
 Part One

Reliability Basics

c01.indd 1c01.indd 1 8/5/2010 4:33:21 PM8/5/2010 4:33:21 PM

CO
PYRIG

HTED
 M

ATERIA
L

c01.indd 2c01.indd 2 8/5/2010 4:33:21 PM8/5/2010 4:33:21 PM

3

Design for Reliability: Information and Computer-Based Systems, by Eric Bauer
Copyright © 2010 Institute of Electrical and Electronics Engineers

 Chapter 1

Reliability and
Availability Concepts

 This chapter reviews the basics that underpin system design for reliability:

 • Defi nitions of reliability and availability in the context of systems and
services

 • How faults are activated to become errors and evolve into failures

 • Failure recovery and high availability

 • Quantifying downtime and service availability

 • Attributing responsibility for downtime and outages

 • Overviews of hardware and software reliability

 1.1 RELIABILITY AND AVAILABILITY

 Reliability is defi ned by the IEEE as “ the ability of a system or component to
perform its required functions under stated conditions for a specifi ed period of
time ” [IEEE610] . For example, a failure rate, such as the frequency of software
crash or failure, measures reliability; mean time to fi rst failure is a simple reli-
ability metric.

 Availabilit y is defi ned as “ the degree to which a system or component is
operational and accessible when required for use ” [IEEE610] . For example, the
probability that a car will start is a measure of the car ’ s availability. A simple
mathematical formula to compute service availability is:

 Availability
Uptime

Uptime Downtime
=

+

c01.indd 3c01.indd 3 8/5/2010 4:33:21 PM8/5/2010 4:33:21 PM

4 Chapter 1 Reliability and Availability Concepts

 Since both the numerator and denominator of the formula are in the same
units (time), the units cancel out and the value of availability becomes dimen-
sionless. Because availability is dimensionless, it is generally expressed as a
percentage, such as 99.999% or “ fi ve 9 ’ s. ” Table 1.1 shows the relationship
between number of 9 ’ s and down - minutes per system per year.

 Table 1.1 Availability as a Function of Number of 9 ’ s

 Number of 9 ’ s Availability Annualized down -
 minutes per system

 Practical meaning

 1 90% 52596.00 Down 5 weeks per year
 2 99% 5259.60 Down 4 days per year
 3 99.9% 525.96 Down 9 hours per year
 4 99.99% 52.60 Down 1 hour per year
 5 99.999% 5.26 Down 5 minutes per year
 6 99.9999% 0.53 Down 30 seconds per year
 7 99.99999% 0.05 Down 3 seconds per year

 Note that although many people speak of “ 99.999% system reliability, ”
they often actually mean fi ve 9 ’ s service availability .

 Service availability is essentially based on the simple model that a system
is either “ up ” or “ down, ” and transitions between those states are fairly well
understood; this abstraction maps well to critical service failure events, such
as system crashes. However, failures occur that can cause a few isolated opera-
tions to fail without bringing the system down. Readers will be familiar with
these service failures, such as when their wireless calls drop or fail to complete,
or when they have to use the “ reload ” button on their web browser to reload
a page that did not display properly. Assuming the network or server did not
actually go down, the service failure will not be refl ected in the service avail-
ability metric. Service reliability measures the rate of successful user interac-
tions or transactions when the system is up, such as rate of successful
transactions, successful call completions, or successful web page displays. As
service reliability is often very good, it is often more convenient to measure
service un reliability as defective transactions or interactions per million
attempts. For example, 15 web page loads per million might fail, or 37 data-
base update transactions might fail per million attempts, or 27 calls per million
attempts may fail to be established with acceptable voice quality. Although
the servers or network probably did not go down, some individual users expe-
rienced unacceptable service. Thus, users experience unacceptable service
either when the system is down (which is measured via service unavailability)
or when the system is up but fails to complete their service request properly
(which is measured via service unreliability). This book addresses designing
systems that deliver both high service availability and high service
reliability.

c01.indd 4c01.indd 4 8/5/2010 4:33:21 PM8/5/2010 4:33:21 PM

1.2 Faults, Errors, and Failures 5

 1.2 FAULTS, ERRORS, AND FAILURES

 Failure is defi ned as “ the inability of a system or component to perform its
required functions within specifi ed performance requirements ” [IEEE610] .
 Error is primarily defi ned as “ the difference between a computed, observed, or
measured value or condition and the true, specifi ed, or theoretically correct value
or condition. For example, a difference of 30 meters between a computed result
and the correct result ” [IEEE610] . Fault is defi ned as “ (1) A defect in a hard-
ware device or component; for example, a short circuit or broken wire. (2) An
incorrect step, process, or data defi nition in a computer program ” [IEEE610] .
Faults are said to be activated to become errors, and errors can lead to failures.
For example, a software defect (fault) in the stopping condition of a do/while
loop is activated when executed to become an infi nite loop error , which pre-
vents the system from replying to a user ’ s request within the specifi ed time
and thus produces a service failure .

 Faults can be residual software defects, design weaknesses, or vulnerabili-
ties of internal components and external elements. Practical realities assure
that no large and complex software product is ever completely free of residual
software faults; defects are inevitable. Hardware components are vulnerable
to physical phenomena like bearing wearing out on hard disk drives that
eventually cause them to fail. Documented installation and planning guides,
procedural instructions, user interfaces, and so on can be unclear, incorrect,
misleading, or otherwise prompt humans who operate, administer, maintain,
or provision the system to perform incorrect actions. Unexpected, extraordi-
nary, and malicious inputs and conditions challenge deployed systems, and
these can exceed the system ’ s designed parameters or expose residual soft-
ware defects.

 Quality activities focus on reducing the number of residual defects in a
system ’ s software, hardware, and documentation through careful develop-
ment and testing processes. For example, written specifi cations, designs,
source code, test plans, and documentation are methodically reviewed and
diligently tested. Best - in - class quality organizations will often analyze defect
data to predict and quantitatively manage the number of residual software
defects (faults) to assure that a system is of appropriate quality before deploy-
ing a software release to customers.

 An error is an activation of a fault that causes incorrect behavior. Fault
activation is a function of the system ’ s profi le of operation, including operating
time, operational environment, workload, and other characteristics. Most
errors will be minor and not cause notable impact, but some may escalate to
cause some or all of a system to become incapable of functioning and thus
cause a service - affecting failure. For example, consider a common program-
ming error — not initializing a pointer or an array index variable that is used
to store or write data — as a sample fault. This fault would be activated by
executing the code that uses this pointer or array index variable. Depending
on the previous contents of the uninitialized variable, the value of other input

c01.indd 5c01.indd 5 8/5/2010 4:33:21 PM8/5/2010 4:33:21 PM

6 Chapter 1 Reliability and Availability Concepts

parameters, the system state, the application logic, and the memory map, the
system will attempt to write data to some location in the process ’ s address
space. If the computed pointer or array index value is outside of this process ’ s
writeable address space or the address is misaligned, then the CPU is likely
to raise a processor exception and the operating system is likely to cause
abnormal termination of the process, thereby producing a system error. If the
computed pointer or array index value is a properly aligned address within
the process ’ s writeable address space, then the data write is likely to complete
successfully without immediately producing a system error. If the system
accesses or executes memory that was compromised by the erroneous data
write, then a secondary error is likely.

 Some errors will escalate and catastrophically impact system operation,
thus causing critical failures. If a system doesn ’ t recover from the initial failure
promptly, then a cascade of secondary failures may be triggered. These con-
cepts are illustrated with an ordinary pneumatic tire on an automobile or truck
in Figure 1.1 . A nail on the road presents a hazard or fault that can be activated
by driving over it, thereby puncturing the tire to create a hole that leaks air
(an error). Over time, this air leak will cause a repairable tire failure, com-
monly called a “ fl at tire. ” If the driver doesn ’ t stop driving on a failed tire
quickly enough, then the tire will become irreparably damaged. If the driver
continues driving on a fl at tire even after the tire is damaged, then the wheel
rim will eventually be damaged.

 Figure 1.1 Fault Activation and Failures

 Robustness is defi ned as “ the degree to which a system or component can
function correctly in the presence of invalid inputs or stressful environmental
conditions ” [IEEE610] , which encompasses tolerance of hardware and soft-
ware faults as well as human and external faults.

 1.3 ERROR SEVERITY

 Errors are generally classifi ed by severity, with critical (often “ severity 1 ”),
 major (often “ severity 2 ”), and minor (often “ severity 3 ”) being commonly
used. For example, consider the defi nitions of critical , major , and minor severi-
ties from the telecommunication industry ’ s TL 9000 quality standard [TL9000] :

 Problem report — critical: Conditions that severely affect the primary functionality
of the product and because of the business impact to the customer requires
non - stop immediate corrective action, regardless of time of day or day of the week
as viewed by a customer on discussion with the [enterprise] such as:

c01.indd 6c01.indd 6 8/5/2010 4:33:21 PM8/5/2010 4:33:21 PM

1.4 Failure Recovery 7

 a) product inoperability (total or partial outage),
 b) a reduction in the capacity capability, that is, traffi c/data handling capability,

such that expected loads cannot be handled,
 c) any loss of emergency capability (for example, emergency 911 calls), or
 d) safety hazard or risk of security breach.

 Problem report — major : Product is usable, but a condition exists that seriously
degrades the product operation, maintenance or administration, etc., and requires
attention during pre - defi ned standard hours to resolve the situation. The urgency
is less than in critical situations because of a lesser immediate or impending effect
on problem performance, customers and the customer ’ s operation and revenue
such as
 a) reduction in product ’ s capacity (but still able to handle the expected load),
 b) any loss of administrative or maintenance visibility of the product and/or

diagnostic capability,
 c) repeated degradation of an essential component or function, or
 d) degradation of the product ’ s ability to provide any required notifi cation of

malfunction.

 Problem report — minor : Other problems of a lesser severity than “ critical ” or
 “ major ” such as conditions that have little or no impairment on the function of
the system.

 Note that some organizations formally or informally include a severity above
 critical such as emergency to capture extraordinary events of extreme scope
or duration — for example, a failure that is large enough to be reported as a
news item in trade publications or general media (e.g., Wall Street Journal ,
Cable News Network, etc.), or that will require external reporting (e.g., for
regulatory or contractual compliance), or that triggers liquidated damages
payments to customers for violating service - level agreements.

 1.4 FAILURE RECOVERY

 Failures are typically recovered or repaired by a process that follows three
simple steps: failure detection, failure isolation, and failure recovery. Consider
recovery illustrated in Figure 1.2 from the road hazard example of Figure 1.1 .
The example begins with the error of a hole in a tire that leaks air. Some cars
will automatically alert the driver when the tire pressure drops below a
minimum threshold, while other drivers must rely on a change to the feel of
the car ’ s handling, or increased road noise, or perhaps the honking and waving
of other drivers. If the road is rough or the driver is distracted or for other
reasons, then the driver may not detect the failure right away. After detecting
the failure, the driver must safely stop the car. After stopping the car, the
driver inspects the tires to diagnose if a tire is fl at. While isolating a fl at (failed)
tire visually is often trivial, isolating failures to a specifi c repairable or replace-
able unit is often nontrivial. The failure is “ recovered ” by manually replacing
the failed tire with the spare. After installing the spare tire and stowing the

c01.indd 7c01.indd 7 8/5/2010 4:33:21 PM8/5/2010 4:33:21 PM

8 Chapter 1 Reliability and Availability Concepts

fl at tire, the car is again operational. This completes the unplanned downtime
associated with the tire failure. Eventually, a planned activity of repairing the
fl at tire, reinstalling the repaired tire and returning the spare tire to its stowage
compartment, must be completed. As the car is unavailable while the tire is
repaired and reinstalled, and the spare is returned to its compartment, that
period may be considered as planned downtime or planned unavailability.

 Generalizing the failure recovery example of Figure 1.2 , one can see the
three basic robustness steps:

 • Failure occurs.

 1. Error is detected by system or human being.
 2. Error is diagnosed to isolate failure to a repairable or recoverable

unit. While it is easy for a human being to visually diagnose which
tire has failed, most failures are not trivially isolated by simple visual
inspection. For example, consider the challenge of diagnosing typical
automobile engine failures to the specifi c component that must be
replaced. The mechanic may follow troubleshooting procedures that
rely on both on - board and off - board diagnostics to hypothesize
which replaceable unit has failed and must be replaced. If the
mechanic incorrectly diagnoses the failure (typically referred to as a
 diagnostic failure), then troubleshooting continues and another likely
component failure is hypothesized and that component is repaired
or replaced. Ineffective diagnostics can lead directly to higher repair
costs and longer unavailability incidents, as any car owner with an
intermittent or hard - to - diagnose failure can attest.

 3. Fault is repaired or recovered. Hardware failures are typically
repaired by replacing the failed module; software failures are often
repaired by restarting a process or the entire system; damaged data
may be restored from backup or repaired/rebuilt using system tools,
and so on.

 • Service is restored.

 Figure 1.2 Tire Failure as Simple
Robustness Example

c01.indd 8c01.indd 8 8/5/2010 4:33:21 PM8/5/2010 4:33:21 PM

1.5 Highly Available Systems 9

 Sometimes additional actions are required to restore the system to full opera-
tional redundancy and readiness (e.g., repairing the failed hardware and/or
restocking of spare equipment), but these repair actions are usually completed
on a nonemergency basis, and often are not service impacting.

 1.5 HIGHLY AVAILABLE SYSTEMS

 To reduce cost, typical consumer and commercial systems are permitted to
experience some unavailability during failure recovery or repair. For example,
tire failure, battery exhaustion of a portable electronic device, or software
crash of a PC application all require recovery or repair procedures that include
a period of service unavailability. In some commercial, industrial, public
safety, and other applications, service unavailability is so costly that it makes
business sense to invest more in system hardware, design, and development
to minimize service unavailability following failure. Highly available systems
are designed so that no single failure causes unacceptable service disruption.
To accomplish this, systems must be designed to detect, isolate, and recover
from failures very rapidly. Practically, this means that failure detection, isola-
tion, and recovery must be both automatic and highly reliable, and hardware
redundancy must be engineered into the system to rapidly recover from hard-
ware failures. A basic robustness strategy for a highly available system is
illustrated in Figure 1.3 .

 Figure 1.3 Simplifi ed View of High Availability

 Consider each step in Figure 1.3 separately:

 1. Failure. Hardware, software, human, or other failures will inevitably
occur.

 2. Automatic failure detection. Modern systems are designed to detect
failures via myriad mechanisms ranging from direct hardware mecha-
nisms like parity checks, to direct software mechanisms like return
codes or expiration of timeouts, to environmental sensors like tempera-
ture or moisture sensors, to sophisticated indirect mechanisms like

c01.indd 9c01.indd 9 8/5/2010 4:33:21 PM8/5/2010 4:33:21 PM

10 Chapter 1 Reliability and Availability Concepts

throughput monitors. Highly available systems will have several tiers
of failure detection so that if one detection tier misses the event, then
another tier will catch it some time later.

 3. Automatic failure isolation. The system must correctly diagnose or
isolate the failure to the appropriate recoverable module so that proper
recovery action can be initiated. Fault isolation should be as fast as
possible so that failure recovery action can be promptly activated to
shorten service outage, but not so hasty as to incorrectly isolate the
failure and activate a wrong recovery action. In addition to prolonging
the outage event, activating the wrong recovery mechanism (e.g.,
restarting the wrong software module or rebooting the wrong proces-
sor) may unnecessarily impact end users who were not affected by the
failure event itself. The situation when a failure is not isolated to the
correct recoverable or repairable module is called a diagnostic failure .

 4. Automatic failure recovery. After isolating the failure to the proper
recoverable module, then highly available systems will automatically
activate the recovery action, such as switching service to a redundant
module or restarting a software module.

 5. Service restored. The system returns to normal operation when service
is restored onto the redundant module.

 In high availability systems, failure detection, isolation, and recovery
occur automatically, and the duration of impact to service should be minimal.
Typical high availability systems will automatically detect, isolate, and recover
from failures in seconds, but some special purpose systems like optical
transmission equipment will detect, isolate, and recover from failures in
milliseconds.

 If a failure is not automatically detected by the system, then a so called
 “ silent failure ” situation will exist in which service is not delivered but recov-
ery actions are not activated because neither the system nor the human main-
tenance engineers are aware of the failure. A simple example of a silent failure
is a frozen water pipe: the pipe freezes, cracks, thaws, begins leaking water
silently, and will continue leaking until it is manually detected and the water
is manually shutoff. Silent failures are sometimes euphemistically called sleep-
ing failures to indicate that the system hasn ’ t noticed the failure because it is
 “ asleep. ” For example, an underinfl ated or fl at spare tire may be sleeping in
an automobile for months or years before being detected. In contrast to sleep-
ing failures, a system might be “ dreaming ” that a module is operational when
it has actually failed, thus misleading surveillance and maintenance engineers.
For example, a defective fuel gauge in an automobile might incorrectly report
that there is fuel when the tank is actually empty. Depending on system archi-
tecture and the specifi c failure, these silent failures may directly impact users
(e.g., a server is down, but the operations team doesn ’ t know it) or they may
not immediately impact users but put the system into a simplex or vulnerable
state (e.g., spare tire is fl at, but the driver doesn ’ t know it).

c01.indd 10c01.indd 10 8/5/2010 4:33:21 PM8/5/2010 4:33:21 PM

1.5 Highly Available Systems 11

 If automatic failure detection, isolation, and recovery mechanisms are not
themselves highly reliable, then excess downtime will be accrued while human
beings manually detect, diagnose, and recover unsuccessful automatic failures,
as shown in Figure 1.4 . If the system does not automatically detect the initial
failure, then the failure will probably escalate or cascade to produce more
service impact until it is either automatically detected by the system or is
manually detected by a human operator. Note that highly available systems
typically have several tiers of automatic failure detection, isolation, and recov-
ery mechanisms to increase the overall likelihood of successful automatic
recovery. If the system ’ s automatic failure isolation indicts the wrong recover-
able module, then the automatic recovery action will not clear the failure, and
thus will require manual failure diagnosis by a human operator. If the auto-
matic recovery action fails, then intervention by a human operator will typi-
cally be required to clear the failed recovery and restore service. Assuming
that automatic failure detection, isolation, and recovery is at least moderately
effective, human operators who do detect a failure will often monitor the
status of automatic robustness operations before taking any manual action to
avoid disrupting automatic failure detection, isolation, and recovery actions
that could be progressing (perhaps slowly). Figure 1.4 illustrates the possible
interplay between automatic robustness mechanisms and manual recovery.

 Figure 1.4 Automatic and Manual Recovery

 In the real world, robust systems typically follow an elaborate automatic
recovery process. There are an infi nite number of possible failures that can
confront a system. Beyond hardware and software failures, other systems or
users can send malformed or malicious requests, human operators can make
mistakes, and supporting systems or infrastructure can fail. Myriad failure
detectors are integrated throughout the system, such as parity detectors in
hardware and timeouts in software. When these mechanisms detect a failure,

c01.indd 11c01.indd 11 8/5/2010 4:33:21 PM8/5/2010 4:33:21 PM

12 Chapter 1 Reliability and Availability Concepts

then alarm correlation software should isolate the true failure. A recovery
strategy is then executed, such as switching service to a redundant element,
or restarting a software module. Unfortunately, no single automatic recovery
strategy is always effective, and thus a secondary — often more severe — recov-
ery action may be required. For example, if restarting a failed process does
not restore service, then it may be necessary to restart all application software
on a processor or perhaps restart the processor or entire computer, or take
other recovery steps. Thus, the system monitors progress of the automatic
recovery, and if the system does not recover promptly, then a secondary
recovery mechanism may be activated. There are usually human operators
who are responsible for monitoring and maintaining systems, and if the
responsible human operators deem that automatic recovery is not progressing
acceptably, then they can initiate a manual recovery action. As a practical
matter, not all automatic recovery actions succeed either because automatic
failure detection, isolation, or recovery didn ’ t work properly, or because the
human operator didn ’ t want to wait long enough for automatic mechanisms
to complete.

 1.6 QUANTIFYING AVAILABILITY

 The period when service is available is called uptime ; the period when service
is unavailable is called downtime . While most personal and consumer electron-
ics devices support only a single user at a time, most enterprise and commer-
cial systems support many users simultaneously. To account for variations in
failure impact to end users for multiuser systems, one can prorate service
downtime by capacity lost. For example, a 10 - minute outage that impacts half
of a system ’ s users or capacity is logically equivalent to a total (100%) capacity
loss outage of 5 minutes. Prorating of capacity loss is a practical way to capture
the impact of smaller events that affect only a portion of a system ’ s users or
subscribers.

 Service downtime is the sum of outage duration prorated by capacity lost
for all failures in a particular time period. Mathematically, this is:

 Downtime OutageDuration PortionOfCapacityLostFailures= ∗∑

 Consider each of the input factors separately.

 • Portion of Capacity Lost captures the portion of system capacity that
was impacted by the service outage. Some events, such as power failure,
will render a system completely unavailable, and thus 100% of system
capacity is unavailable. Other failures may impact only a portion of a
system ’ s capacity, such as if users are distributed across several process
or hardware instances and one of those instances fails. For example, if
user data is distributed across 5 hard disks, each user ’ s data is confi ned
to a single hard disk, and we assume that users are uniformly distributed
across the fi ve hard disks, then the failure of a single hard disk will

c01.indd 12c01.indd 12 8/5/2010 4:33:21 PM8/5/2010 4:33:21 PM

1.6 Quantifying Availability 13

nominally impact 20% of the system ’ s users. Note that some systems
can experience partial functionality outages in addition to partial capac-
ity outages. For example, a voice - mail system might both record mes-
sages from callers and play back those recordings to subscribers; if one
of those functions fails (perhaps the system can play back previously
recorded messages but not record new messages), then that might be
considered a 50% loss of functionality and 50% could be used for
Portion of Capacity Lost.

 • Outage Duration is duration of service unavailability for the failure
event. Outage duration is normally measured in seconds or minutes and
lasts from start of service disruption until service is restored. This dura-
tion generally includes the time to detect, isolate, and recover service
from the failure.

 Section 1.1 explained that availability can also be expressed as:

 Availability
Uptime

Uptime Downtime
=

+

 Rather than explicitly calculating uptime, one can simplify the calculation to:

 Availability
TotalSystemMinutes DownMinutes

TotalSystemMinu
= −

ttes

 • TotalSystemMinutes represents the number of in - service systems mul-
tiplied by the number of minutes in the reporting period. For example,
the month of April has 30 days or 43,200 minutes (= 30 days times 24
hours per day times 60 minutes per hour). If 50 systems are in - service,
then the TotalSystemMinutes for April is 2,160,000 (= 50 systems times
43,200 minutes per system).

 • DownMinutes is the cumulative, prorated service downtime accrued
by the in - service systems in the reporting period. For example, assume
that in one 30 - day month, 50 deployed systems experience three
outages:
 1. 10 - minute outage impacting 25% of a single system ’ s users. For

example, assume that users are uniformly distributed across four
identical frontend processes on each system and one of those pro-
cesses failed.

 2. 20 - minute outage impacting one - third of a single system ’ s primary
functionality for all users. For example, consider a social networking
site that supports two broad functions: users can their own post
content, and users can search and read content posted by others and
themselves. If a failure prevents users from posting new content but
does not impact the ability to search and read previously posted
content, then that failure could be considered a 50% functionality
loss event.

c01.indd 13c01.indd 13 8/5/2010 4:33:22 PM8/5/2010 4:33:22 PM

14 Chapter 1 Reliability and Availability Concepts

 3. 30 - minute outage impacting all of a system ’ s users. For example,
imagine that a janitor plugs a vacuum cleaner into the same electrical
circuit providing electrical power to the server hosting the service,
and when the vacuum cleaner is turned on the circuit breaker
trips, thus causing power outage to the server and a total service
outage.

 Thus,

 Downtime = ∗ + ∗ + ∗ =10 25 20 50 30 100 42 5% % % .

 Availability = − = =2 160 000 42 5
2 160 000

2159957 5
2 160 000

0
, , .

, ,
.

, ,
.999998 99 998= . %

 Note that some service impairments may be so brief or minor that they will
not be classifi ed as outages. For example, few people would classify a momen-
tary disruption of residential AC power that caused lights to fl icker as a power
outage.

 Since there are 525,960 minutes per average year (365.25 days per average
year * 24 hours per day * 60 minutes per hour), annualized down - minutes are
often expressed as “ availability ” via the following formula:

 Availability
AnnualizedDownMinutesPerSystem= −525 960

525 960
,

,

 Five 9 ’ s (99.999%) availability works out to be 5.26 prorated down - minutes
per system per year. Four 9 ’ s (99.99%) availability is about an hour of down-
time per system per year (52.6 down - minutes); three 9 ’ s is about nine hours of
annualized downtime.

 1.7 OUTAGE ATTRIBUTABILITY

 Service outages generally have a single primary cause and may have additional
contributory causes that prolong outage duration or increase outage extent.
The various causes may be attributable to system or equipment suppliers,
system integrator, the enterprise operating the system, others, or a combina-
tion. By clearly defi ning responsibility for actual outage causes, suppliers and
enterprises operating the systems can proactively manage their respective
outage responsibilities to minimize the overall risk of any outage. TL 9000
factors outage attributability into product or supplier - attributable, enterprise -
 attributable, and external - attributable outages, and this taxonomy is applica-
ble to a wide range of systems.

 1. Product - attributable or supplier - attributable outage. Some outages
are primarily attributable to the design or failure of the system ’ s soft-
ware or hardware itself. The telecommunications industry defi nes
product - attributable outages [TL9000] as follows:

c01.indd 14c01.indd 14 8/5/2010 4:33:22 PM8/5/2010 4:33:22 PM

1.7 Outage Attributability 15

 An outage primarily triggered by
 a) the system design, hardware, software, components or other parts of the

system,
 b) scheduled outage necessitated by the design of the system,
 c) support activities performed or prescribed by an organization [system

supplier] including documentation, training, engineering, ordering, installa-
tion, maintenance, technical assistance, software or hardware change
actions, etc.,

 d) procedural error caused by the organization [system supplier] ,
 e) the system failing to provide the necessary information to conduct a

conclusive root cause determination, or
 f) one or more of the above.

 2. Enterprise - attributable outage. Some outages are primarily attribut-
able to actions or inactions of the enterprise operating the equipment.
The telecommunications industry defi nes this category (called cus-
tomer - attributable outage , in which customer refers to the enterprise
operating the equipment) as follows [TL9000] :
 An outage that is primarily attributable to the customer ’ s [enterprise ’ s]
equipment or support activities triggered by
 a) customer [enterprise] procedural errors,
 b) offi ce environment, for example power, grounding, temperature, humidity,

or security problems, or
 c) one or more of the above.

 3. External - attributable outage. Some outages are attributable to exter-
nal events beyond the control of either the enterprise operating the
system or the system supplier. The telecommunications industry defi nes
this category as follows [TL9000] :
 Outages caused by natural disasters such as tornadoes or fl oods, and outages
caused by third parties not associated with the customer or the organization
such as commercial power failures, 3rd party contractors not working on
behalf of the organization [system supplier] or customer [enterprise] .

 Real outages may have a primary cause and one or more contributing factors
that caused the outage impact either to increase (e.g., via a failure cascade)
or to prolong outage recovery, or both. For example, the primary cause of a
fl at tire may be an external - attributable road hazard like a nail, but the outage
may be prolonged if the driver (enterprise , per the taxonomy above) is unable
or unwilling to repair the tire himself and had not previously joined an auto-
mobile club that could quickly arrange for a repair technician to change the
tire. Interestingly, outages are occasionally prolonged by enterprises for delib-
erate policy reasons. For example, if a small - capacity loss outage occurs on a
system during a peak usage period and recovering service will require taking
the entire system out of service briefl y (e.g., to restart the system), then the
enterprise may elect to defer the system recovery to an off - peak period to
minimize service impact to other users. Conversely, if an outage occurs in an
off - peak period, then under certain circumstances the enterprise may elect to

c01.indd 15c01.indd 15 8/5/2010 4:33:22 PM8/5/2010 4:33:22 PM

16 Chapter 1 Reliability and Availability Concepts

defer system recovery to normal business hours to avoid the incremental cost
of paying maintenance staff overtime to perform the work in off - hours. While
the downtime associated with an initial product - attributable failure and unde-
layed service recovery might reasonably be assigned to the supplier, additional
service downtime accrued due to deliberately deferred service recovery should
be assigned to the enterprise.

 Obviously, system integrators and suppliers should focus on minimizing
product - attributable outage causes, and enterprises should focus on both mini-
mizing enterprise - attributable outages and mitigating the risk of external -
 attributable events. For example, enterprises can install uninterruptable power
supplies to mitigate the risk of variations and disruption in external, commer-
cial AC power. System integrators and equipment suppliers often provide
recommendations and guidance to enterprises to minimize risk of enterprise -
and external - attributable outages, such as offering training for enterprise staff
to minimize risk of human error.

 1.8 HARDWARE RELIABILITY

 System hardware is packaged in fi eld - replaceable units (FRUs) that can be
individually replaced. Replaceable parts on home appliances, automobiles,
computer systems, and other products are FRUs. Hardware reliability
addresses how often each of these FRUs will fail. The following sections give
a basic review of hardware reliability, service life, and return rates, and
discusses typical system considerations related to hardware reliability.

 1.8.1 Hardware Reliability Background

 Hardware reliability is much better understood than software or system
reliability for several reasons. First, hardware fails for physical reasons, and
persistent (versus transient) hardware failures can be thoroughly analyzed
to determine the precise failure mode and the likely root cause(s). Second,
since early electronic hardware (e.g., vacuum tubes) was often prone to high
failure rates, engineers have been working to understand and improve hard-
ware reliability since at least World War II and the physics of hardware failure
are now well understood. Third, actual hardware reliability of deployed ele-
ments is generally easier to measure in the fi eld than software reliability
because hardware failures generally require physical replacement of failed
FRUs and/or rework of failed connections to repair, rather than simply restart-
ing, a system, or reseating an FRU that reboots some or all of a system ’ s
software.

 Hardware failure rates generally follow the so - called “ bathtub curve ”
illustrated in Figure 1.5 . The X - axis shows operational time and the Y - axis
shows failure intensity or rate. Some FRUs will quickly fail to operate because
of weak components, solder joints, or manufacturing quality factors. FRUs that

c01.indd 16c01.indd 16 8/5/2010 4:33:22 PM8/5/2010 4:33:22 PM

1.8 Hardware Reliability 17

fail to operate the fi rst time they are powered on in the fi eld are often called
 “ dead on arrival ” (DOA). Over the fi rst days and weeks of operation, some
poorly manufactured parts and assemblies are likely to fail; the time when
weak FRUs fall out is called the “ infant mortality period ” . The rate of early
life failures declines quickly as the weak hardware fails and the failure rate
stabilizes; the period of stable hardware failure rate is called the “ useful ser-
vice - life period. ” As the useful lifetime of the hardware expires, the hardware
enters the wear - out phase and the rate of hardware failures increases due to
wear - out factors. At some point in the wear - out phase, all hardware elements
will have failed, and thus the curve ends.

 1.8.2 Hardware Reliability Prediction

 Hardware failure rate prediction methodologies estimate the failure rate in
the useful - life period. MIL - HDBK - 217F [MIL217F] and Telcordia ’ s SR - 332
 [SR332] standards for hardware reliability prediction are common in the
industry. Prediction methodologies consider various factors, including the
parts used in the design and assumptions about operational characteristics like
ambient temperature. Assumptions and prediction models tend to be conser-
vative, so observed hardware failure rates during useful - life periods are often
much lower than standard prediction methodologies calculate. As customers
expect hardware failure rates to be less than predicted failure rates throughout
the useful service life, hardware suppliers have historically been motivated to
give conservative hardware failure rate predictions to minimize the risk of
exceeding offi cial “ predicted ” hardware failure rates. Since different predic-
tion methodologies and different prediction assumptions can give signifi cantly
different failure rates, it is useful to calibrate and validate a supplier ’ s predic-
tions against historical data to understand how pessimistic or realistic their
predictions are likely to be. Hardware failure rates are highly dependent on
temperature; the higher the temperature, the higher the hardware failure rate

 Figure 1.5 “ Bathtub ” Hardware
Failure Rate Curve

c01.indd 17c01.indd 17 8/5/2010 4:33:22 PM8/5/2010 4:33:22 PM

18 Chapter 1 Reliability and Availability Concepts

and perhaps the shorter the useful service life. Thus, if the assumed ambient
temperatures are not consistent with the actual ambient temperatures of
deployed systems, then the predicted hardware failure rates can be different
from actual observed values.

 Hardware failure rates are commonly expressed as “ failures in 1 billion
hours ” (FITs). Alternately, hardware failure rates may be expressed as “ mean
time between failures ” (MTBF). MTBF and FIT rates are mathematically
related as

 MTBF
FITs

Hours = 1 000 000 000, , ,

 1.8.3 Hardware Service Life

 Although MTBF and service life are often expressed in the same unit (hours
or years), they are completely different concepts. Hardware service life is the
period that hardware should operate before the hardware failure rate rises
above the predicted hardware failure rate as wear - out failures increase. A
predicted hardware failure rate estimates the rate of failure during the useful
service life, rather than during the wear - our or infant mortality periods. While
the hardware service life of most electronic devices is signifi cantly longer than
the expected useful life of the system those devices are in, some devices with
mechanical parts may have service lives that are shorter than the expected
useful life of the system. As hard disk drives have moving parts with lubricated
bearings, they generally have a hardware service lifetime of less than 5 years.
For example, a hard disk drive manufacturer may quote a mean time between
failures (MTBF) of 1 million hours, which is mathematically equivalent to a
predicted failure rate of 10 − 6 failures per hour (10 − 6 is the mathematical recip-
rocal of 10 6 MTBF). The designed hardware service lifetime might be 5 years
(43,430 hours) and the predicted hardware failure rate during that useful
lifetime might be 10 − 6 hardware failures per unit per hour. An MTBF of 1
million hours is equivalent to an MTBF of 114 years, but with a designed
hardware service life of 5 years, very few units will survive to even 10 years.
Experience and common sense assures us that the moving parts in a typical
hard disk drive will wear out after far less than a century of actual service.
Figure 1.6 graphically illustrates this example for a hypothetical hard disk
drive.

 Service life creates a reliability risk if customers expect to keep the system
in service beyond the designed hardware service life of any individual FRUs
because of the increasing hardware failure rate that occurs after the FRU
enters its wear - out phase. Having some FRUs with a shorter lifetime in a
complex system is a very common phenomenon. For example, consumers
expect to replace the tires and battery on their car at least once before the car
wears out, and they accept that light bulbs, appliances, carpets, roofs, and so

c01.indd 18c01.indd 18 8/5/2010 4:33:22 PM8/5/2010 4:33:22 PM

1.8 Hardware Reliability 19

on will require replacement long before their house reaches the end of its
useful life. Thus, system suppliers should carefully design to assure that hard-
ware elements that are likely to fail before the system reaches the end of its
designed hardware service life can be easily replaced. Just as light bulbs, bat-
teries, and tires can be replaced relatively easily, failed fans, hard disks, bat-
teries, and so on should be easily replaceable in the fi eld so that customers
are not forced to endure prolonged service disruption or exceptional expense
to replace worn - out hardware components. Like automobile manufacturers
recommending maintenance schedules to replace fi lters, tires, batteries, and
other components that are not designed to last the entire useful service life of
the automobile, both hardware and system suppliers should clearly communi-
cate the service - life expectation of any FRUs that are expected to wear out
before the system itself reaches the end of its useful service life.

 1.8.4 Hardware Return Rates

 While some system hardware elements like batteries and fans are considered
consumable and are discarded on failure, most hardware will be repaired fol-
lowing failure. For repairable hardware, the rate at which hardware elements
are returned for repair is a common measure of hardware reliability, and
hardware return rates are a reasonable proxy for the hardware failures that
customers experience for nonconsumable hardware units. Hardware return
rate measures are generally expressed as annualized return rates , and may be
further subdivided into time windows , such as TL 9000 ’ s metrics:

 • Early Return Index (ERI) measures hardware returns in the fi rst 6
months after shipment.

 • Yearly Return Rate (YRR) measures hardware returns 7 to 18 months
after shipment.

 • Long - Term Return Rate (LTR) measures hardware returns more than
18 months after shipment.

 Figure 1.6 MTBF and Service Life of Sample Hard Disk Drive

c01.indd 19c01.indd 19 8/5/2010 4:33:22 PM8/5/2010 4:33:22 PM

20 Chapter 1 Reliability and Availability Concepts

 Hardware reliability predictions can be converted to equivalent annualized
return rate predictions as follows:

 Re turnRate
MTBF

Annualized
Annual

= 1

 Re
. ,

turnRate
MTBF MTBF

Annualized
Hourly Hourly

= ∗ =24 365 25 8 766

 Re
.

, , , ,
turnRate

FITs FITs
Annualized = ∗ ∗ =24 365 25

1 000 000 000 114 0777

 As explained in Section 1.8.2 , “ Hardware Reliability Prediction, ” hard-
ware suppliers often use fairly conservative assumptions so that the best
estimate of actual return rates will generally be below prediction.

 The hardware return rate metric is complicated by several factors:

 1. Not all hardware returns are attributed to hardware failures. Inevitably,
some returned hardware FRUs will be tested at the repair center and
found to function properly with no trouble found (abbreviated NTF ;
sometimes called no fault found — NFF). No - trouble - found hardware
is generally attributed to a variety of causes including software failures
misdiagnosed as hardware failures, and diagnostic failures in which
functional hardware was incorrectly deemed to have failed and was
thus returned. In addition, unused materials may also be returned to
the supplier because too much material was ordered, or because the
order was changed or canceled or for other reasons. Hardware may
also be returned in response to product recall or change notices to have
recommended corrective changes applied. The percentage of con-
fi rmed hardware failures as a portion of total returns often varies sig-
nifi cantly based on the nature of the FRU. High NTF rates are a
concern because although the hardware reliability does not appear to
be a problem, one or more root causes are forcing customers to spend
effort and cost to manually remove and return hardware that had not
failed.

 2. Uncertainty in the actual number of FRUs in service to normalize
returns against. It is very easy for hardware suppliers to count how
many FRUs are shipped from their factory, but it is not very easy to
know how many FRUs are actually in service. There is always a delay
between the time an FRU is shipped from a factory to the time that
the FRU is installed in a system and powered on. Some individual
FRUs will be promptly delivered to customer sites, installed and
powered on; other FRUs will endure logistics or staging delays; some
FRUs will be stocked as spares, and may not be installed for years;
some FRUs may never even be sold. The uncertainty of actual number
of FRUs in service is often highest in the early months of production

c01.indd 20c01.indd 20 8/5/2010 4:33:22 PM8/5/2010 4:33:22 PM

1.8 Hardware Reliability 21

as the logistics and delivery process is being refi ned and spares pools
are created.

 3. Uncertainty of in - service time of individual returned FRUs. Because
complex systems are generally built from many different FRUs and
systems cannot go into service until all required FRUs are available
on - site, installed, confi gured, and brought into service, variable logistic
and business delays add uncertainty between the time a FRU was
shipped by the hardware supplier and the time the FRU begins normal,
continuous operation. In addition, some FRUs will be held as spares,
and these may spend months or longer in factory packaging without
ever being powered on. Thus, it may be hard to reliably determine
how many hours of service a particular FRU sustained before it was
returned. Just as automobiles include odometers to maintain a per-
sistent count of the distance driven, the best practice is for each FRU
to record wear - out - related parameters like power - on hours and
maximum operating temperature in persistent - on - FRU storage as part
of an “ odometer. ”

 4. Not all failures are returned to the equipment manufacturer ’ s autho-
rized repair center. Just as automobile owners are not required to take
their cars to factory authorized service centers for repairs, system
owners may send their failed FRUs to competitive repair centers, and
thus hardware suppliers may have no visibility or knowledge of those
failures. With inexpensive or short service life FRUs, customers may
simply discard the failed unit rather than returning it for repair.

 Despite these complicating factors, hardware return rates are an excellent
measure of actual hardware reliability. Hardware suppliers should be able to
provide return rate data for each FRU, and the confi rmed hardware failure
rate should be well below predicted hardware failure rate. If the overall return
rate is above prediction or the no trouble found rate is substantial, then there
is signifi cant risk that system owners may experience higher apparent hard-
ware failure rates than predicted. After all, a perceived hardware failure (even
if it is later deemed to be “ no trouble found ” by the repair center) causes
maintenance engineers to take the time to replace a FRU and the expense
of returning that FRU, restocking a spare, and so on. From the system owner ’ s
perspective, a confi rmed hardware failure and a no trouble found failure have
similar cost, but the no trouble found pack may offer an incremental intangible
cost of uncertainty surrounding the true root cause of the failure and thus
elevated risk of failure recurrence.

 1.8.5 Hardware Reliability Considerations

 The primary considerations when selecting hardware are obviously functional-
ity ones, such as:

c01.indd 21c01.indd 21 8/5/2010 4:33:22 PM8/5/2010 4:33:22 PM

22 Chapter 1 Reliability and Availability Concepts

 • Does the hardware deliver the required functionality with adequate
performance?

 • Does the hardware meet the physical design requirements? (e.g., size,
weight, form factor, power)

 • Does the hardware operate reliably in the target environment? (e.g.,
temperature and humidity range, shock and vibration tolerance, pres-
ence of dust and corrosive gases, altitude, etc.)

 • Does the hardware meet the cost target?

 Hardware reliability is a secondary consideration for hardware options that
meet the primary requirements. The fundamental business question when
considering hardware reliability is

 • Will the hardware failure rate be acceptably low throughout the
system ’ s designed service life?

 Note that higher hardware failure rates may lead to higher operating
expenses associated with increased hardware returns and sparing - related
expenses. Acceptability of hardware failure rates is fundamentally driven by
how often customers will tolerate executing hardware repairs or maintenance
actions on the overall system. Just as consumers evaluate reliability of their
automobile based on how often the car is in the shop rather than on the failure
rate of individual subsystems or components, system owners are likely to
consider how often they have to replace any board or FRU on a system rather
than the failure rate of individual blades. Thus, there is likely to be some fl ex-
ibility in failure rate requirements of individual FRUs so long as the overall
hardware failure rate remains low enough that the customer doesn ’ t have to
repair hardware too often. Deep knowledge of customer expectations enables
one to estimate the maximum acceptable system hardware repair rate, and
manage individual FRU failure rates to be low enough to meet the overall
system target.

 End customers will expect hardware reliability to be below predicted
failure rates and may include business remedies, such as contractual penalties
with liquidated damages, if hardware returns exceed predicted values. System
suppliers should assure that appropriate business arrangements are made with
original equipment manufacturers so that risk of premature (i.e., warranty) or
excessive hardware failures is covered by the hardware manufacturer who is
best equipped to manage the risk.

 1.9 SOFTWARE RELIABILITY

 Although software doesn ’ t physically break or fail in a persistent way that can
be easily examined with an optical or electron microscope, it does fail or crash.
Figure 1.7 shows an instance of the infamous blue screen of death software
failure from Microsoft Windows ® , which many readers will have personally

c01.indd 22c01.indd 22 8/5/2010 4:33:22 PM8/5/2010 4:33:22 PM

1.9 Software Reliability 23

experienced. In addition to the dramatic “ blue screen, ” a critical software
failure event may simply be called a crash or system hang . Practically speaking,
software reliability is measured as the rate of critical software failures (e.g.,
crashes, hangs, blue screens), as in “ application X crashes once a month unless
we reboot the system. ”

 Software reliability growth theory [Musa89] posits that there are a fi nite
number of defects in a piece of software that can be exposed in a particular
operational profi le. While hardware wears out over time, software does not;
new defects don ’ t spontaneously arise over time in software as cracks and
physical breakdowns arise in hardware. Thus, as residual software defects are
discovered and removed, there are fewer defects left to be exposed in a par-
ticular operational profi le. Fewer critical residual software defects should be
encountered less frequently in normal operation, and thus should yield a lower
software failure rate. This is generally demonstrated in maintenance or patch
releases, which are often more stable and reliable than major releases of soft-
ware because major releases inevitably introduce new defects along with new
features, while maintenance or patch releases focus on removing software
defects. Since new defects are seldom introduced when a software defect is
fi xed, each critical defect removed is essentially one less residual defect to
cause a software failure in the fi eld.

 Figure 1.7 Blue Screen of Death

 Source: Figure taken from Wikipedia, http://en.wikipedia.org/wiki/File:Windows_XP_BSOD.

png, June 15, 2010 .

c01.indd 23c01.indd 23 8/5/2010 4:33:22 PM8/5/2010 4:33:22 PM

24 Chapter 1 Reliability and Availability Concepts

 The next section defi nes operational profi les, describes software reliability
growth theory, reviews several residual defect prediction techniques, and dis-
cusses how to evaluate prediction results.

 1.9.1 Operational Profi le

 Operational profi le characterizes how a system interacts with other elements
in the enterprise ’ s solution to deliver services to end users. A particular system
can often be used in several different operational profi les, each of which may
stress the system in slightly different ways, thus exposing somewhat different
residual faults. For example, a four - door sedan automobile can be used both
to carry passengers on paved roads and to haul bricks on dirt roads. Each of
these profi les exposes the automobile to different shock, vibration, and
mechanical stress, and thus the time to fi rst failure of the automobile may be
different in each of these two operational profi les. System testing should
refl ect the operation profi le(s) that the deployed system will experience to
assure that the vast majority of design and residual defects are discovered and
corrected before fi eld deployment.

 Note that the operational profi le of a deployed system can be changed by
an enterprise after the system is deployed. For example, an enterprise (or
perhaps even their end users) can change their policies and begin using names
and strings containing Asian characters. While Western character sets such as
ASCII can often be encoded as a single byte per character, Asian characters
require two or more bytes per character, and thus the logic for manipulating
and encoding Western and Asian character sets may be somewhat different.
If Asian characters were not included in the system ’ s test campaign, then there
is a higher risk that residual defects will be encountered in fi eld operations
with Asian characters, such as importing and exporting system information
via text confi guration fi les. Hence, differences between tested operational
profi les and fi eld operational profi les present gaps in testing through which
undiscovered software defects can escape to the fi eld.

 1.9.2 Software Reliability Growth Theory

 When testing a system, residual defects are methodically exposed, so they can
then be debugged and corrected. Discovery of residual defects generally pro-
gresses as shown in Figure 1.8 . The X - axis shows the cumulative time system
testers spend executing tests against the target system; the Y - axis shows cumu-
lative number of defects discovered. Defect discovery often starts slowly as
the test team progresses through a “ learning phase ” during which they become
familiar with both the system and the test tools. As testers gain experience,
their productivity increases and they enter a “ linear phase ” in which they
discover defects fairly regularly as new test cases are executed and defects are
exposed and recorded. This consistent defect discovery rate is shown as the

c01.indd 24c01.indd 24 8/5/2010 4:33:23 PM8/5/2010 4:33:23 PM

1.9 Software Reliability 25

 linear phase of defect discovery. Defects discovered throughout the test inter-
val will generally be promptly fi xed and new or patched software loads will
be delivered to system test. These patched loads should enable system test to
cover system functionality that may have been previously blocked by software
defects. Thus, as more defects are discovered and removed, system test can
verify more and more system functionality. Inevitably, a fraction of the defect
corrections will themselves be defective, so some rework of defect correction
(sometimes called “ fi x on fi x ”) will be necessary. The rate of defective fi xes
should be very small, and thus the total number of residual defects should not
increase signifi cantly after software development is complete and formal
system testing begins. After suffi cient testing, debugging, and defect correction,
the number of residual defects shrinks to the point that it becomes harder and
harder for testers to discover previously unknown residual defects, and thus
the previously linear discovery rate begins to fl atten out. This transition from
linear defect discovery rate to decreasing defect discovery rate characterizes
the “ reliability growth phase. ” As the number of discovered defects asymptoti-
cally approaches the fi nite number of defects originally accessible to the piece
of software in the particular operational profi le, it takes more and more test
effort to discover residual defects. At some point, the number of residual
defects is so small that the system will operate with an acceptably low software
failure rate, and the software enters the “ stabilization phase. ” As testing costs
money and adds time to the schedule, a key business question is deciding
when suffi cient testing has been executed to assure that the system will be
acceptably reliable.

 Note that the X - axis in Figure 1.8 is labeled “ cumulative testing time ”
rather than calendar time. This is because the independent variable that drives
defect discovery during testing is actual test effort, rather than calendar time.
The distinction between “ testing time ” and “ calendar time ” is important
because test effort is rarely uniform across a 7 - day week, and effort per week
is rarely uniform across the entire test period. For example, test staff will take
vacations and will have other work commitments like training and supporting
other projects or releases that reduce their test time. System software failures

 Figure 1.8 Canonical Software Reliability Growth

c01.indd 25c01.indd 25 8/5/2010 4:33:23 PM8/5/2010 4:33:23 PM

26 Chapter 1 Reliability and Availability Concepts

may block some test cases and hardware failures may render test cells unavail-
able for testing. Also, testers may be more likely to work overtime toward the
end of the test interval than they are in the start of the test interval. Normalizing
defect discovery against cumulative testing time should factor real world varia-
tions out of the data, and thus produce a more accurate curve that is easier to
interpret. A practical benefi t of plotting cumulative test time on the X - axis is
that it makes planning easier because one can directly estimate the test effort
required between any two points on the curve.

 1.9.3 Estimating Residual Defects

 The number of residual defects can be estimated using a number of software
quality methodologies, including [Demarco86] , [Humphrey89] , [Lyu96] , or
 [Musa89] . Software reliability growth modeling [Musa89] has several advan-
tages over some traditional software quality methodologies, including:

 1. It does not require deep knowledge of process performance of specifi -
cation, design, and coding activities. Importantly, this means that one
can consider the behavior of software modules that were developed by
others (e.g., third parties, open source, or reused modules) for which
no process performance data is available.

 2. It provides an intuitive visualization that is easy for all members of a
project team to understand.

 3. Required input data is easy to acquire.

 Figure 1.9 shows a sample software reliability growth curve with a vertical
line showing “ system release ” after hundreds, thousands, or more hours of
cumulative testing time. The slope of the software reliability growth curve
shows the rate at which critical software defects are discovered, often expressed
as number of hours or days of testing estimated to discover the next previously

 Figure 1.9 Estimating Residual Defects from Software Reliability Growth Model

c01.indd 26c01.indd 26 8/5/2010 4:33:23 PM8/5/2010 4:33:23 PM

1.9 Software Reliability 27

unknown defect. As system testing is designed to mirror the operational
profi le of target customers, system testing should be a form of highly acceler-
ated stress testing of the system because testers are deliberately trying to stress
the system. Thus, the longer it is estimated to take dedicated system testers
to expose a previously unknown residual defect, the longer it should take an
enterprise or end user to encounter a previously unknown residual defect. The
gap between the number of defects discovered at the time of system release
and the asymptotic number of defects estimated by the software reliability
growth curve estimates the number of residual defects.

 The physics of hardware failure enables one to reliably estimate the failure
acceleration factor due to elevated temperatures, and so on, in highly acceler-
ated stress testing of hardware. Unfortunately, the “ physics ” of software fail-
ures is far messier than the physics of hardware failure, and thus there is far
more uncertainty in estimating the “ acceleration ” or calibration factor between
the defect discovery rate in lab testing and the critical software failure rate in
fi eld operation. Nevertheless, assuming system testing is mirroring the opera-
tional profi le(s) of fi eld deployments, one expects a rough correlation between
the defect discovery rate at system release and the critical failure rate in fi eld
operation.

 1.9.4 Calibrating Residual Defect Models

 While it theoretically takes infi nite time to activate all residual defects and
perfect debugging to determine which are truly new residual defects versus
activation of previously known defects, project teams generally can estimate
the minimum effective asymptotic number of critical defects after about a year
of fi eld deployment by summing both the number of unique fi eld - found defects
and the number of additional, previously unknown defects that were discov-
ered when testing maintenance and patch loads on the release. Depending on
operational policies of enterprises operating the system and their support
agreements with the system supplier, some or all of those failures may be
reported back to the system supplier for analysis and corrective action. Thus,
while a system supplier may never know exactly how many residual critical
software defects were in a piece of software released to the fi eld, the supplier
often knows the minimum number of residual critical defects that were present
based on what defects were subsequently detected by customers or while
developing and testing maintenance releases or patches. This minimum effec-
tive asymptotic number of estimated critical defects can be compared to the
number of defects predicted by the software reliability growth or other defect
prediction model used. Since system testing inherently differs from actual fi eld
deployment in a variety of ways, there may be somewhat more observed
residual defects than were estimated from modeling of system test data.
Nevertheless, system testers should constantly strive to make their test
confi gurations better refl ect actual operational profi les to improve the

c01.indd 27c01.indd 27 8/5/2010 4:33:23 PM8/5/2010 4:33:23 PM

28 Chapter 1 Reliability and Availability Concepts

effectiveness of their testing, and thereby improve the expected prediction
accuracy of residual defects based on system test data.

 While it is often diffi cult to accurately and quantitatively extrapolate a
single test or analysis result to likely fi eld availability of a particular release,
it is often insightful to compare and contrast test results from historic releases
and current release against actual fi eld performance of historic releases to
triangulate a best estimate of reliability and availability. For example, Figure
 1.10 overlays the software reliability growth analysis of two releases of a real
system. Although R2 benefi ted from signifi cantly more test time than R1,
there appear to be far fewer critical defects and thus R2 should have a signifi -
cantly lower software failure rate than R1. By combining this R2 - versus - R1
comparison data with other R2 to R1 comparison data, one can estimate a
range of how much lower the critical software failure rate of R2 is likely to
be relative to R1. A software reliability growth curve, especially one that
overlays previous release data like Figure 1.10 , is often very useful to decision
makers when evaluating software readiness for release.

 1.10 PROBLEMS

 1. Give three examples of fault activation that lead to service failure.

 2. Give three examples of a failure cascade.

 3. One 30 - minute total outage and one 10 - minute partial outage impacting half of a
system ’ s capacity occur across a population of 15 systems deployed in August; what
is the service availability for the month?

 4. What is the difference between MTBF and designed service life of hardware?

 5. A particular FRU is predicted to have 10,000 FITs. What percentage of these FRUs
is likely to fail per year during the unit ’ s designed service life?

 6. A system is built of fi ve FRUs, each with 10,000 FITs. What is the annual predicted
rate of hardware maintenance actions per system?

 Figure 1.10 Comparing Software Reliability Growth of Different Software Releases

c01.indd 28c01.indd 28 8/5/2010 4:33:23 PM8/5/2010 4:33:23 PM

1.11 For Further Study 29

 7. A particular FRU is predicted to have 10,000 - hour MTBF. What percentage of these
FRUs is likely to fail per year during the unit ’ s designed service life?

 1.11 FOR FURTHER STUDY

 [TL9000] offers formal and rigorous guidance on quantitative measurement
of service availability and hardware reliability. [Lyu96] and [Musa89] offer
more information on software reliability and [O ’ Connor04] covers hardware
reliability.

c01.indd 29c01.indd 29 8/5/2010 4:33:23 PM8/5/2010 4:33:23 PM

c01.indd 30c01.indd 30 8/5/2010 4:33:23 PM8/5/2010 4:33:23 PM

