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  Chapter 1 

Reliability and 
Availability Concepts     

     This chapter reviews the basics that underpin system design for reliability: 

   •      Defi nitions of reliability and availability in the context of systems and 
services  

   •      How faults are activated to become errors and evolve into failures  

   •      Failure recovery and high availability  

   •      Quantifying downtime and service availability  

   •      Attributing responsibility for downtime and outages  

   •      Overviews of hardware and software reliability     

   1.1    RELIABILITY AND AVAILABILITY 

  Reliability  is defi ned by the IEEE as  “  the ability of a system or component to 
perform its required functions under stated conditions for a specifi ed period of 
time  ”   [IEEE610] . For example, a failure rate, such as the frequency of software 
crash or failure, measures reliability; mean time to fi rst failure is a simple reli-
ability metric. 

  Availabilit y is defi ned as  “  the degree to which a system or component is 
operational and accessible when required for use  ”   [IEEE610] . For example, the 
probability that a car will start is a measure of the car ’ s availability. A simple 
mathematical formula to compute service availability is:

   Availability
Uptime

Uptime Downtime
=

+
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4 Chapter 1 Reliability and Availability Concepts

 Since both the numerator and denominator of the formula are in the same 
units (time), the units cancel out and the value of availability becomes dimen-
sionless. Because availability is dimensionless, it is generally expressed as a 
percentage, such as 99.999% or  “ fi ve 9 ’ s. ”  Table  1.1  shows the relationship 
between number of 9 ’ s and down - minutes per system per year.   

  Table 1.1    Availability as a Function of Number of 9 ’ s 

   Number of 9 ’ s     Availability     Annualized down -
 minutes per system  

   Practical meaning  

  1    90%    52596.00    Down 5 weeks per year  
  2    99%    5259.60    Down 4 days per year  
  3    99.9%    525.96    Down 9 hours per year  
  4    99.99%    52.60    Down 1 hour per year  
  5    99.999%    5.26    Down 5 minutes per year  
  6    99.9999%    0.53    Down 30 seconds per year  
  7    99.99999%    0.05    Down 3 seconds per year  

 Note that although many people speak of  “ 99.999% system reliability, ”  
they often actually mean  fi ve 9 ’ s service availability . 

 Service availability is essentially based on the simple model that a system 
is either  “ up ”  or  “ down, ”  and transitions between those states are fairly well 
understood; this abstraction maps well to critical service failure events, such 
as system crashes. However, failures occur that can cause a few isolated opera-
tions to fail without bringing the system down. Readers will be familiar with 
these service failures, such as when their wireless calls drop or fail to complete, 
or when they have to use the  “ reload ”  button on their web browser to reload 
a page that did not display properly. Assuming the network or server did not 
actually go down, the service failure will not be refl ected in the service avail-
ability metric. Service reliability measures the rate of successful user interac-
tions or transactions when the system is up, such as rate of successful 
transactions, successful call completions, or successful web page displays. As 
service reliability is often very good, it is often more convenient to measure 
service  un reliability as defective transactions or interactions per million 
attempts. For example, 15 web page loads per million might fail, or 37 data-
base update transactions might fail per million attempts, or 27 calls per million 
attempts may fail to be established with acceptable voice quality. Although 
the servers or network probably did not go down, some individual users expe-
rienced unacceptable service. Thus, users experience unacceptable service 
either when the system is down (which is measured via service  unavailability ) 
or when the system is up but fails to complete their service request properly 
(which is measured via service  unreliability ). This book addresses designing 
systems that deliver both high service availability and high service 
reliability.  
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1.2 Faults, Errors, and Failures 5

   1.2    FAULTS, ERRORS, AND FAILURES 

  Failure  is defi ned as  “  the inability of a system or component to perform its 
required functions within specifi ed performance requirements  ”   [IEEE610] . 
 Error  is primarily defi ned as  “  the difference between a computed, observed, or 
measured value or condition and the true, specifi ed, or theoretically correct value 
or condition. For example, a difference of 30 meters between a computed result 
and the correct result  ”   [IEEE610] .  Fault  is defi ned as  “  (1) A defect in a hard-
ware device or component; for example, a short circuit or broken wire. (2) An 
incorrect step, process, or data defi nition in a computer program  ”   [IEEE610] . 
Faults are said to be  activated  to become errors, and errors can lead to failures. 
For example, a software defect ( fault ) in the stopping condition of a  do/while  
loop is activated when executed to become an infi nite loop  error , which pre-
vents the system from replying to a user ’ s request within the specifi ed time 
and thus produces a service  failure . 

 Faults can be residual software defects, design weaknesses, or vulnerabili-
ties of internal components and external elements. Practical realities assure 
that no large and complex software product is ever completely free of residual 
software faults; defects are inevitable. Hardware components are vulnerable 
to physical phenomena like bearing wearing out on hard disk drives that 
eventually cause them to fail. Documented installation and planning guides, 
procedural instructions, user interfaces, and so on can be unclear, incorrect, 
misleading, or otherwise prompt humans who operate, administer, maintain, 
or provision the system to perform incorrect actions. Unexpected, extraordi-
nary, and malicious inputs and conditions challenge deployed systems, and 
these can exceed the system ’ s designed parameters or expose residual soft-
ware defects. 

 Quality activities focus on reducing the number of residual defects in a 
system ’ s software, hardware, and documentation through careful develop-
ment and testing processes. For example, written specifi cations, designs, 
source code, test plans, and documentation are methodically reviewed and 
diligently tested. Best - in - class quality organizations will often analyze defect 
data to predict and quantitatively manage the number of residual software 
defects (faults) to assure that a system is of appropriate quality before deploy-
ing a software release to customers. 

 An error is an activation of a fault that causes incorrect behavior. Fault 
activation is a function of the system ’ s profi le of operation, including operating 
time, operational environment, workload, and other characteristics. Most 
errors will be minor and not cause notable impact, but some may escalate to 
cause some or all of a system to become incapable of functioning and thus 
cause a service - affecting failure. For example, consider a common program-
ming error — not initializing a pointer or an array index variable that is used 
to store or write data — as a sample fault. This fault would be activated by 
executing the code that uses this pointer or array index variable. Depending 
on the previous contents of the uninitialized variable, the value of other input 
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6 Chapter 1 Reliability and Availability Concepts

parameters, the system state, the application logic, and the memory map, the 
system will attempt to write data to some location in the process ’ s address 
space. If the computed pointer or array index value is outside of this process ’ s 
writeable address space or the address is misaligned, then the CPU is likely 
to raise a processor exception and the operating system is likely to cause 
abnormal termination of the process, thereby producing a system error. If the 
computed pointer or array index value is a properly aligned address within 
the process ’ s writeable address space, then the data write is likely to complete 
successfully without immediately producing a system error. If the system 
accesses or executes memory that was compromised by the erroneous data 
write, then a secondary error is likely. 

 Some errors will escalate and catastrophically impact system operation, 
thus causing critical failures. If a system doesn ’ t recover from the initial failure 
promptly, then a cascade of secondary failures may be triggered. These con-
cepts are illustrated with an ordinary pneumatic tire on an automobile or truck 
in Figure  1.1 . A nail on the road presents a hazard or fault that can be activated 
by driving over it, thereby puncturing the tire to create a hole that leaks air 
(an error). Over time, this air leak will cause a repairable tire failure, com-
monly called a  “ fl at tire. ”  If the driver doesn ’ t stop driving on a failed tire 
quickly enough, then the tire will become irreparably damaged. If the driver 
continues driving on a fl at tire even after the tire is damaged, then the wheel 
rim will eventually be damaged.   

     Figure 1.1     Fault Activation and Failures  

 Robustness is defi ned as  “  the degree to which a system or component can 
function correctly in the presence of invalid inputs or stressful environmental 
conditions  ”   [IEEE610] , which encompasses tolerance of hardware and soft-
ware faults as well as human and external faults.  

   1.3    ERROR SEVERITY 

 Errors are generally classifi ed by severity, with  critical  (often  “ severity 1 ” ), 
 major  (often  “ severity 2 ” ), and  minor  (often  “ severity 3 ” ) being commonly 
used. For example, consider the defi nitions of  critical ,  major , and  minor  severi-
ties from the telecommunication industry ’ s TL 9000 quality standard  [TL9000] :

   Problem report —  critical:   Conditions that severely affect the primary functionality 
of the product and because of the business impact to the customer requires 
non - stop immediate corrective action, regardless of time of day or day of the week 
as viewed by a customer on discussion with the  [enterprise]  such as: 
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1.4 Failure Recovery 7

  a)     product inoperability (total or partial outage),  
  b)     a reduction in the capacity capability, that is, traffi c/data handling capability, 

such that expected loads cannot be handled,  
  c)     any loss of emergency capability (for example, emergency 911 calls), or  
  d)     safety hazard or risk of security breach.     

   Problem report —  major  :   Product is usable, but a condition exists that seriously 
degrades the product operation, maintenance or administration, etc., and requires 
attention during pre - defi ned standard hours to resolve the situation. The urgency 
is less than in critical situations because of a lesser immediate or impending effect 
on problem performance, customers and the customer ’ s operation and revenue 
such as 
  a)     reduction in product ’ s capacity (but still able to handle the expected load),  
  b)     any loss of administrative or maintenance visibility of the product and/or 

diagnostic capability,  
  c)     repeated degradation of an essential component or function, or  
  d)     degradation of the product ’ s ability to provide any required notifi cation of 

malfunction.     

   Problem report —  minor  :   Other problems of a lesser severity than  “ critical ”  or 
 “ major ”  such as conditions that have little or no impairment on the function of 
the system.   

 Note that some organizations formally or informally include a severity above 
 critical  such as  emergency  to capture extraordinary events of extreme scope 
or duration — for example, a failure that is large enough to be reported as a 
news item in trade publications or general media (e.g.,  Wall Street Journal , 
Cable News Network, etc.), or that will require external reporting (e.g., for 
regulatory or contractual compliance), or that triggers liquidated damages 
payments to customers for violating service - level agreements.  

   1.4    FAILURE RECOVERY 

 Failures are typically recovered or repaired by a process that follows three 
simple steps: failure detection, failure isolation, and failure recovery. Consider 
recovery illustrated in Figure  1.2  from the road hazard example of Figure  1.1 . 
The example begins with the error of a hole in a tire that leaks air. Some cars 
will automatically alert the driver when the tire pressure drops below a 
minimum threshold, while other drivers must rely on a change to the feel of 
the car ’ s handling, or increased road noise, or perhaps the honking and waving 
of other drivers. If the road is rough or the driver is distracted or for other 
reasons, then the driver may not detect the failure right away. After detecting 
the failure, the driver must safely stop the car. After stopping the car, the 
driver inspects the tires to diagnose if a tire is fl at. While isolating a fl at (failed) 
tire visually is often trivial, isolating failures to a specifi c repairable or replace-
able unit is often nontrivial. The failure is  “ recovered ”  by manually replacing 
the failed tire with the spare. After installing the spare tire and stowing the 
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8 Chapter 1 Reliability and Availability Concepts

fl at tire, the car is again operational. This completes the  unplanned  downtime 
associated with the tire failure. Eventually, a planned activity of repairing the 
fl at tire, reinstalling the repaired tire and returning the spare tire to its stowage 
compartment, must be completed. As the car is unavailable while the tire is 
repaired and reinstalled, and the spare is returned to its compartment, that 
period may be considered as planned downtime or planned unavailability.   

 Generalizing the failure recovery example of Figure  1.2 , one can see the 
three basic robustness steps: 

   •      Failure occurs.  

  1.     Error is  detected  by system or human being.  
  2.     Error is diagnosed to  isolate  failure to a repairable or recoverable 

unit. While it is easy for a human being to visually diagnose which 
tire has failed, most failures are not trivially isolated by simple visual 
inspection. For example, consider the challenge of diagnosing typical 
automobile engine failures to the specifi c component that must be 
replaced. The mechanic may follow troubleshooting procedures that 
rely on both on - board and off - board diagnostics to hypothesize 
which replaceable unit has failed and must be replaced. If the 
mechanic incorrectly diagnoses the failure (typically referred to as a 
 diagnostic failure ), then troubleshooting continues and another likely 
component failure is hypothesized and that component is repaired 
or replaced. Ineffective diagnostics can lead directly to higher repair 
costs and longer unavailability incidents, as any car owner with an 
intermittent or hard - to - diagnose failure can attest.  

  3.     Fault is repaired or recovered. Hardware failures are typically 
repaired by replacing the failed module; software failures are often 
repaired by restarting a process or the entire system; damaged data 
may be restored from backup or repaired/rebuilt using system tools, 
and so on.    

   •      Service is restored.    

     Figure 1.2     Tire Failure as Simple 
Robustness Example  
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1.5 Highly Available Systems 9

 Sometimes additional actions are required to restore the system to full opera-
tional redundancy and readiness (e.g., repairing the failed hardware and/or 
restocking of spare equipment), but these repair actions are usually completed 
on a nonemergency basis, and often are not service impacting.  

   1.5    HIGHLY AVAILABLE SYSTEMS 

 To reduce cost, typical consumer and commercial systems are permitted to 
experience some unavailability during failure recovery or repair. For example, 
tire failure, battery exhaustion of a portable electronic device, or software 
crash of a PC application all require recovery or repair procedures that include 
a period of service unavailability. In some commercial, industrial, public 
safety, and other applications, service unavailability is so costly that it makes 
business sense to invest more in system hardware, design, and development 
to minimize service unavailability following failure. Highly available systems 
are designed so that no single failure causes unacceptable service disruption. 
To accomplish this, systems must be designed to detect, isolate, and recover 
from failures very rapidly. Practically, this means that failure detection, isola-
tion, and recovery must be both automatic and highly reliable, and hardware 
redundancy must be engineered into the system to rapidly recover from hard-
ware failures. A basic robustness strategy for a highly available system is 
illustrated in Figure  1.3 .   

     Figure 1.3     Simplifi ed View of High Availability  

 Consider each step in Figure  1.3  separately: 

  1.     Failure.     Hardware, software, human, or other failures will inevitably 
occur.  

  2.     Automatic failure detection.     Modern systems are designed to detect 
failures via myriad mechanisms ranging from direct hardware mecha-
nisms like parity checks, to direct software mechanisms like return 
codes or expiration of timeouts, to environmental sensors like tempera-
ture or moisture sensors, to sophisticated indirect mechanisms like 
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10 Chapter 1 Reliability and Availability Concepts

throughput monitors. Highly available systems will have several tiers 
of failure detection so that if one detection tier misses the event, then 
another tier will catch it some time later.  

  3.     Automatic failure isolation.     The system must correctly diagnose or 
isolate the failure to the appropriate recoverable module so that proper 
recovery action can be initiated. Fault isolation should be as fast as 
possible so that failure recovery action can be promptly activated to 
shorten service outage, but not so hasty as to incorrectly isolate the 
failure and activate a wrong recovery action. In addition to prolonging 
the outage event, activating the wrong recovery mechanism (e.g., 
restarting the wrong software module or rebooting the wrong proces-
sor) may unnecessarily impact end users who were not affected by the 
failure event itself. The situation when a failure is not isolated to the 
correct recoverable or repairable module is called a  diagnostic failure .  

  4.     Automatic failure recovery.     After isolating the failure to the proper 
recoverable module, then highly available systems will automatically 
activate the recovery action, such as switching service to a redundant 
module or restarting a software module.  

  5.     Service restored.     The system returns to normal operation when service 
is restored onto the redundant module.    

 In high availability systems, failure detection, isolation, and recovery 
occur automatically, and the duration of impact to service should be minimal. 
Typical high availability systems will automatically detect, isolate, and recover 
from failures in seconds, but some special purpose systems like optical 
transmission equipment will detect, isolate, and recover from failures in 
milliseconds. 

 If a failure is not automatically detected by the system, then a so called 
 “ silent failure ”  situation will exist in which service is not delivered but recov-
ery actions are not activated because neither the system nor the human main-
tenance engineers are aware of the failure. A simple example of a silent failure 
is a frozen water pipe: the pipe freezes, cracks, thaws, begins leaking water 
silently, and will continue leaking until it is manually detected and the water 
is manually shutoff. Silent failures are sometimes euphemistically called  sleep-
ing  failures to indicate that the system hasn ’ t noticed the failure because it is 
 “ asleep. ”  For example, an underinfl ated or fl at spare tire may be sleeping in 
an automobile for months or years before being detected. In contrast to sleep-
ing failures, a system might be  “ dreaming ”  that a module is operational when 
it has actually failed, thus misleading surveillance and maintenance engineers. 
For example, a defective fuel gauge in an automobile might incorrectly report 
that there is fuel when the tank is actually empty. Depending on system archi-
tecture and the specifi c failure, these silent failures may directly impact users 
(e.g., a server is down, but the operations team doesn ’ t know it) or they may 
not immediately impact users but put the system into a simplex or vulnerable 
state (e.g., spare tire is fl at, but the driver doesn ’ t know it). 

c01.indd   10c01.indd   10 8/5/2010   4:33:21 PM8/5/2010   4:33:21 PM



1.5 Highly Available Systems 11

 If automatic failure detection, isolation, and recovery mechanisms are not 
themselves highly reliable, then excess downtime will be accrued while human 
beings manually detect, diagnose, and recover unsuccessful automatic failures, 
as shown in Figure  1.4 . If the system does not automatically detect the initial 
failure, then the failure will probably escalate or cascade to produce more 
service impact until it is either automatically detected by the system or is 
manually detected by a human operator. Note that highly available systems 
typically have several tiers of automatic failure detection, isolation, and recov-
ery mechanisms to increase the overall likelihood of successful automatic 
recovery. If the system ’ s automatic failure isolation indicts the wrong recover-
able module, then the automatic recovery action will not clear the failure, and 
thus will require manual failure diagnosis by a human operator. If the auto-
matic recovery action fails, then intervention by a human operator will typi-
cally be required to clear the failed recovery and restore service. Assuming 
that automatic failure detection, isolation, and recovery is at least moderately 
effective, human operators who do detect a failure will often monitor the 
status of automatic robustness operations before taking any manual action to 
avoid disrupting automatic failure detection, isolation, and recovery actions 
that could be progressing (perhaps slowly). Figure  1.4  illustrates the possible 
interplay between automatic robustness mechanisms and manual recovery.   

     Figure 1.4     Automatic and Manual Recovery  

 In the real world, robust systems typically follow an elaborate automatic 
recovery process. There are an infi nite number of possible failures that can 
confront a system. Beyond hardware and software failures, other systems or 
users can send malformed or malicious requests, human operators can make 
mistakes, and supporting systems or infrastructure can fail. Myriad failure 
detectors are integrated throughout the system, such as parity detectors in 
hardware and timeouts in software. When these mechanisms detect a failure, 
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12 Chapter 1 Reliability and Availability Concepts

then alarm correlation software should isolate the true failure. A recovery 
strategy is then executed, such as switching service to a redundant element, 
or restarting a software module. Unfortunately, no single automatic recovery 
strategy is always effective, and thus a secondary — often more severe — recov-
ery action may be required. For example, if restarting a failed process does 
not restore service, then it may be necessary to restart all application software 
on a processor or perhaps restart the processor or entire computer, or take 
other recovery steps. Thus, the system monitors progress of the automatic 
recovery, and if the system does not recover promptly, then a secondary 
recovery mechanism may be activated. There are usually human operators 
who are responsible for monitoring and maintaining systems, and if the 
responsible human operators deem that automatic recovery is not progressing 
acceptably, then they can initiate a manual recovery action. As a practical 
matter, not all automatic recovery actions succeed either because automatic 
failure detection, isolation, or recovery didn ’ t work properly, or because the 
human operator didn ’ t want to wait long enough for automatic mechanisms 
to complete.  

   1.6    QUANTIFYING AVAILABILITY 

 The period when service is available is called  uptime ; the period when service 
is unavailable is called  downtime . While most personal and consumer electron-
ics devices support only a single user at a time, most enterprise and commer-
cial systems support many users simultaneously. To account for variations in 
failure impact to end users for multiuser systems, one can prorate service 
downtime by capacity lost. For example, a 10 - minute outage that impacts half 
of a system ’ s users or capacity is logically equivalent to a total (100%) capacity 
loss outage of 5 minutes. Prorating of capacity loss is a practical way to capture 
the impact of smaller events that affect only a portion of a system ’ s users or 
subscribers. 

 Service downtime is the sum of outage duration prorated by capacity lost 
for all failures in a particular time period. Mathematically, this is:

   Downtime OutageDuration PortionOfCapacityLostFailures= ∗∑   

 Consider each of the input factors separately. 

   •       Portion of Capacity Lost  captures the portion of system capacity that 
was impacted by the service outage. Some events, such as power failure, 
will render a system completely unavailable, and thus 100% of system 
capacity is unavailable. Other failures may impact only a portion of a 
system ’ s capacity, such as if users are distributed across several process 
or hardware instances and one of those instances fails. For example, if 
user data is distributed across 5 hard disks, each user ’ s data is confi ned 
to a single hard disk, and we assume that users are uniformly distributed 
across the fi ve hard disks, then the failure of a single hard disk will 
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1.6 Quantifying Availability 13

nominally impact 20% of the system ’ s users. Note that some systems 
can experience partial functionality outages in addition to partial capac-
ity outages. For example, a voice - mail system might both record mes-
sages from callers and play back those recordings to subscribers; if one 
of those functions fails (perhaps the system can play back previously 
recorded messages but not record new messages), then that might be 
considered a 50% loss of functionality and 50% could be used for 
Portion of Capacity Lost.  

   •       Outage Duration  is duration of service unavailability for the failure 
event. Outage duration is normally measured in seconds or minutes and 
lasts from start of service disruption until service is restored. This dura-
tion generally includes the time to detect, isolate, and recover service 
from the failure.    

 Section  1.1  explained that availability can also be expressed as:

   Availability
Uptime

Uptime Downtime
=

+
  

 Rather than explicitly calculating uptime, one can simplify the calculation to:

   Availability
TotalSystemMinutes DownMinutes

TotalSystemMinu
= −

ttes
  

     •       TotalSystemMinutes  represents the number of in - service systems mul-
tiplied by the number of minutes in the reporting period. For example, 
the month of April has 30 days or 43,200 minutes ( =    30 days times 24 
hours per day times 60 minutes per hour). If 50 systems are in - service, 
then the  TotalSystemMinutes  for April is 2,160,000 ( =    50 systems times 
43,200 minutes per system).  

   •       DownMinutes  is the cumulative, prorated service downtime accrued 
by the in - service systems in the reporting period. For example, assume 
that in one 30 - day month, 50 deployed systems experience three 
outages:  
  1.     10 - minute outage impacting 25% of a single system ’ s users.     For 

example, assume that users are uniformly distributed across four 
identical frontend processes on each system and one of those pro-
cesses failed.  

  2.     20 - minute outage impacting one - third of a single system ’ s primary 
functionality for all users.     For example, consider a social networking 
site that supports two broad functions: users can their own post 
content, and users can search and read content posted by others and 
themselves. If a failure prevents users from posting new content but 
does not impact the ability to search and read previously posted 
content, then that failure could be considered a 50% functionality 
loss event.  
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14 Chapter 1 Reliability and Availability Concepts

  3.     30 - minute outage impacting all of a system ’ s users.     For example, 
imagine that a janitor plugs a vacuum cleaner into the same electrical 
circuit providing electrical power to the server hosting the service, 
and when the vacuum cleaner is turned on the circuit breaker 
trips, thus causing power outage to the server and a total service 
outage.      

 Thus,

   Downtime = ∗ + ∗ + ∗ =10 25 20 50 30 100 42 5% % % .  

   Availability = − = =2 160 000 42 5
2 160 000

2159957 5
2 160 000

0
, , .

, ,
.

, ,
.999998 99 998= . %  

 Note that some service impairments may be so brief or minor that they will 
not be classifi ed as outages. For example, few people would classify a momen-
tary disruption of residential AC power that caused lights to fl icker as a power 
outage. 

 Since there are 525,960 minutes per average year (365.25 days per average 
year    *    24 hours per day    *    60 minutes per hour), annualized down - minutes are 
often expressed as  “ availability ”  via the following formula:

   Availability
AnnualizedDownMinutesPerSystem= −525 960

525 960
,

,
  

  Five 9 ’ s  (99.999%) availability works out to be 5.26 prorated down - minutes 
per system per year.  Four 9 ’ s  (99.99%) availability is about an hour of down-
time per system per year (52.6 down - minutes);  three 9 ’ s  is about nine hours of 
annualized downtime.  

   1.7    OUTAGE ATTRIBUTABILITY 

 Service outages generally have a single primary cause and may have additional 
contributory causes that prolong outage duration or increase outage extent. 
The various causes may be attributable to system or equipment suppliers, 
system integrator, the enterprise operating the system, others, or a combina-
tion. By clearly defi ning responsibility for actual outage causes, suppliers and 
enterprises operating the systems can proactively manage their respective 
outage responsibilities to minimize the overall risk of any outage. TL 9000 
factors outage attributability into product or supplier - attributable, enterprise -
 attributable, and external - attributable outages, and this taxonomy is applica-
ble to a wide range of systems. 

  1.     Product - attributable  or  supplier - attributable outage.     Some outages 
are primarily attributable to the design or failure of the system ’ s soft-
ware or hardware itself. The telecommunications industry defi nes 
product - attributable outages  [TL9000]  as follows:
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1.7 Outage Attributability 15

  An outage primarily triggered by 
  a)     the system design, hardware, software, components or other parts of the 

system,  
  b)     scheduled outage necessitated by the design of the system,  
  c)     support activities performed or prescribed by an organization  [system 

supplier]  including documentation, training, engineering, ordering, installa-
tion, maintenance, technical assistance, software or hardware change 
actions, etc.,  

  d)     procedural error caused by the organization  [system supplier] ,  
  e)     the system failing to provide the necessary information to conduct a 

conclusive root cause determination, or  
  f)     one or more of the above.       

  2.     Enterprise - attributable outage.     Some outages are primarily attribut-
able to actions or inactions of the enterprise operating the equipment. 
The telecommunications industry defi nes this category (called  cus-
tomer - attributable outage , in which  customer  refers to the enterprise 
operating the equipment) as follows  [TL9000] :
  An outage that is primarily attributable to the customer ’ s  [enterprise ’ s]  
equipment or support activities triggered by 
  a)     customer  [enterprise]  procedural errors,  
  b)     offi ce environment, for example power, grounding, temperature, humidity, 

or security problems, or  
  c)     one or more of the above.       

  3.     External - attributable outage.     Some outages are attributable to exter-
nal events beyond the control of either the enterprise operating the 
system or the system supplier. The telecommunications industry defi nes 
this category as follows  [TL9000] :
  Outages caused by natural disasters such as tornadoes or fl oods, and outages 
caused by third parties not associated with the customer or the organization 
such as commercial power failures, 3rd party contractors not working on 
behalf of the organization  [system supplier]  or customer  [enterprise] .      

 Real outages may have a primary cause and one or more contributing factors 
that caused the outage impact either to increase (e.g., via a failure cascade) 
or to prolong outage recovery, or both. For example, the primary cause of a 
fl at tire may be an external - attributable road hazard like a nail, but the outage 
may be prolonged if the driver ( enterprise , per the taxonomy above) is unable 
or unwilling to repair the tire himself and had not previously joined an auto-
mobile club that could quickly arrange for a repair technician to change the 
tire. Interestingly, outages are occasionally prolonged by enterprises for delib-
erate policy reasons. For example, if a small - capacity loss outage occurs on a 
system during a peak usage period and recovering service will require taking 
the entire system out of service briefl y (e.g., to restart the system), then the 
enterprise may elect to defer the system recovery to an off - peak period to 
minimize service impact to other users. Conversely, if an outage occurs in an 
off - peak period, then under certain circumstances the enterprise may elect to 
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defer system recovery to normal business hours to avoid the incremental cost 
of paying maintenance staff overtime to perform the work in off - hours. While 
the downtime associated with an initial product - attributable failure and unde-
layed service recovery might reasonably be assigned to the supplier, additional 
service downtime accrued due to deliberately deferred service recovery should 
be assigned to the enterprise. 

 Obviously, system integrators and suppliers should focus on minimizing 
product - attributable outage causes, and enterprises should focus on both mini-
mizing enterprise - attributable outages and mitigating the risk of external -
 attributable events. For example, enterprises can install uninterruptable power 
supplies to mitigate the risk of variations and disruption in external, commer-
cial AC power. System integrators and equipment suppliers often provide 
recommendations and guidance to enterprises to minimize risk of enterprise -  
and external - attributable outages, such as offering training for enterprise staff 
to minimize risk of human error.  

   1.8    HARDWARE RELIABILITY 

 System hardware is packaged in fi eld - replaceable units (FRUs) that can be 
individually replaced. Replaceable parts on home appliances, automobiles, 
computer systems, and other products are FRUs. Hardware reliability 
addresses how often each of these FRUs will fail. The following sections give 
a basic review of hardware reliability, service life, and return rates, and 
discusses typical system considerations related to hardware reliability. 

   1.8.1    Hardware Reliability Background 

 Hardware reliability is much better understood than software or system 
reliability for several reasons. First, hardware fails for physical reasons, and 
persistent (versus transient) hardware failures can be thoroughly analyzed 
to determine the precise failure mode and the likely root cause(s). Second, 
since early electronic hardware (e.g., vacuum tubes) was often prone to high 
failure rates, engineers have been working to understand and improve hard-
ware reliability since at least World War II and the physics of hardware failure 
are now well understood. Third, actual hardware reliability of deployed ele-
ments is generally easier to measure in the fi eld than software reliability 
because hardware failures generally require physical replacement of failed 
FRUs and/or rework of failed connections to repair, rather than simply restart-
ing, a system, or reseating an FRU that reboots some or all of a system ’ s 
software. 

 Hardware failure rates generally follow the so - called  “ bathtub curve ”  
illustrated in Figure  1.5 . The X - axis shows operational time and the Y - axis 
shows failure intensity or rate. Some FRUs will quickly fail to operate because 
of weak components, solder joints, or manufacturing quality factors. FRUs that 
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1.8 Hardware Reliability 17

fail to operate the fi rst time they are powered on in the fi eld are often called 
 “ dead on arrival ”  (DOA). Over the fi rst days and weeks of operation, some 
poorly manufactured parts and assemblies are likely to fail; the time when 
weak FRUs fall out is called the  “ infant mortality period ” . The rate of early 
life failures declines quickly as the weak hardware fails and the failure rate 
stabilizes; the period of stable hardware failure rate is called the  “ useful ser-
vice - life period. ”  As the useful lifetime of the hardware expires, the hardware 
enters the wear - out phase and the rate of hardware failures increases due to 
wear - out factors. At some point in the wear - out phase, all hardware elements 
will have failed, and thus the curve ends.    

   1.8.2    Hardware Reliability Prediction 

 Hardware failure rate prediction methodologies estimate the failure rate in 
the useful - life period. MIL - HDBK - 217F  [MIL217F]  and Telcordia ’ s SR - 332 
 [SR332]  standards for hardware reliability prediction are common in the 
industry. Prediction methodologies consider various factors, including the 
parts used in the design and assumptions about operational characteristics like 
ambient temperature. Assumptions and prediction models tend to be conser-
vative, so observed hardware failure rates during useful - life periods are often 
much lower than standard prediction methodologies calculate. As customers 
expect hardware failure rates to be less than predicted failure rates throughout 
the useful service life, hardware suppliers have historically been motivated to 
give conservative hardware failure rate predictions to minimize the risk of 
exceeding offi cial  “ predicted ”  hardware failure rates. Since different predic-
tion methodologies and different prediction assumptions can give signifi cantly 
different failure rates, it is useful to calibrate and validate a supplier ’ s predic-
tions against historical data to understand how pessimistic or realistic their 
predictions are likely to be. Hardware failure rates are highly dependent on 
temperature; the higher the temperature, the higher the hardware failure rate 

     Figure 1.5      “ Bathtub ”  Hardware 
Failure Rate Curve  
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18 Chapter 1 Reliability and Availability Concepts

and perhaps the shorter the useful service life. Thus, if the assumed ambient 
temperatures are not consistent with the actual ambient temperatures of 
deployed systems, then the predicted hardware failure rates can be different 
from actual observed values. 

 Hardware failure rates are commonly expressed as  “ failures in 1 billion 
hours ”  (FITs). Alternately, hardware failure rates may be expressed as  “ mean 
time between failures ”  (MTBF). MTBF and FIT rates are mathematically 
related as

   MTBF
FITs

Hours = 1 000 000 000, , ,    

   1.8.3    Hardware Service Life 

 Although MTBF and service life are often expressed in the same unit (hours 
or years), they are completely different concepts. Hardware service life is the 
period that hardware should operate before the hardware failure rate rises 
above the predicted hardware failure rate as wear - out failures increase. A 
predicted hardware failure rate estimates the rate of failure during the useful 
service life, rather than during the wear - our or infant mortality periods. While 
the hardware service life of most electronic devices is signifi cantly longer than 
the expected useful life of the system those devices are in, some devices with 
mechanical parts may have service lives that are shorter than the expected 
useful life of the system. As hard disk drives have moving parts with lubricated 
bearings, they generally have a hardware service lifetime of less than 5 years. 
For example, a hard disk drive manufacturer may quote a mean time between 
failures (MTBF) of 1 million hours, which is mathematically equivalent to a 
predicted failure rate of 10  − 6  failures per hour (10  − 6  is the mathematical recip-
rocal of 10 6  MTBF). The designed hardware service lifetime might be 5 years 
(43,430 hours) and the predicted hardware failure rate during that useful 
lifetime might be 10  − 6  hardware failures per unit per hour. An MTBF of 1 
million hours is equivalent to an MTBF of 114 years, but with a designed 
hardware service life of 5 years, very few units will survive to even 10 years. 
Experience and common sense assures us that the moving parts in a typical 
hard disk drive will wear out after  far less  than a century of actual service. 
Figure  1.6  graphically illustrates this example for a hypothetical hard disk 
drive.   

 Service life creates a reliability risk if customers expect to keep the system 
in service beyond the designed hardware service life of any individual FRUs 
because of the increasing hardware failure rate that occurs after the FRU 
enters its wear - out phase. Having some FRUs with a shorter lifetime in a 
complex system is a very common phenomenon. For example, consumers 
expect to replace the tires and battery on their car at least once before the car 
wears out, and they accept that light bulbs, appliances, carpets, roofs, and so 
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on will require replacement long before their house reaches the end of its 
useful life. Thus, system suppliers should carefully design to assure that hard-
ware elements that are likely to fail before the system reaches the end of its 
designed hardware service life can be easily replaced. Just as light bulbs, bat-
teries, and tires can be replaced relatively easily, failed fans, hard disks, bat-
teries, and so on should be easily replaceable in the fi eld so that customers 
are not forced to endure prolonged service disruption or exceptional expense 
to replace worn - out hardware components. Like automobile manufacturers 
recommending maintenance schedules to replace fi lters, tires, batteries, and 
other components that are not designed to last the entire useful service life of 
the automobile, both hardware and system suppliers should clearly communi-
cate the service - life expectation of any FRUs that are expected to wear out 
before the system itself reaches the end of its useful service life.  

   1.8.4    Hardware Return Rates 

 While some system hardware elements like batteries and fans are considered 
consumable and are discarded on failure, most hardware will be repaired fol-
lowing failure. For repairable hardware, the rate at which hardware elements 
are returned for repair is a common measure of hardware reliability, and 
hardware return rates are a reasonable proxy for the hardware failures that 
customers experience for nonconsumable hardware units. Hardware return 
rate measures are generally expressed as  annualized return rates , and may be 
further subdivided into  time windows , such as TL 9000 ’ s metrics: 

   •      Early Return Index (ERI) measures hardware returns in the fi rst 6 
months after shipment.  

   •      Yearly Return Rate (YRR) measures hardware returns 7 to 18 months 
after shipment.  

   •      Long - Term Return Rate (LTR) measures hardware returns more than 
18 months after shipment.    

     Figure 1.6     MTBF and Service Life of Sample Hard Disk Drive  
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 Hardware reliability predictions can be converted to equivalent annualized 
return rate predictions as follows:

   Re turnRate
MTBF

Annualized
Annual

= 1
 

   Re
. ,

turnRate
MTBF MTBF

Annualized
Hourly Hourly

= ∗ =24 365 25 8 766
 

   Re
.

, , , ,
turnRate

FITs FITs
Annualized = ∗ ∗ =24 365 25

1 000 000 000 114 0777
  

 As explained in Section  1.8.2 ,  “ Hardware Reliability Prediction, ”  hard-
ware suppliers often use fairly conservative assumptions so that the best 
estimate of actual return rates will generally be below prediction. 

 The hardware return rate metric is complicated by several factors: 

  1.     Not all hardware returns are attributed to hardware failures.     Inevitably, 
some returned hardware FRUs will be tested at the repair center and 
found to function properly with  no trouble found  (abbreviated  NTF ; 
sometimes called  no fault found — NFF ). No - trouble - found hardware 
is generally attributed to a variety of causes including software failures 
misdiagnosed as hardware failures, and diagnostic failures in which 
functional hardware was incorrectly deemed to have failed and was 
thus returned. In addition, unused materials may also be returned to 
the supplier because too much material was ordered, or because the 
order was changed or canceled or for other reasons. Hardware may 
also be returned in response to product recall or change notices to have 
recommended corrective changes applied. The percentage of con-
fi rmed hardware failures as a portion of total returns often varies sig-
nifi cantly based on the nature of the FRU. High NTF rates are a 
concern because although the hardware reliability does not appear to 
be a problem, one or more root causes are forcing customers to spend 
effort and cost to manually remove and return hardware that had not 
failed.  

  2.     Uncertainty in the actual number of FRUs in service to normalize 
returns against.     It is very easy for hardware suppliers to count how 
many FRUs are shipped from their factory, but it is not very easy to 
know how many FRUs are actually in service. There is always a delay 
between the time an FRU is shipped from a factory to the time that 
the FRU is installed in a system and powered on. Some individual 
FRUs will be promptly delivered to customer sites, installed and 
powered on; other FRUs will endure logistics or staging delays; some 
FRUs will be stocked as spares, and may not be installed for years; 
some FRUs may never even be sold. The uncertainty of actual number 
of FRUs in service is often highest in the early months of production 
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as the logistics and delivery process is being refi ned and spares pools 
are created.  

  3.     Uncertainty of in - service time of individual returned FRUs.     Because 
complex systems are generally built from many different FRUs and 
systems cannot go into service until all required FRUs are available 
on - site, installed, confi gured, and brought into service, variable logistic 
and business delays add uncertainty between the time a FRU was 
shipped by the hardware supplier and the time the FRU begins normal, 
continuous operation. In addition, some FRUs will be held as spares, 
and these may spend months or longer in factory packaging without 
ever being powered on. Thus, it may be hard to reliably determine 
how many hours of service a particular FRU sustained before it was 
returned. Just as automobiles include odometers to maintain a per-
sistent count of the distance driven, the best practice is for each FRU 
to record wear - out - related parameters like power - on hours and 
maximum operating temperature in persistent - on - FRU storage as part 
of an  “ odometer. ”   

  4.     Not all failures are returned to the equipment manufacturer ’ s autho-
rized repair center.     Just as automobile owners are not required to take 
their cars to factory authorized service centers for repairs, system 
owners may send their failed FRUs to competitive repair centers, and 
thus hardware suppliers may have no visibility or knowledge of those 
failures. With inexpensive or short service life FRUs, customers may 
simply discard the failed unit rather than returning it for repair.    

 Despite these complicating factors, hardware return rates are an excellent 
measure of actual hardware reliability. Hardware suppliers should be able to 
provide return rate data for each FRU, and the confi rmed hardware failure 
rate should be well below predicted hardware failure rate. If the overall return 
rate is above prediction or the no trouble found rate is substantial, then there 
is signifi cant risk that system owners may experience higher apparent hard-
ware failure rates than predicted. After all, a perceived hardware failure (even 
if it is later deemed to be  “ no trouble found ”  by the repair center) causes 
maintenance engineers to take the time to replace a FRU and the expense 
of returning that FRU, restocking a spare, and so on. From the system owner ’ s 
perspective, a confi rmed hardware failure and a no trouble found failure have 
similar cost, but the no trouble found pack may offer an incremental intangible 
cost of uncertainty surrounding the true root cause of the failure and thus 
elevated risk of failure recurrence.  

   1.8.5    Hardware Reliability Considerations 

 The primary considerations when selecting hardware are obviously functional-
ity ones, such as: 
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22 Chapter 1 Reliability and Availability Concepts

   •       Does the hardware deliver the required functionality with adequate 
performance?   

   •       Does the hardware meet the physical design requirements?  (e.g., size, 
weight, form factor, power)  

   •       Does the hardware operate reliably in the target environment?  (e.g., 
temperature and humidity range, shock and vibration tolerance, pres-
ence of dust and corrosive gases, altitude, etc.)  

   •       Does the hardware meet the cost target?     

 Hardware reliability is a secondary consideration for hardware options that 
meet the primary requirements. The fundamental business question when 
considering hardware reliability is 

   •       Will the hardware failure rate be acceptably low throughout the 
system ’ s designed service life?     

 Note that higher hardware failure rates may lead to higher operating 
expenses associated with increased hardware returns and sparing - related 
expenses. Acceptability of hardware failure rates is fundamentally driven by 
how often customers will tolerate executing hardware repairs or maintenance 
actions on the overall system. Just as consumers evaluate reliability of their 
automobile based on how often the car is in the shop rather than on the failure 
rate of individual subsystems or components, system owners are likely to 
consider how often they have to replace any board or FRU on a system rather 
than the failure rate of individual blades. Thus, there is likely to be some fl ex-
ibility in failure rate requirements of individual FRUs so long as the overall 
hardware failure rate remains low enough that the customer doesn ’ t have to 
repair hardware too often. Deep knowledge of customer expectations enables 
one to estimate the maximum acceptable system hardware repair rate, and 
manage individual FRU failure rates to be low enough to meet the overall 
system target. 

 End customers will expect hardware reliability to be below predicted 
failure rates and may include business remedies, such as contractual penalties 
with liquidated damages, if hardware returns exceed predicted values. System 
suppliers should assure that appropriate business arrangements are made with 
original equipment manufacturers so that risk of premature (i.e., warranty) or 
excessive hardware failures is covered by the hardware manufacturer who is 
best equipped to manage the risk.   

   1.9    SOFTWARE RELIABILITY 

 Although software doesn ’ t physically break or fail in a persistent way that can 
be easily examined with an optical or electron microscope, it does fail or crash. 
Figure  1.7  shows an instance of the infamous  blue screen of death  software 
failure from Microsoft Windows  ®  , which many readers will have personally 
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experienced. In addition to the dramatic  “ blue screen, ”  a critical software 
failure event may simply be called a  crash  or  system hang . Practically speaking, 
software reliability is measured as the rate of critical software failures (e.g., 
crashes, hangs, blue screens), as in  “ application X crashes once a month unless 
we reboot the system. ”    

  Software reliability growth theory   [Musa89]  posits that there are a fi nite 
number of defects in a piece of software that can be exposed in a particular 
operational profi le. While hardware wears out over time, software does not; 
new defects don ’ t spontaneously arise over time in software as cracks and 
physical breakdowns arise in hardware. Thus, as residual software defects are 
discovered and removed, there are fewer defects left to be exposed in a par-
ticular operational profi le. Fewer critical residual software defects should be 
encountered less frequently in normal operation, and thus should yield a lower 
software failure rate. This is generally demonstrated in maintenance or patch 
releases, which are often more stable and reliable than major releases of soft-
ware because major releases inevitably introduce new defects along with new 
features, while maintenance or patch releases focus on removing software 
defects. Since new defects are seldom introduced when a software defect is 
fi xed, each critical defect removed is essentially one less residual defect to 
cause a software failure in the fi eld. 

     Figure 1.7     Blue Screen of Death 

   Source:     Figure taken from Wikipedia, http://en.wikipedia.org/wiki/File:Windows_XP_BSOD.

png, June 15, 2010 .   
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 The next section defi nes operational profi les, describes software reliability 
growth theory, reviews several residual defect prediction techniques, and dis-
cusses how to evaluate prediction results. 

   1.9.1    Operational Profi le 

 Operational profi le characterizes how a system interacts with other elements 
in the enterprise ’ s solution to deliver services to end users. A particular system 
can often be used in several different operational profi les, each of which may 
stress the system in slightly different ways, thus exposing somewhat different 
residual faults. For example, a four - door sedan automobile can be used both 
to carry passengers on paved roads and to haul bricks on dirt roads. Each of 
these profi les exposes the automobile to different shock, vibration, and 
mechanical stress, and thus the time to fi rst failure of the automobile may be 
different in each of these two operational profi les. System testing should 
refl ect the operation profi le(s) that the deployed system will experience to 
assure that the vast majority of design and residual defects are discovered and 
corrected before fi eld deployment. 

 Note that the operational profi le of a deployed system can be changed by 
an enterprise after the system is deployed. For example, an enterprise (or 
perhaps even their end users) can change their policies and begin using names 
and strings containing Asian characters. While Western character sets such as 
ASCII can often be encoded as a single byte per character, Asian characters 
require two or more bytes per character, and thus the logic for manipulating 
and encoding Western and Asian character sets may be somewhat different. 
If Asian characters were not included in the system ’ s test campaign, then there 
is a higher risk that residual defects will be encountered in fi eld operations 
with Asian characters, such as importing and exporting system information 
via text confi guration fi les. Hence, differences between  tested  operational 
profi les and  fi eld  operational profi les present gaps in testing through which 
undiscovered software defects can escape to the fi eld.  

   1.9.2    Software Reliability Growth Theory 

 When testing a system, residual defects are methodically exposed, so they can 
then be debugged and corrected. Discovery of residual defects generally pro-
gresses as shown in Figure  1.8 . The X - axis shows the cumulative time system 
testers spend executing tests against the target system; the Y - axis shows cumu-
lative number of defects discovered. Defect discovery often starts slowly as 
the test team progresses through a  “  learning phase  ”  during which they become 
familiar with both the system and the test tools. As testers gain experience, 
their productivity increases and they enter a  “ linear phase ”  in which they 
discover defects fairly regularly as new test cases are executed and defects are 
exposed and recorded. This consistent defect discovery rate is shown as the 
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 linear phase  of defect discovery. Defects discovered throughout the test inter-
val will generally be promptly fi xed and new or patched software loads will 
be delivered to system test. These patched loads should enable system test to 
cover system functionality that may have been previously blocked by software 
defects. Thus, as more defects are discovered and removed, system test can 
verify more and more system functionality. Inevitably, a fraction of the defect 
corrections will themselves be defective, so some rework of defect correction 
(sometimes called  “ fi x on fi x ” ) will be necessary. The rate of defective fi xes 
should be very small, and thus the total number of residual defects should not 
increase signifi cantly after software development is complete and formal 
system testing begins. After suffi cient testing, debugging, and defect correction, 
the number of residual defects shrinks to the point that it becomes harder and 
harder for testers to discover previously unknown residual defects, and thus 
the previously linear discovery rate begins to fl atten out. This transition from 
linear defect discovery rate to decreasing defect discovery rate characterizes 
the  “ reliability growth phase. ”  As the number of discovered defects asymptoti-
cally approaches the fi nite number of defects originally accessible to the piece 
of software in the particular operational profi le, it takes more and more test 
effort to discover residual defects. At some point, the number of residual 
defects is so small that the system will operate with an acceptably low software 
failure rate, and the software enters the  “ stabilization phase. ”  As testing costs 
money and adds time to the schedule, a key business question is deciding 
when suffi cient testing has been executed to assure that the system will be 
acceptably reliable.   

 Note that the X - axis in Figure  1.8  is labeled  “ cumulative testing time ”  
rather than calendar time. This is because the independent variable that drives 
defect discovery during testing is actual test effort, rather than calendar time. 
The distinction between  “ testing time ”  and  “ calendar time ”  is important 
because test effort is rarely uniform across a 7 - day week, and effort per week 
is rarely uniform across the entire test period. For example, test staff will take 
vacations and will have other work commitments like training and supporting 
other projects or releases that reduce their test time. System software failures 

     Figure 1.8     Canonical Software Reliability Growth  
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may block some test cases and hardware failures may render test cells unavail-
able for testing. Also, testers may be more likely to work overtime toward the 
end of the test interval than they are in the start of the test interval. Normalizing 
defect discovery against cumulative testing time should factor real world varia-
tions out of the data, and thus produce a more accurate curve that is easier to 
interpret. A practical benefi t of plotting cumulative test time on the X - axis is 
that it makes planning easier because one can directly estimate the test effort 
required between any two points on the curve.  

   1.9.3    Estimating Residual Defects 

 The number of residual defects can be estimated using a number of software 
quality methodologies, including  [Demarco86] ,  [Humphrey89] ,  [Lyu96] , or 
 [Musa89] . Software reliability growth modeling  [Musa89]  has several advan-
tages over some traditional software quality methodologies, including: 

  1.      It does not require deep knowledge of process performance of specifi -
cation, design, and coding activities.  Importantly, this means that one 
can consider the behavior of software modules that were developed by 
others (e.g., third parties, open source, or reused modules) for which 
no process performance data is available.  

  2.      It provides an intuitive visualization that is easy for all members of a 
project team to understand.   

  3.      Required input data is easy to acquire.     

 Figure  1.9  shows a sample software reliability growth curve with a vertical 
line showing  “ system release ”  after hundreds, thousands, or more hours of 
cumulative testing time. The slope of the software reliability growth curve 
shows the rate at which critical software defects are discovered, often expressed 
as number of hours or days of testing estimated to discover the next previously 

     Figure 1.9     Estimating Residual Defects from Software Reliability Growth Model  
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unknown defect. As system testing is designed to mirror the operational 
profi le of target customers, system testing should be a form of highly acceler-
ated stress testing of the system because testers are deliberately trying to stress 
the system. Thus, the longer it is estimated to take dedicated system testers 
to expose a previously unknown residual defect, the longer it should take an 
enterprise or end user to encounter a previously unknown residual defect. The 
gap between the number of defects discovered at the time of system release 
and the asymptotic number of defects estimated by the software reliability 
growth curve estimates the number of residual defects.   

 The physics of hardware failure enables one to reliably estimate the failure 
acceleration factor due to elevated temperatures, and so on, in highly acceler-
ated stress testing of hardware. Unfortunately, the  “ physics ”  of software fail-
ures is far messier than the physics of hardware failure, and thus there is far 
more uncertainty in estimating the  “ acceleration ”  or calibration factor between 
the defect discovery rate in lab testing and the critical software failure rate in 
fi eld operation. Nevertheless, assuming system testing is mirroring the opera-
tional profi le(s) of fi eld deployments, one expects a rough correlation between 
the defect discovery rate at system release and the critical failure rate in fi eld 
operation.  

   1.9.4    Calibrating Residual Defect Models 

 While it theoretically takes infi nite time to activate all residual defects and 
perfect debugging to determine which are truly  new  residual defects versus 
activation of previously known defects, project teams generally can estimate 
the minimum effective asymptotic number of critical defects after about a year 
of fi eld deployment by summing both the number of unique fi eld - found defects 
and the number of additional, previously unknown defects that were discov-
ered when testing maintenance and patch loads on the release. Depending on 
operational policies of enterprises operating the system and their support 
agreements with the system supplier, some or all of those failures may be 
reported back to the system supplier for analysis and corrective action. Thus, 
while a system supplier may never know exactly how many residual critical 
software defects were in a piece of software released to the fi eld, the supplier 
often knows the minimum number of residual critical defects that were present 
based on what defects were subsequently detected by customers or while 
developing and testing maintenance releases or patches. This minimum effec-
tive asymptotic number of estimated critical defects can be compared to the 
number of defects predicted by the software reliability growth or other defect 
prediction model used. Since system testing inherently differs from actual fi eld 
deployment in a variety of ways, there may be somewhat more observed 
residual defects than were estimated from modeling of system test data. 
Nevertheless, system testers should constantly strive to make their test 
confi gurations better refl ect actual operational profi les to improve the 
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effectiveness of their testing, and thereby improve the expected prediction 
accuracy of residual defects based on system test data. 

 While it is often diffi cult to accurately and quantitatively extrapolate a 
single test or analysis result to likely fi eld availability of a particular release, 
it is often insightful to compare and contrast test results from historic releases 
and current release against actual fi eld performance of historic releases to 
triangulate a best estimate of reliability and availability. For example, Figure 
 1.10  overlays the software reliability growth analysis of two releases of a real 
system. Although R2 benefi ted from signifi cantly more test time than R1, 
there appear to be far fewer critical defects and thus R2 should have a signifi -
cantly lower software failure rate than R1. By combining this R2 - versus - R1 
comparison data with other R2 to R1 comparison data, one can estimate a 
range of how much lower the critical software failure rate of R2 is likely to 
be relative to R1. A software reliability growth curve, especially one that 
overlays previous release data like Figure  1.10 , is often very useful to decision 
makers when evaluating software readiness for release.     

   1.10    PROBLEMS 

    1.       Give three examples of fault activation that lead to service failure.  

  2.       Give three examples of a failure cascade.  

  3.       One 30 - minute total outage and one 10 - minute partial outage impacting half of a 
system ’ s capacity occur across a population of 15 systems deployed in August; what 
is the service availability for the month?  

  4.       What is the difference between MTBF and designed service life of hardware?  

  5.       A particular FRU is predicted to have 10,000 FITs. What percentage of these FRUs 
is likely to fail per year during the unit ’ s designed service life?  

  6.       A system is built of fi ve FRUs, each with 10,000 FITs. What is the annual predicted 
rate of hardware maintenance actions per system?  

     Figure 1.10     Comparing Software Reliability Growth of Different Software Releases  
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  7.       A particular FRU is predicted to have 10,000 - hour MTBF. What percentage of these 
FRUs is likely to fail per year during the unit ’ s designed service life?     

   1.11    FOR FURTHER STUDY 

  [TL9000]  offers formal and rigorous guidance on quantitative measurement 
of service availability and hardware reliability.  [Lyu96]  and  [Musa89]  offer 
more information on software reliability and  [O ’ Connor04]  covers hardware 
reliability.    
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