
Chapter 1

Calculus: No Big Deal
In This Chapter
▶ Calculus — it’s just souped-up regular math

▶ Zooming in is the key

▶ Delving into the derivative: It’s a rate or a slope

▶ Investigating the integral — addition for experts

In this chapter, I answer the question “What is calculus?” in 
plain English and give you real-world examples of how it’s 

used. Then I introduce you to the two big ideas in calculus: 
differentiation and integration. Finally, I explain why calculus 
works. After reading this chapter, you will understand what 
calculus is all about.

So What Is Calculus Already?
Calculus is basically just very advanced algebra and geometry. 
In one sense, it’s not even a new subject — it takes the ordi-
nary rules of algebra and geometry and tweaks them so that 
they can be used on more complicated problems. (The rub, of 
course, is that darn other sense in which it is a new and more 
difficult subject.)

Look at Figure 1-1. On the left is a man pushing a crate up a 
straight incline. On the right, the man is pushing the same 
crate up a curving incline. The problem, in both cases, is to 
determine the amount of energy required to push the crate to 
the top. You can do the problem on the left with regular math. 
For the one on the right, you need calculus (if you don’t know 
the physics shortcuts).
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Calculus Essentials For Dummies 6
For the straight incline, the man pushes with an unchang-
ing force, and the crate goes up the incline at an unchanging 
speed. With some simple physics formulas and regular math 
(including algebra and trig), you can compute how many calo-
ries of energy are required to push the crate up the incline. 
Note that the amount of energy expended each second 
remains the same.

Regular math problem Calculus problem

Figure 1-1:  The difference between regular math and calculus: 
In a word, it’s the curve.

For the curving incline, on the other hand, things are con-
stantly changing. The steepness of the incline is changing — 
and it’s not like it’s one steepness for the first 3 feet and then 
a different steepness for the next 3 — it’s constantly changing. 
And the man pushes with a constantly changing force — the 
steeper the incline, the harder the push. As a result, the 
amount of energy expended is also changing, not just every 
second or thousandth of a second, but constantly, from one 
moment to the next. That’s what makes it a calculus problem. 
It should come as no surprise to you, then, that calculus is 
called “the mathematics of change.” Calculus takes the regular 
rules of math and applies them to fluid, evolving problems.

For the curving incline problem, the physics formulas remain 
the same, and the algebra and trig you use stay the same. The 
difference is that — in contrast to the straight incline prob-
lem, which you can sort of do in a single shot — you’ve got to 
break up the curving incline problem into small chunks and 
do each chunk separately. Figure 1-2 shows a small portion of 
the curving incline blown up to several times its size.
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Calculus problem

Figure 1-2: Zooming in on the curve — voilà, it’s straight (almost).

When you zoom in far enough, the small length of the curving 
incline becomes practically straight. Then you can solve that 
small chunk just like the straight incline problem. Each small 
chunk can be solved the same way, and then you just add up 
all the chunks.

That’s calculus in a nutshell. It takes a problem that can’t 
be done with regular math because things are constantly 
changing — the changing quantities show up on a graph as 
curves — it zooms in on the curve till it becomes straight, 
and then it finishes off the problem with regular math. 

What makes calculus such a fantastic achievement is that it 
does what seems impossible: it zooms in infinitely. As a matter 
of fact, everything in calculus involves infinity in one way or 
another, because if something is constantly changing, it’s 
changing infinitely often from each infinitesimal moment to 
the next.

Real-World Examples of Calculus 
So, with regular math you can do the straight incline problem; 
with calculus you can do the curving incline problem. With 
regular math you can determine the length of a buried cable 
that runs diagonally from one corner of a park to the other 
(remember the Pythagorean Theorem?). With calculus you 
can determine the length of a cable hung between two towers 
that has the shape of a catenary (which is different, by the 
way, from a simple circular arc or a parabola). Knowing the 
exact length is of obvious importance to a power company 
planning hundreds of miles of new electric cable.
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You can calculate the area of the flat roof of a home with regu-
lar math. With calculus you can compute the area of a compli-
cated, nonspherical shape like the dome of the Minneapolis 
Metrodome. Architects need to know the dome’s area to 
determine the cost of materials and to figure the weight of the 
dome (with and without snow on it). The weight, of course, is 
needed for planning the strength of the supporting structure.

With regular math and simple physics, you can calculate how 
much a quarterback must lead a pass receiver if the receiver 
runs in a straight line and at a constant speed. But when NASA, 
in 1975, calculated the necessary “lead” for aiming the Viking I 
at Mars, it needed calculus because both the Earth and Mars 
travel on elliptical orbits, and the speeds of both are con-
stantly changing — not to mention the fact that on its way to 
Mars, the spacecraft was affected by the different and con-
stantly changing gravitational pulls of the Earth, moon, Mars, 
the sun. See Figure 1-3.

Regular math problem:
What's the proper lead for

hitting the receiver?

Failure to complete this
pass is no big deal.

Calculus problem:
What's the proper "lead" for

"hitting" Mars?

Failure to complete this
"pass" is a big deal.

Mercury

Venus

Earth

Mars

Figure 1-3: B.C.E. (Before the Calculus Era) and C.E. (the Calculus Era).

Differentiation
Differentiation is the first big idea in calculus. It’s the process 
of finding a derivative of a curve. And a derivative is just the 
fancy calculus term for a curve’s slope or steepness.
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In algebra, you learned the slope of a line is equal to the ratio 
of the rise to the run. In other words, . In Figure 1-4, 
the rise is half as long as the run, so segment AB has a slope of  
1/2. On a curve, the slope is constantly changing, so you need 
calculus to determine its slope.

rise

runA
C

B

Figure 1-4: Calculating the slope of a curve isn’t as simple as rise over run.

The slope of segment AB is the same at every point from A to B. 
But the steepness of the curve is changing between A and B. At 
A, the curve is less steep than the segment, and at B the curve 
is steeper than the segment. So what do you do if you want the 
exact slope at, say, point C? You just zoom in. See Figure 1-5.

A
C

B

C

run

rise

Figure 1-5: Zooming in on the curve.

When you zoom in far enough — actually infinitely far — the 
little piece of the curve becomes straight, and you can figure the 
slope the old-fashioned way. That’s how differentiation works.

Integration
Integration, the second big idea in calculus, is basically just 
fancy addition. Integration is the process of cutting up an area 
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into tiny sections, figuring out their areas, and then adding 
them up to get the whole area. Figure 1-6 shows two area 
problems — one that you can do with geometry and one 
where you need calculus.
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Geometry problem:
What's the shaded area?

y = 5

y

x
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4

8
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Calculus problem:
What's the shaded area?

Figure 1-6:  If you can’t determine the area on the left, hang up your  calculator.

The shaded area on the left is a simple rectangle, so its area, of 
course, equals length times width. But you can’t figure the area 
on the right with regular geometry because there’s no area for-
mula for this funny shape. So what do you do? Why, zoom in, 
of course. Figure 1-7 shows the top portion of a narrow strip of 
the weird shape blown up to several times its size.
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Figure 1-7:  For the umpteenth time: When you zoom in, curves become 
straight.

When you zoom in, the curve becomes practically straight, 
and the further you zoom in, the straighter it gets — with 
integration, you actually zoom in infinitely close, sort of. You 
end up with the shape on the right in Figure 1-7, an ordi-
nary trapezoid — or a triangle sitting on top of a rectangle. 
Because you can compute the areas of rectangles, triangles, 
and trapezoids with ordinary geometry, you can get the area 
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of this and all the other thin strips and then add up all these 
areas to get the total area. That’s integration.

Why Calculus Works
The mathematics of calculus works because curves are locally 
straight; in other words, they’re straight at the microscopic 
level. The earth is round, but to us it looks flat because we’re 
sort of at the microscopic level when compared to the size 
of the earth. Calculus works because when you zoom in and 
curves become straight, you can use regular algebra and 
geometry with them. This zooming-in process is achieved 
through the mathematics of limits.

Limits: Math microscopes
The mathematics of limits is the microscope that zooms in 
on a curve. Say you want the exact slope or steepness of the 
parabola  at the point (1, 1). See Figure 1-8.

y

x

3

2

4

1

2 31

(2, 4)

(1, 1)

y = x 2

How steep is this
tangent line?

1

3

Figure 1-8: The parabola  with a tangent line at (1, 1).

With the slope formula from algebra, you can figure the slope 
of the line between (1, 1) and (2, 4) — you go over 1 and up 3, 
so the slope is 3/1, or 3. But you can see in Figure 1-8 that this 
line is steeper than the tangent line at (1, 1) that shows the 
parabola’s steepness at that specific point. The limit process 
sort of lets you slide the point that starts at (2, 4) down toward 
(1, 1) till it’s a thousandth of an inch away, then a millionth, 
then a billionth, and so on down to the microscopic level. If 
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you do the math, the slopes between (1, 1) and your moving 
point would look something like 2.001, 2.000001, 2.000000001, 
and so on. And with the almost magical mathematics of limits, 
you can conclude that the slope at (1, 1) is precisely 2, even 
though the sliding point never reaches (1, 1). (If it did, you’d 
only have one point left and you need two separate points to 
use the slope formula.) The mathematics of limits is all based 
on this zooming-in process, and it works, again, because the 
further you zoom in, the straighter the curve gets.

What happens when you zoom in
Figure 1-9 shows three diagrams of one curve and three things 
you might like to know about the curve: 1) the exact slope or 
steepness at point C, 2) the area under the curve between A 
and B, and 3) the exact length of the curve from A to B. You 
can’t answer these questions with regular math because the 
regular math formulas for slope, area, and length work for 
straight lines (and simple curves like circles), but not for 
weird curves like this one.

The first row of Figure 1-10 shows a magnified detail from the 
three diagrams of the curve in Figure 1-9. The second row 
shows further magnification. Each magnification makes the 
curves straighter and straighter and closer and closer to the 
diagonal line. This process is continued indefinitely.

Finally, the bottom row of Figure 1-10 shows the result after 
an “infinite” number of magnifications — sort of. You can 
think of the lengths 3 and 4 in the bottom row of rectangles as 
3 and 4 millionths of an inch, no, make that 3 and 4 billionths 
of an inch, no, trillionths, no, gazillionths, . . . .

How steep is the curve at C?

Zoom in
(see Figure 1-10)

C

A

B

What's the area under the
curve between A and B?

Zoom in
(see Figure 1-10)

A

B

What's the length of the
curve from A to B?

Zoom in
(see Figure 1-10)

A

B

Figure 1-9: One curve — three questions.
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Figure 1-10: Zooming in to the sub, sub, sub . . . subatomic level.

After zooming in “forever,” the curve is perfectly straight, and 
now regular algebra and geometry formulas work.

For the diagram on the left in Figure 1-10, you can now use 
the regular slope formula from algebra to find the slope at 
point C. It’s exactly 3/4 — that’s the answer to the first ques-
tion in Figure 1-9. This is how differentiation works.

For the diagram in the middle, the regular triangle formula from 
geometry gives an area of 6. So to get the total shaded area in 
Figure 1-9, you add the area of the thin rectangle under this tri-
angle (the thin strip in Figure 1-9 shows the basic idea), repeat 
this process for all the other narrow strips, and then just add 
up all the little areas. This is how regular integration works.

For the diagram on the right, geometry’s Pythagorean theo-
rem gives you a length of 5. Then to find the total length of the 
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curve from A to B in Figure 1-9, you do the same thing for the 
other minute sections of the curve and then add up all the 
little lengths. This is how you calculate arc length (another 
integration problem).

Well, there you have it. Calculus uses the limit process to 
zoom in on a curve till it’s straight. After it’s straight, the rules 
of regular-old math apply. Calculus thus gives ordinary alge-
bra and geometry the power to handle complicated problems 
involving changing quantities (which on a graph show up as 
curves). This explains why calculus has so many practical uses, 
because if there’s something you sure can count on — in addi-
tion to death and taxes — it’s that things are always changing.
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