a very complex resource allocation problem arises in railroads
(Figure 1.4). In North America there are six major railroads (known as “Class
I” railroads) that operate thousands of locomotives, many of which cost over $1
million. Decisions have to be made now to assign locomotives to trains, taking into
account how the locomotives will be used at the destination. For example, a train
may be going to a location that needs additional power. Or a locomotive might have
to be routed to a maintenance facility, and the destination of a train may or may not
offer good opportunities for getting the locomotive to the shop. There are many
types of locomotives, and different types of locomotives are suited to different
types of trains (e.g., trains moving coal, grain, or merchandise). Other applications
of dynamic programming include the management of freight cars, where decisions
about when, where, and how many to move have to be made in the presence of
numerous sources of uncertainty, including customer demands, transit times, and
equipment problems.

The military faces a broad range of operational challenges that require posi-
tioning resources to anticipate future demands. The problem may be figuring out
when and where to position tankers for mid-air refueling (Figure 1.5), or whether

8 the challenges of dynamic programming

Figure 1.4 Major railroads in the United States have to manage complex assets such as boxcars,
locomotives and the people who operate them. Courtesy Norfolk Southern.

a cargo aircraft should be modified to carry passengers. The air mobility command
needs to think about not only what aircraft is best to move a particular load of
freight but also the value of aircraft in the future (are there repair facilities near
the destination?). The military is further interested in the value of more reliable
aircraft and the impact of last-minute requests. Dynamic programming provides a
means to produce robust decisions, allowing the military to respond to last-minute
requests.

Managing the electric power grid requires evaluating the reliability of equipment
such as the transformers that convert high-voltage power to the voltages used by
homes and businesses. Figure 1.6 shows the high-voltage backbone network man-
aged by PJM Interconnections that provides electricity to the northeastern United
States. To ensure the reliability of the grid, PJM helps utilities maintain an appro-
priate inventory of spare transformers. They cost five million dollars each, weigh
over 200 tons, and require at least a year to deliver. We must make decisions about
how many to buy, how fast they should be delivered (fast delivery costs more),
and where to put them when they do arrive. If a transformer fails, the electric
power grid may have to purchase power from more expensive utilities to avoid
a bottleneck, possibly costing millions of dollars per month. As a result it is not
possible to wait until problems happen. Utilities also face the problem of pricing
their energy in a dynamic market, and purchasing commodities such as coal and
natural gas in the presence of fluctuating prices.

some real applications 9

Figure 1.5 Mid-air refueling is a major challenge for air operations, requiring that tankers be positioned
in anticipation of future needs (from http://www.amc.af.mil/photos/).

Figure 1.6 High-voltage backbone network managed by PJM Interconnections provides electricity to
the northeastern United States. Courtesy PJM Interconnections.

Similar issues arise in the truckload motor carrier industry, where drivers are
assigned to move loads that arise in a highly dynamic environment. Large com-
panies manage fleets of thousands of drivers, and the challenge at any moment in
time is to find the best driver (Figure 1.7 is from Schneider National, the largest
truckload carrier in the United States). There is much more to the problem than

10 the challenges of dynamic programming

Figure 1.7 Schneider National, the largest truckload motor carrier in the United States, manages a
fleet of over 15,000 drivers. Courtesy Schneider National.

simply finding the closest driver; each driver is characterized by attributes such as
his or her home location and equipment type as well as his or her skill level and
experience. There is a need to balance decisions that maximize profits now versus
those that produce good long-run behavior. Approximate dynamic programming
produced the first accurate model of a large truckload operation. Modeling this
large-scale problem produces some of the advances described in this volume.

Challenging dynamic programs can be found in much simpler settings. A good
example involves optimizing the amount of cash held in a mutual fund, which is
a function of current market performance (should more money be invested?) and
interest rates, illustrated in Figure 1.8. While this problem can be modeled with
just three dimensions, the lack of structure and need to discretize at a fine level
produced a very challenging optimization problem. Other applications include port-
folio allocation problems and determining asset valuations that depend on portfolios
of assets.

A third problem class is the acquisition of information. Consider the problem
faced by the government that is interested in researching a new technology such
as fuel cells or converting coal to hydrogen. There may be dozens of avenues to
pursue, and the challenge is to determine the projects in which the government
should invest. The state of the system is the set of estimates of how well different
components of the technology work. The government funds research to collect
information. The result of the research may be the anticipated improvement, or the

problem classes 11

Figure 1.8 Value of holding cash in a mutual fund as a function of market performance and interest
rates.

results may be disappointing. The government wants to plan a research program
to maximize the likelihood that a successful technology is developed within a
reasonable time frame (e.g., 20 years). Depending on time and budget constraints,
the government may wish to fund competing technologies in the event that one does
not work. Alternatively, it may be more effective to fund one promising technology
and then switch to an alternative if the first does not work out.

1.4 PROBLEM CLASSES

Most of the problems that we use as examples in this book can be described
as involving the management of physical, financial, or informational resources.
Sometimes we use the term “assets,” which carries the connotation of money or
valuable resources (aircraft, real estate, energy commodities). But in some settings,
even these terms may seem inappropriate, for example, training computers to play a
game such as tic-tac-toe, where it will be more natural to think in terms of managing
an “entity.” Regardless of the term, there are a number of major problem classes
we consider in our presentation:

Budgeting. Here we face the problem of allocating a fixed resource over a set
of activities that incurs costs that are a function of how much we invest
in the activity. For example, drug companies have to decide how much to

12 the challenges of dynamic programming

invest in different research projects or how much to spend on advertising
for different drugs. Oil exploration companies have to decide how much to
spend exploring potential sources of oil. Political candidates have to decide
how much time to spend campaigning in different states.

Asset acquisition with concave costs. A company can raise capital by issu-
ing stock or floating a bond. There are costs associated with these financial
instruments independent of how much money is being raised. Similarly an oil
company purchasing oil will be given quantity discounts (or it may face the
fixed cost of purchasing a tanker-load of oil). Retail outlets get a discount if
they purchase a truckload of an item. All of these are instances of acquiring
assets with a concave (or, more generally, nonconvex) cost function, which
means there is an incentive for purchasing larger quantities.

Asset acquisition with lagged information processes. We can purchase com-
modity futures that allow us to purchase a product in the future at a lower
cost. Alternatively, we may place an order for memory chips from a factory in
southeast Asia with one- to two-week delivery times. A transportation com-
pany has to provide containers for a shipper who may make requests several
days in advance or at the last minute. All of these are asset acquisition
problems with lagged information processes .

Buying/selling an asset. In this problem class the process stops when we either
buy an asset when it looks sufficiently attractive or sell an asset when market
conditions warrant. The game ends when the transaction is made. For these
problems we tend to focus on the price (the purchase price or the sales price),
and our success depends on our ability to trade off current value with future
price expectations.

General resource allocation problems. This class encompasses the problem of
managing reusable and substitutable resources over time (equipment, people,
products, commodities). Applications abound in transportation and logistics.
Railroads have to move locomotives and boxcars to serve different activities
(moving trains, moving freight) over time. An airline has to move aircraft and
pilots in order to move passengers. Consumer goods have to move through
warehouses to retailers to satisfy customer demands.

Demand management. There are many applications where we focus on man-
aging the demands being placed on a process. Should a hospital admit a
patient? Should a trucking company accept a request by a customer to move
a load of freight?

Storage problems. We face problems determining how much energy to store
in a water reservoir or battery, how much cash to hold in a mutual fund,
how many vaccines to order or blood to hold, and how much inventory
to keep. These are all examples of “storage” problems, which may involve
one, several or many types of resources, and where these decisions have to
be made in the context of state-of-the-world variables such as commodity
prices, interest rates, and weather.

problem classes 13

Table 1.2 Major problem classes

Attributes

Number of Entities Simple Complex

Single Single, simple entity Single, complex entity
Multiple Multiple, simple entities Multiple, complex entities

Shortest paths. In this problem class we typically focus on managing a single,
discrete entity. The entity may be someone playing a game, a truck driver
we are trying to route to return him home, a driver who is trying to find
the best path to his destination, or a locomotive we are trying to route to its
maintenance shop. Shortest path problems, however, also represent a general
mathematical structure that applies to a broad range of dynamic programs.

Dynamic assignment. Consider the problem of managing multiple entities, such
as computer programmers, to perform different tasks over time (writing code
or fixing bugs). Each entity and task is characterized by a set of attributes
that determines the cost (or contribution) from assigning a particular resource
to a particular task.

All these problems focus on the problem of managing physical or financial
resources (or assets, or entities). It is useful to think of four major problem classes
(depicted in Table 1.2) in terms of whether we are managing a single or multiple
entities (e.g., one robot or a fleet of trucks), and whether the entities are simple
(an entity may be described by its location on a network) or complex (an entity
may be a truck driver described by a 10-dimensional vector of attributes).

If we are managing a single, simple entity, then this is a problem that can
be solved exactly using classical algorithms described in Chapter 3. The problem
of managing a single, complex entity (e.g., playing backgammon) is commonly
studied in computer science under the umbrella of reinforcement learning, or in
the engineering community under the umbrella of control theory (e.g., landing an
aircraft). The problem of managing multiple, simple entities is widely studied in the
field of operations research (managing fleets of vehicles or distribution systems),
although this work most commonly focuses on deterministic models. By the end of
this book, we are going to show the reader how to handle (approximately) problem
classes that include multiple, complex entities, in the presence of different forms
of uncertainty.

There is a wide range of problems in dynamic programming that involve control-
ling resources, where decisions directly involve transforming resources (purchasing
inventory, moving robots, controlling the flow of water from reservoirs), but there
are other important types of controls. Some examples include:

Pricing. Often the question being asked is, What price should be paid for an
asset? The right price for an asset depends on how it is managed, so it
should not be surprising that we often find asset prices as a by-product from
determining how to best manage the asset.

14 the challenges of dynamic programming

Information collection. Since we are modeling sequential information and deci-
sion processes, we explicitly capture the information that is available when
we make a decision, allowing us to undertake studies that change the infor-
mation process. For example, the military uses unmanned aerial vehicles
(UAVs) to collect information about targets in a military setting. Oil compa-
nies drill holes to collect information about underground geologic formations.
Travelers try different routes to collect information about travel times. Phar-
maceutical companies use test markets to experiment with different pricing
and advertising strategies.

Technology switching. The last class of questions addresses the underlying
technology that controls how the physical process evolves over time. For
example, when should a power company upgrade a generating plant (e.g., to
burn oil and natural gas)? Should an airline switch to aircraft that fly faster
or more efficiently? How much should a communications company invest in
a technology given the likelihood that better technology will be available in
a few years?

Most of these problems entail both discrete and continuous states and actions.
Continuous models would be used for money, for physical products such as oil,
grain, and coal, or for discrete products that occur in large volume (most consumer
products). In other settings, it is important to retain the integrality of the resources
being managed (people, aircraft, locomotives, trucks, and expensive items that
come in small quantities). For example, how do we position emergency response
units around the country to respond to emergencies (bioterrorism, major oil spills,
failure of certain components in the electric power grid)?

What makes these problems hard? With enough assumptions, none of these
problems are inherently difficult. But in real applications, a variety of issues emerge
that can make all of them intractable. These include:

• Evolving information processes . We have to make decisions now before we
know the information that will arrive later. This is the essence of stochastic
models, and this property quickly turns the easiest problems into computational
nightmares.

• High-dimensional problems . Most problems are easy if they are small enough.
In real applications, there can be many types of resources, producing decision
vectors of tremendous size.

• Measurement problems . Normally we assume that we look at the state of our
system and from this determine what decision to make. In many problems
we cannot measure the state of our system precisely. The problem may be
delayed information (stock prices), incorrectly reported information (the truck
is in the wrong location), misreporting (a manager does not properly add up
his total sales), theft (retail inventory), or deception (an equipment manager
underreports his equipment so it will not be taken from him).

• Unknown models (information, system dynamics). We can anticipate the future
by being able to say something about what might happen (even if it is with

the many dialects of dynamic programming 15

uncertainty) or the effect of a decision (which requires a model of how the
system evolves over time).

• Missing information . There may be costs that simply cannot be computed and
that are instead ignored. The result is a consistent model bias (although we
do not know when it arises).

• Comparing solutions . Primarily as a result of uncertainty, it can be difficult
comparing two solutions to determine which is better. Should we be better
on average, or are we interested in the best and worst solution? Do we have
enough information to draw a firm conclusion?

1.5 THE MANY DIALECTS OF DYNAMIC PROGRAMMING

Dynamic programming arises from the study of sequential decision processes. Not
surprisingly, these arise in a wide range of applications. While we do not wish to
take anything from Bellman’s fundamental contribution, the optimality equations
are, to be quite honest, somewhat obvious. As a result they were discovered inde-
pendently by the different communities in which these problems arise.

The problems arise in a variety of engineering problems, typically in continuous
time with continuous control parameters. These applications gave rise to what is
now referred to as control theory. While uncertainty is a major issue in these prob-
lems, the formulations tend to focus on deterministic problems (the uncertainty is
typically in the estimation of the state or the parameters that govern the system).
Economists adopted control theory for a variety of problems involving the control
of activities from allocating single budgets or managing entire economies (admit-
tedly at a very simplistic level). Operations research (through Bellman’s work) did
the most to advance the theory of controlling stochastic problems, thereby pro-
ducing the very rich theory of Markov decision processes. Computer scientists,
especially those working in the realm of artificial intelligence, found that dynamic
programming was a useful framework for approaching certain classes of machine
learning problems known as reinforcement learning.

As different communities discovered the same concepts and algorithms, they
invented their own vocabularies to go with them. As a result we can solve the Bell-
man equations, the Hamiltonian, the Jacobian, the Hamilton–Jacobian, or the all-
purpose Hamilton–Jacobian–Bellman equations (typically referred to as the HJB
equations). In our presentation we prefer the term “optimality equations,” but “Bell-
man” has become a part of the language, imbedded in algorithmic strategies such
as minimizing the “Bellman error” and “Bellman residual minimization.”

There is an even richer vocabulary for the types of algorithms that are the focal
point of this book. Everyone has discovered that the backward recursions required
to solve the optimality equations in Section 1.1 do not work if the state variable is
multidimensional. For example, instead of visiting node i in a network, we might
visit state St = (St1, St2, . . . , StB), where Stb is the amount of blood on hand of
type b. A variety of authors have independently discovered that an alternative
strategy is to step forward through time, using iterative algorithms to help estimate

16 the challenges of dynamic programming

the value function. This general strategy has been referred to as forward dynamic
programming, incremental dynamic programming, iterative dynamic programming,
adaptive dynamic programming, heuristic dynamic programming, reinforcement
learning, and neuro-dynamic programming. The term that is being increasingly
adopted is approximate dynamic programming , although perhaps it is convenient
that the initials, ADP, apply equally well to “adaptive dynamic programming.”

The different communities have each evolved their own vocabularies and nota-
tional systems. The notation developed for Markov decision processes, and then
adopted by the computer science community in the field of reinforcement learning,
uses state S and action a . In control theory, it is state x and control u . The field
of stochastic programming uses x for decisions. At first, it is tempting to view
these as different words for the same quantities, but the cosmetic differences in
vocabulary and notation tend to hide more fundamental differences in the nature
of the problems being addressed by each community. In reinforcement learning,
there is typically a small number of discrete actions. In control theory, u is usually
a low-dimensional continuous vector. In operations research, it is not unusual for
x to have hundreds or thousands of dimensions.

An unusual characteristic of the reinforcement learning community is their habit
of naming algorithms after their notation. Algorithms such as Q-learning (named
from the use of Q-factors), TD(λ), ε-greedy exploration, and SARSA (which
stands for state-action–reward–state-action), are some of the best examples. As a
result care has to be taken when designing a notational system.

The field continues to be characterized by a plethora of terms that often mean
the same thing. The transition function (which models the evolution of a system
over time) is also known as the system model, transfer function, state model, and
plant model. The behavior policy is the same as the sampling policy, and a stepsize
is also known as the learning rate or the gain.

There is a separate community that evolved from the field of deterministic
math programming that focuses on problems with high-dimensional decisions. The
reinforcement learning community focuses almost exclusively on problems with
finite (and fairly small) sets of discrete actions. The control theory community is
primarily interested in multidimensional and continuous actions (but not very many
dimensions). In operations research it is not unusual to encounter problems where
decisions are vectors with thousands of dimensions.

As early as the 1950s the math programming community was trying to intro-
duce uncertainty into mathematical programs. The resulting subcommunity is called
stochastic programming and uses a vocabulary that is quite distinct from that
of dynamic programming. The relationship between dynamic programming and
stochastic programming has not been widely recognized, despite the fact that
Markov decision processes are considered standard topics in graduate programs
in operations research.

Our treatment will try to bring out the different dialects of dynamic program-
ming, although we will tend toward a particular default vocabulary for important
concepts. Students need to be prepared to read books and papers in this field

what is new in this book? 17

that will introduce and develop important concepts using a variety of dialects. The
challenge is realizing when authors are using different words to say the same thing.

1.6 WHAT IS NEW IN THIS BOOK?

As of this writing, dynamic programming has enjoyed a relatively long history,
with many superb books. Within the operations research community, the original
text by Bellman (Bellman, 1957) was followed by a sequence of books focusing
on the theme of Markov decision processes. Of these, the current high-water mark
is Markov Decision Processes by Puterman, which played an influential role in
the writing of Chapter 3. The first edition appeared in 1994, followed in 2005 by
the second edition. The dynamic programming field offers a powerful theoretical
foundation, but the algorithms are limited to problems with very low-dimensional
state and action spaces.

This book focuses on a field that is coming to be known as approximate
dynamic programming ; it emphasizes modeling and computation for much harder
classes of problems. The problems may be hard because they are large (e.g.,
large state spaces), or because we lack a model of the underlying process that
the field of Markov decision processes takes for granted. Two major references
preceded the first edition of this volume. Neuro-dynamic Programming by Bert-
sekas and Tsitsiklis was the first book to appear (in 1996) that integrated stochastic
approximation theory with the power of statistical learning to approximation value
functions, in a rigorous if demanding presentation. Reinforcement Learning by
Sutton and Barto, published in 1998 (but building on research that began in
1980), presents the strategies of approximate dynamic programming in a very
readable format, with an emphasis on the types of applications that are popu-
lar in the computer science/artificial intelligence community. Along with these
books, the survey of reinforcement learning in Kaelbling et al. (1996) is a major
reference.

There is a sister community that goes by the name of simulation optimization
that has evolved out of the simulation community that needs to select the best
from a set of designs. Nice reviews of this literature are given in Fu (2002) and
Kim and Nelson (2006). Books on the topic include Gosavi (2003), Chang et al.
(2007), and Cao (2007). Simulation optimization is part of a larger community
called stochastic search, which is nicely described in the book Spall (2003). As we
show later, this field is directly relevant to policy search methods in approximate
dynamic programming.

This volume presents approximate dynamic programming with a much stronger
emphasis on modeling, with explicit and careful notation to capture the timing of
information. We draw heavily on the modeling framework of control theory with
its emphasis on transition functions, which easily handle complex problems, rather
than transition matrices, which are used heavily in both Bertsekas and Tsitsiklis
(1996) and Sutton and Barto (1998). We start with the classical notation of Markov
decision processes that is familiar to the reinforcement learning community, but

18 the challenges of dynamic programming

we build bridges to math programming so that by the end of the book, we are
able to solve problems with very high-dimensional decision vectors. For this rea-
son we adopt two notational styles for modeling decisions: a for discrete actions
common in the models solved in reinforcement learning, and x for the continuous
and sometimes high-dimensional decision vectors common in operations research
and math programming. Throughout the book, we use action a as our default
notation, but switch to x in the context of applications that require continuous or
multidimensional decisions.

Some other important features of this book are as follows:

• We identify the three curses of dimensionality that characterize some dynamic
programs, and develop a comprehensive algorithmic strategy for overcoming
them.

• We cover problems with discrete action spaces, denoted using a (standard
in Markov decision processes and reinforcement learning), and vector-valued
decisions, denoted using x (standard in mathematical programming). The book
integrates approximate dynamic programming with math programming, mak-
ing it possible to solve intractably large deterministic or stochastic optimization
problems.

• We cover in depth the concept of the post-decision state variable, which plays
a central role in our ability to solve problems with vector-valued decisions.
The post-decision state offers the potential for dramatically simplifying many
ADP algorithms by avoiding the need to compute a one-step transition matrix
or otherwise approximate the expectation within Bellman’s equation.

• We place considerable attention on the proper modeling of random variables
and system dynamics. We feel that it is important to properly model a problem
before attempting to solve it.

• The theoretical foundations of this material can be deep and rich, but our pre-
sentation is aimed at advanced undergraduate or masters level students with
introductory courses in statistics, probability, and for Chapter 14, linear pro-
gramming. For more advanced students, proofs are provided in “Why does it
work” sections. The presentation is aimed primarily at students in engineering
interested in taking real, complex problems, developing proper mathematical
models, and producing computationally tractable algorithms.

• We identify four fundamental classes of policies (myopic, lookahead, policies
based on value function approximations, and policy function approximations),
with careful treatments of the last three. An entire chapter is dedicated to policy
search methods, and three chapters develop the critical idea of using value
function approximations.

• We carefully deal with the challenge of stepsizes, which depend critically
on whether the algorithm is based on approximate value iteration (including
Q-learning and TD learning) or approximate policy iteration. Optimal stepsize
rules are given for each of these two major classes of algorithms.

pedagogy 19

Our presentation integrates the fields of Markov decision processes, math pro-
gramming, statistics, and simulation. The use of statistics to estimate value functions
dates back to Bellman and Dreyfus (1959). Although the foundations for proving
convergence of special classes of these algorithms traces its origins to the seminal
paper on stochastic approximation theory (Robbins and Monro, 1951), the use of
this theory (in a more modern form) to prove convergence of special classes of
approximate dynamic programming algorithms did not occur until 1994 (Tsitsik-
lis 1994; Jaakkola et al. 1994). The first book to bring these themes together is
Bertsekas and Tsitsiklis (1996), which remains a seminal reference for researchers
looking to do serious theoretical work.

1.7 PEDAGOGY

The book is roughly organized into four parts. Part I comprises Chapters 1 to 4,
which provide a relatively easy introduction using a simple, discrete representation
of states. Part II covers modeling, a description of major classes of policies and pol-
icy optimization. Part III covers policies based on value function approximations,
along with efficient learning. Part IV describes specialized methods for resource
allocation problems.

A number of sections are marked with an *. These can all be skipped when
first reading the book without loss of continuity. Sections marked with ** are
intended only for advanced graduate students with an interest in the theory behind
the techniques.

Part I Introduction to dynamic programming using simple state represen-
tations —In the first four chapters we introduce dynamic programming, using
what is known as a “flat” state representation. That is to say, we assume that
we can represent states as s = 1, 2, We avoid many of the rich modeling
and algorithmic issues that arise in more realistic problems.

Chapter 1 Here we set the tone for the book, introducing the challenge of the
three “curses of dimensionality” that arise in complex systems.

Chapter 2 Dynamic programs are best taught by example. Here we describe
three classes of problems: deterministic problems, stochastic problems, and
information acquisition problems. Notation is kept simple but precise, and
readers see a range of different applications.

Chapter 3 This is an introduction to classic Markov decision processes. While
these models and algorithms are typically dismissed because of “the curse of
dimensionality,” these ideas represent the foundation of the rest of the book.
The proofs in the “why does it work” section are particularly elegant and
help provide a deep understanding of this material.

Chapter 4 This chapter provides a fairly complete introduction to approximate
dynamic programming, but focusing purely on estimating value functions
using lookup tables. The material is particularly familiar to the reinforcement
learning community. The presentation steps through classic algorithms, start-
ing with Q-learning and SARSA, and then, progressing through real-time

20 the challenges of dynamic programming

dynamic programming (which assumes you can compute the one-step transi-
tion matrix), approximate value iteration using a pre-decision state variable,
and finally, approximate value iteration using a post-decision state variable.
Along the way the chapter provides a thorough introduction to the concept of
the post-decision state variable, and introduces the issue of exploration and
exploitation, as well as on-policy and off-policy learning.

Part II Approximate dynamic programming with policy optimization —This block
introduces modeling, the design of policies, and policy optimization. Policy
optimization is the simplest method for making good decisions, but it is generally
restricted to relatively simple problems. As such, it makes for a good introduction
to ADP before getting into the complexities of designing policies based on value
function approximations.
Chapter 5 This chapter on modeling hints at the richness of dynamic problems.

To help with assimilating this chapter, we encourage readers to skip sections
marked with an * the first time they go through the chapter. It is also useful
to reread this chapter from time to time as you are exposed to the rich set of
modeling issues that arise in real applications.

Chapter 6 This chapter introduces four fundamental classes of policies: myopic
policies, lookahead policies, policies based on value function approximations,
and policy function approximations. We note that there are three classes of
approximation strategies: lookup table, and parametric and nonparametric
models. These fundamental categories appear to cover all the variations of
policies that have been suggested.

Chapter 7 There are many problems where the structure of a policy is fairly
apparent, but it depends on tunable parameters. Here we introduce the reader
to communities that seek to optimize functions of deterministic parameters
(which determines the policy) where we depend on noisy evaluations to
estimate the performance of the policy. We cover classical stochastic search,
add algorithms from the field of simulation optimization, and introduce the
idea of the knowledge gradient, which has proved to be a useful general-
purpose algorithmic strategy. In the process, the chapter provides an initial
introduction to the exploration-exploitation problem for (offline) ranking and
selection problems.

Part III Approximate dynamic programming using value function approxi-
mations —This is the best-known strategy for solving dynamic programs
(approximately), and also the most difficult to master. We break this process
into three steps, organized into the three chapters below:
Chapter 8 This chapter covers the basics of approximating functions using

lookup tables (very briefly), parametric models (primarily linear regression)
and a peek into nonparametric methods.

Chapter 9 Let V
π
(s) be an approximation of the value of being in state s

while following a fixed policy π . We fit this approximation using sample
observations v̂n. This chapter focuses on different ways of computing v̂n for
finite and infinite horizon problems, which can then be used in conjunction
with the methods in Chapter 8 to find V

π
(s).

pedagogy 21

Chapter 10 The real challenge is estimating the value of a policy while simul-
taneously searching for better policies. This chapter introduces algorithms
based on approximate value iteration (including Q-learning and TD learning)
and approximate policy iteration. The discussion covers issues of convergence
that arise while one simultaneously tries to estimate and optimize.

Chapter 11 Stepsizes are an often overlooked dimension of approximate
dynamic programming. This chapter reviews four classes of stepsizes:
deterministic formulas, heuristic stochastic formulas, optimal stepsize rules
based on signal processing (ideally suited for policy iteration), and a new
optimal stepsize designed purely for approximate value iteration.

Chapter 12 It is well known in the ADP/RL communities that it is sometimes
necessary to visit a state in order to learn about the value of being in a state.
Chapter 4 introduces this issue, and Chapter 7 returns to the issue again in
the context of policy search. Here we address the problem in its full glory,
making the transition from pure learning (no physical state) for both online
and offline problems, but also from learning in the presence of a physical
state.

Part IV Resource allocation and implementation challenges —We close with meth-
ods that are specifically designed for problems that arise in the context of
resource allocation:

Chapter 13 Resource allocation problems have special structure such as concav-
ity (or convexity for minimization problems). This chapter describes a series
of approximation techniques that are directly applicable for these problems.

Chapter 14 There are many problems that can be described under the umbrella
of “resource allocation” that offer special structure that we can exploit. These
problems tend to be high-dimensional, with state variables that can easily
have thousands or even millions of dimensions. However, when we combine
concavity with the post-decision state variable, we produce algorithms that
can handle industrial-strength applications.

Chapter 15 We close with a discussion of a number of more practical issues
that arise in the development and testing of ADP algorithms.

This material is best covered in order. Depending on the length of the course and
the nature of the class, an instructor may want to skip some sections, or to weave
in some of the theoretical material in the “why does it work” sections. Additional
material (exercises, solutions, datasets, errata) will be made available over time at
the website http://www.castlelab.princeton.edu/adp.htm (this can also be accessed
from the CASTLE Lab website at http://www.castlelab.princeton.edu/).

There are two faces of approximate dynamic programming, and we try to present
both of them. The first emphasizes models and algorithms, with an emphasis on
applications and computation. It is virtually impossible to learn this material with-
out writing software to test and compare algorithms. The other face is a deeply
theoretical one that focuses on proofs of convergence and rate of convergence.
This material is advanced and accessible primarily to students with training in
probability and stochastic processes at an advanced level.

22 the challenges of dynamic programming

1.8 BIBLIOGRAPHIC NOTES

There have been three major lines of investigation that have contributed to approxi-
mate dynamic programming. The first started in operations research with Bellman’s
seminal text (Bellman, 1957). Numerous books followed using the framework
established by Bellman, each making important contributions to the evolution
of the field. Selected highlights include Howard (1960), Derman (1970), Ross
(1983), and Heyman and Sobel (1984). As of this writing, the best overall treat-
ment of what has become known as the field of Markov decision processes is
given in Puterman (2005). However, this work has focused largely on theory, since
the field of discrete Markov decision processes has not proved easy to apply,
as discrete representations of state spaces suffer from the well-known curse of
dimensionality, which restricts this theory to extremely small problems. The use of
statistical methods to approximate value functions originated with Bellman, in Bell-
man and Dreyfus (1959), but little subsequent progress was made within operations
research.

The second originated with efforts by computer scientists to get computers to
solve problems, starting with the work of Samuel (1959) to train a computer to
play checkers, helping to launch the field that would become known in artificial
intelligence as reinforcement learning. The real origins of the field lay in the sem-
inal work in psychology initiated by Andy Barto and Richard Sutton (Sutton and
Barto, 1981; Barto et al., 1981; Barto and Sutton, 1981). This team made many
contributions over the next two decades, leading up to their landmark volume
Reinforcement Learning (Sutton and Barto, 1998) which has effectively defined
this field. Reinforcement learning evolved originally as an intuitive framework for
describing human (and animal) behavior, and only later was the connection made
with dynamic programming, when computer scientists adopted the notation devel-
oped within operations research. For this reason reinforcement learning as practiced
by computer scientists and Markov decision processes as practiced by operations
research share a common notation, but a very different culture.

The third line of investigation started completely independently under the
umbrella of control theory. Instead of Bellman’s optimality equation, it was
the Hamiltonian or Jacobi equations, which evolved to the Hamilton–Jacobi
equations. Aside from different notation, control theorists were motivated by
problems of operating physical processes, and as a result focused much more on
problems in continuous time, with continuous states and actions. While analytical
solutions could be obtained for special cases, it is perhaps not surprising that
control theorists quickly developed their own style of approximate dynamic
programming, initially called heuristic dynamic programming (Werbos, 1974,
1989, 1992b). It was in this community that the first connection was made
between the adaptive learning algorithms of approximate dynamic programming
and reinforcement learning, and the field of stochastic approximation theory. The
seminal papers that made this connection were Tsitsiklis (1994), Tsitsiklis and
van Roy (1997), and the seminal book Neuro-dynamic Programming written
by Bertsekas and Tsitsiklis (1996). A major breakthrough in control theory was

bibliographic notes 23

the recognition that the powerful technology of neural networks (Haykin, 1999)
could be a general-purpose tool for approximating both value functions as well
as policies. Major contributions were also made within the field of economics,
including Rust (1997) and Judd (1998).

While these books have received the greatest visibility, special recognition is
due to a series of workshops funded by the National Science Foundation under
the leadership of Paul Werbos, some of which have been documented in several
edited volumes (Werbos et al., 1990; White and Sofge, 1992; Si et al., 2004).
These workshops have played a significant role in bringing different communities
together, the effect of which can be found throughout this volume.

Our presentation is primarily written from the perspective of approximate
dynamic programming and reinforcement learning as it is practiced in operations
research and computer science, but there are substantial contributions to this field
that have come from the engineering controls community. The edited volume by
White and Sofge, (1992) provides the first comprehensive coverage of ADP/RL,
primarily from the perspective of the controls community (there is a single chapter
by Andy Barto on reinforcement learning). Bertsekas and Tsitsiklis (1996) is also
written largely from a control perspective, although the influence of problems
from operations research and artificial intelligence are apparent. A separate and
important line of research grew out of the artificial intelligence community, which
is nicely summarized in the review by Kaelbling et al. (1996) and the introductory
textbook by Sutton and Barto (1998). More recently Si et al. (2004) brought
together papers from the engineering controls community, artificial intelligence,
and operations research.

Since the first edition of this book appeared in 2007, a number of other important
references have appeared. The third edition of Dynamic Programming and Optimal
Control , volume 2, by Bertsekas contains a lengthy chapter entitled Approximate
Dynamic Programming , which he updates continuously and which can be down-
loaded directly from http://web.mit.edu/dimitrib/www/dpchapter.html. Sutton and
Barto released a version of their 1998 book to the Internet at http://www.cs.wmich.
edu/∼trenary/files/cs5300/RLBook/the-book.html, which makes their classic book
easily accessible. Two recent additions to the literature include Busoniu et al.
(2010) and Szepesvari (2010), the latter of which is also available as a free down-
load at http://www.morganclaypool.com/doi/abs/10.2200/S00268ED1V01Y201005
AIM009. These are more advanced monographs, but both contain recent theoretical
and algorithmic developments.

Energy applications represent a growing area of research in approximate
dynamic programming. Applications include Löhndorf and Minner (2010) and
Powell et al. (2011). An application of ADP to truckload trucking at Schneider
National is described in Simao et al. (2009, 2010). The work on Air Force
operations is described in Wu et al. (2009). The application to the mutual fund
cash balance problem is given in Nascimento and Powell (2010b).

