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Part A: A REVIEW OF ESSENTIALS IN MACROFLUIDICS

The review of macrofl uidics repeats mostly undergraduate-level theory and 
provides solved examples of transport phenomena, i.e., traditional (meaning 
conventional macroworld) fl uid mechanics, heat and mass transfer, with a couple 
of more advanced topics plus applications added. Internal fl ow problems 
dominate and for their solutions the differential modeling approach is preferred. 
Specifi cally, for any given problem the basic conservation laws (see Sect. A.5) are 
reduced based on physical understanding (i.e., system sketch plus assumptions), 
sound postulates concerning the dependent variables, and then solved via direct 
integration or approximation methods. Clearly, Part A sets the stage for most of 
the problems solved in Part B and Part C.
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CHAPTER 1

Theory

Clearly, the general equations describing conservation of mass, momentum, and 
energy hold for transport phenomena occurring in all systems/devices from the 
macroscale to the nanoscale, outside quantum mechanics. However, for most real-
world applications such equations are very difficult to solve and hence we restrict 
our analyses to special cases in order to understand the fundamentals and develop 
skills to solve simplified problems.

This chapter first reviews the necessary definitions and concepts in fluid dynamics, 
i.e., fluid flow, heat and mass transfer. Then the conservation laws are derived, 
employing different approaches to provide insight of the meaning of equation 
terms and their limitations.

It should be noted that Chapters 1 and 2 are reduced and updated versions of 
Part A chapters of the author’s text Biofluid Dynamics (2006). The material (used with 
permission from Taylor & Francis Publishers) is now geared towards enginee ring 
students who already have had introductory courses in thermodynamics, fluid 
mechanics and heat transfer, or a couple of comprehensive courses in transport 
phenomena.

  1.1 Introduction and Overview
Traditionally, “fluidics” referred to a technology where fluids were used as key 
components of control and sensing systems. Nowadays the research and application 
areas of “fluidics” have been greatly expanded. Specifically, fluidics deals with transport 
phenomena, i.e., mass, momentum and heat transfer, in devices ranging in size from the 
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macroscale down to the nanoscale. As it will become evident, this modern description 
implies two things:

(i) Conventional fluid dynamics (i.e., macrofluidics) forms a necessary knowl-
edge base when solving most microfluidics and some nanofluidics problems.

(ii) Length scaling from the macroworld (in meters and millimeters) down to 
the micrometer or nanometer range (i.e.,  while ) 
requires new considerations concerning possible changes in fluid properties, 
validity of the continuum hypothesis, modified boundary conditions, and 
the importance of new (surface) forces or phenomena.

So, to freshen up on macrofluidics, this chapter reviews undergraduate-level 
essentials in fluid mechanics and heat transfer and provides an introduction to 
porous media and mixture flows. Implications of geometric scaling, known as the 
“size reduction effect,” are briefly discussed next. 

The most important scaling impact becomes apparent when considering the 
area-to-volume ratio of a simple fluid conduit or an entire device:

(1.1)

Evidently, in the micro/nanosize limit the ratio becomes very large, i.e., , 
where  such as the hydraulic diameter, channel height, or width. 
This implies that in micro/nanofluidics the system’s surface-area-related qua  ntities, 
e.g., pressure and shear forces, become dominant. Other potentially important micro/
nanoscale forces, rightly neglected in macrofluidics, are surface tension as well as 
electrostatic and magnetohydrodynamic forces. To provide a quick awareness of 
other size-related aspects, the following tabulated summary characterizes flow con sid-
er ations in macrochannels versus microchannels. Specifically, it contrasts important 
flow conditions and phenomena in conduits of the order of meters and millimeters 
vs. those in microchannels being of the order of micrometers (see Table 1.1).

Brief Comments Regarding Table 1.1. Fortunately, the continuum mechanics 
assumption holds (i.e., a fluid is homogeneous and infinitely divisible) for most micro-
channel flows. Hence, reduced forms of the conservation laws (see Sect. 1.3) can be 
employed to solve fluid flow and heat/mass transfer problems in most device geome-
tries (see Sect. 2.1 and Chapters 3 and 4). The boundary condition of “no velocity slip 
at solid walls” is standard in macrofluidics. However, microchannels fabricated with 
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hydrophobic material and/or having rough surfaces may exhibit liquid velocity slip at 
the walls. Considering laminar flow, the entrance length of a conduit can be estimated as:

(1.2)

where the hydraulic diameter is defined as , with A being the cross-sectional 
area and P the perimeter, the Reynolds number , and  for 
macroconduits and 0.5 for microchannels. For fully turbulent flow, . 
Considering that typically , entrance effects can be important. For 
example, if   the favorite simplification “fully developed flow” 
cannot be assumed anymore (see Sect. 1.4). The Reynolds number is the most 
important dimensionless group in fluid mechanics. However, for microsystems 
employed in biochemistry as well as in biomedical and chemical engineering, the 
Reynolds number is usually very low, i.e., . In contrast, microscale cooling 
devices, i.e., heat exchangers, require high Reynolds numbers to achieve sufficient 
heat rejection. Onset to turbulence, mainly characterized by random fluctuations 
of all dependent variables, may occur earlier in microsystems than in geometrically 
equivalent macrosystems. In some cases, surface roughness over, say, 3% of the 
channel height may cause interesting flow phenomena near the wall, such as velocity 
slip and/or transition to turbulence. For microsystems with heavy liquids and high 
velocity gradients, energy dissipation due to viscous heating should be considered. 
The temperature jump condition at the wall may be applicable when dealing with 
convection heat transfer of rarefied gases (see Chapters 2 and 3). The last three 
entries in Table 1.1, i.e., diffusion, surface tension, and electrokinetics, are of interest 
almost exclusively in microfluidics and nanofluidics (see Part B and Part C).

Table 1.1 Comparison of Flows in Macrochannels vs. Microchannels

Condition/Phenomenon Flow in Macroconduits Flow in Microconduits

Continuum Mechanics 
Hypothesis

Any fl uid is a continuum
Continuum assumption holds for 
most liquid fl ows when  
and for gases when 

Type of Fluid
(i.e., liquid versus gas)

• Special considerations 
for compressible and/or 
rarefi ed gases

• Differentiate between 
Newtonian and non-
Newtonian liquids

May have to treat gas fl ow and 
liquid fl ow differently because 
of the impact of a given fl uid’s 
molecular structure and behavioral 
characteristics
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Table 1.1 Continued

Condition/Phenomenon Flow in Macroconduits Flow in Microconduits

No-Slip Condition Can generally be assumed

Liquid-solid slip may occur on 
hydrophobic surfaces. Velocity slip 
and temperature jump may occur 
with rarefi ed gases

Entrance Effects
Entrance length is usually 
negligible when compared 
to the length of the conduit

Entrance length may be on the order 
of a microchannel length

Reynolds Number
Important to evaluate 
laminar vs. transitional vs. 
turbulent fl ows

Typically  justifi es Stokes 
fl ow and allows for nonmechanical 
pumps driving fl uid fl ow

Turbulence

Transition varies with 
geometry of domain, 
but often requires larger Re 
numbers than in 
microchannel fl ow. 
Example, 

Transition to turbulence may occur 
earlier, e.g., at 

Surface Roughness

Is often negligible or 
included in the friction 
factor (see Moody chart in 
App. B)

May need to be considered due 
to manufacturing limitations at 
this small scale; roughness may be 
comparable to dimensions of the 
system and hence causes complex 
fl ow fi elds near walls

Viscous Heating Is often small/negligible
May become a major player due 
to high velocity gradients in tiny 
channels with viscous fl uids

Wall Temperature 
Condition

Usually thermodynamic 
equilibrium is assumed

For rarefi ed gas fl ows, there may be a 
temperature jump between the solid 
wall and the gas

Diffusion
Present, but often very 
slow; therefore, often 
negligible

Due to the small size of channels, 
diffusion is important and can be 
used for mixing

Surface Tension Is often negligible
May become a major contributing 
force, and hence is being used for 
small fl uid volume transfer

Electrohydrodynamic 
effects, such as 

electroosmosis (EO)
Negligible

In a liquid electrolyte an electric 
double layer (EDL) can be 
formed, which is set into motion 
via an applied electric fi eld 
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Fluidics, as treated in this book, is part of Newtonian mechanics, i.e., dealing 
with deterministic, or statistically averaged, processes (see Branch A in Figure 1.1).

Figure 1.1 Branches of physics waiting for unification

For fluid flow in nanoscale systems the continuum mechanics assumption is 
typically invalid because the length scales of fluid molecules are on the order of 
nanochannel widths or heights. For example, the intermolecular distance for water 
molecules is 0.3-0.4 nm while for air molecules it is 3.3 nm, with a mean-free path of 
about 60 nm. Hence, for rarefied gases, not being in thermodynamic equilibrium, 
the motion and collision of packages of molecules have to be statistically simulated 
or measured. For liquids in nanochannels, molecular dynamics simulation, i.e., 
the solution of Newton’s second law of motion for representative molecules, is 
necessary.
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1.2 Defi nitions and Concepts
As indicated in Sect. 1.1, a solid knowledge base and good problem-solving skills in 
macroscale fluid dynamics, i.e., fluid flow plus heat and mass transfer, are important 
to model most transport phenomena in microfluidics and some in nanofluidics. So, 
we start out with a review of essential definitions and then revisit basic engineering 
concepts in macrofluidics. The overriding goals are to understand the fundamentals 
and to be able to solve problems independently.

1.2.1 Defi nitions
Elemental to transport phenomena is the description of fluid flow, i.e., the equation 
of motion, which is also called the momentum transfer equation. It is an application 
of Newton’s second law, , which Newton postulated for the motion of a 
particle. For most realistic engineering applications the equation of motion is three-
dimensional (3-D) and nonlinear, the latter because of fluid inertia terms such as , 
etc. (see App. A.5). However, it is typically independent of the scalar heat transfer and 
species mass equations, i.e., fluid properties are not measurably affected by changes 
in fluid temperature and species concentration, the latter in case of mixture flows. In 
summary, the major emphasis in Chapters 1 and 2 are on the description, solution, and 
understanding of the physics of fluid flow in conduits.

Here is a compilation of a few definitions:

⦁ A fluid is an assemblage of gas or liquid molecules which deforms 
continuously, i.e., it flows under the application of a shear stress. Note: 
Solids do not behave like that; but what about borderline cases, i.e., the 
behavior of materials such as jelly, grain, sand, etc.?

⦁  Key fluid properties are density ρ, dynamic viscosity μ, thermal conductivity 
k, species diffusivity , as well as heat capacities cp and cv. In general, all six 
are usually temperature dependent. Very important is the viscosity (see also 
kinematic viscosity ) representing frictional (or drag) effects. Certain 
fluids, such as polymeric liquids, blood, food stuff, etc., are also shear rate 
dependent and hence called non-Newtonian fluids (see Sect. 2.3.4).

⦁  Flows, i.e., fluid in motion powered by a force or gradient, can be categorized 
into:

Internal Flows and External Flows
- oil, air, water or steam in pipes 

and inside devices
- air past vehicles, buildings, and 

planes
- blood in arteries/veins or air in 

lungs
- water past pillars, submarines, etc.

- water in rivers or canals - polymer coating on solid surfaces
- gas in pipelines
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⦁  Driving forces for fluid flow include gravity, pressure differentials or gradients, 
temperature gradients, surface tension, electroosmotic or electromagnetic 
forces, etc.

⦁ Forces appear either as body forces (e.g., gravity) or as surface forces (e.g., 
pressure). When acting on a fluid element they can be split into normal and 
tangential forces leading to pressure and normal/shear stresses. For example, 
on any surface element:

(1.3)

 while

(1.4)

Recall: As Stokes postulated, the total stress depends on the spatial derivative of the 
velocity vector, i.e.,  (see App. A.2). For example, shear stress  occurs due to 
relative frictional motion of fluid elements (or viscous layers). In contrast, the total 
pressure sums up three pressure forms, where the mechanical (or thermodynamic) 
pressure is experienced when moving with the fluid (and therefore labeled “static” 
pressure and measured with a piezometer). The dynamic pressure is due to the 
kinetic energy of fluid motion (i.e., ), and the hydrostatic pressure is due to 
gravity (i.e., �gz):

(1.5a,b)

where

(1.6a,b)

From the fluid statics equation for a stagnant fluid body (or reservoir), where h is 
the depth coordinate, we obtain:

(1.7)
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Clearly, the hydrostatic pressure due to the fluid weight appears in the momentum 
equation as a body force per unit volume, i.e., . On the microscopic level, fluid 
molecules are randomly moving in all directions. In the presence of a wall, collisions, 
i.e., impulse  per time, cause a fluctuating force on the wall. This resulting push 
statistically averaged over time and divided by the impact area is the pressure. 

In general:

⦁ Any fluid flow is described by its velocity and pressure fields. The velocity 
vector of a fluid element can be written in terms of its three scalar 
components:

<rectangular coordinates> (1.8a)

 or

<cyli  ndrical coordinates> (1.8b)

 or

<spherical coordinates> (1.8c)

 Its total time derivative is the fluid element acceleration (see Example 1.1 or 
Sect. A.1):

(1.9)

 where Eq. (1.9) is also known as the Stokes, material, or substantial time 
derivative.

⦁ Streamlines for the visualization of flow fields are lines to which the local 
velocity vectors are tangential. In steady laminar flow streamlines and fluid-
particle pathlines are identical. For example, for steady 2-D flow (see Sect. 1.4):

(1.10)

 where the 2-D velocity components  have to be given to obtain, 
after integration, the streamline equation y(x).
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⦁ Dimensionless groups, i.e., ratios of forces, fluxes, processes, or system 
parameters, indicate the importance of specific transport phenomena. For 
example, the Reynolds number is defined as (see Example 1.2):

(1.11)

 where v is an average system velocity, L is a representative system “length” scale 
(e.g., the tube diameter D), and  is the kinematic viscosity of the 
fluid.

Other dimensionless groups with applications in engineering include the 
Womersley number and Strouhal number (both dealing with oscillatory/transient 
flows), Euler number (pressure difference), Weber number (surface tension), 
Stokes number (particle dynamics), Schmidt number (diffusive mass transfer), 
Sherwood number (convective mass transfer ) and Nusselt number, the ratio of 
heat conduction to heat convection (see Sect. A.3). The most common source (i.e., 
derivation) of these numbers is the nondimensionalization of partial differential 
equations describing the transport phenomena at hand, or alternatively via scale 
analysis (see Example 1.2). 

Example 1.1: Derive the material (or Stokes) derivative,  operating on the 
velocity vector, describing the “total time rate of change” of a fluid flow field.

Hint: For illustration purposes, use an arbitrary velocity field, , and 
form its total differential.
Recall: The total differential of any continuous and differentiable function, such as 

, can be expressed in terms of its infinitesimal contributions in terms 
of changes of the independent variables:

Solution:

Dividing through by dt and recognizing that , , and  are 
the local velocity components, we have:
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Substituting the “particle dynamics” differential with the “fluid element” differential 
yields:

Example 1.2: Generation of Dimensionless Groups

(a) Scale Analysis
As outlined in Sect. 1.3, the Navier-Stokes equation (see Eq. (1.63)) describes fluid 
element acceleration due to several forces per unit mass, i.e.,

Now, by definition:

Employing the scales  and  where v may be an 
average velocity and L a system characteristic dimension, we obtain:

Similarly, taking

we can write with system time scale T (e.g., cardiac cycle: )
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which is the Strouhal number. For example, when ,  and hence the 
process, or transport phenomenon, is quasi-steady.

(b) Nondimensionalization of Governing Equations
Taking the transient boundary-layer equations (see Sect. 1.3, Eq. (1.63)) as an 
example, 

we nondimensionalize each variable with suitable, constant reference quantities. 
Specifically, approach velocity , plate length , system time T, and atmospheric 
pressure  are such quantities. Then,

Note: Commonly,  is defined as , where  is the varying boundary-
layer thickness.

Inserting all variables, i.e.,  etc., into the governing equation 
yields

Dividing the entire equation by, say,  generates:

Comments:

In a way three goals have been achieved:
⦁ the governing equation is now dimensionless;
⦁ the variables vary only between 0 and 1; and
⦁ the overall fluid flow behavior can be assessed by the magnitude of three 

groups, i.e., Str, Eu, and Re numbers.



14 Chapter 1 Theory

1.2.2 Flow Field Description
Any flow field c  an be described at either the microscopic or the macroscopic level. 
The microscopic or molecular models consider the position, velocity, and state of 
every molecule, or representative packages of molecules, of a fluid at all times. In 
contrast, averaging discrete-particle information (i.e., position, velocity, and state) 
over a local fluid volume yields macroscopic quantities, e.g., the velocity field  
in time and space of the flow field. The advantages of the molecular approach 
include general applicability, i.e., no need for submodels (e.g., for the stress tensor, 
heat flux, turbulence, wall conditions, etc.) and an absence of numerical instabilities 
(e.g., due to steep flow field gradients). However, considering myriads of molecules, 
atoms, or nanoparticles requires enormous computer resources, and hence only 
simple channel or stratified flows with a finite number of interacting molecules 
(assumed to be solid spheres) can be presently analyzed. 

For example, in a 1-mm cube there are about 34 billion water molecules (about 
a million air molecules at STP); these high numbers make molecular dynamics 
simulation prohibitive but, on the other hand, intuitively validate the continuum 
assumption if  the flow domain is sufficiently large.

Continuum Mechanics Assumption. As alluded to in Sect. 1.2.1 (see Table 1.1), fun-
damental to the description of all transport phenomena are the conservation laws, 
concerning mass, momentum, and energy, as applied to continua. In general, solid 
structures and fluid flow fields are continua as long as the local material properties 
can be defined as averages computed over material elements/volumes sufficiently 
large when compared to microscopic length scales of the solid or fluid but small 
relative to the (macroscopic) structure. Variations in solid-structure or fluid flow 
quantities can be obtained via solutions of differential equations describing the 
interactions between forces (or gradients) and motion. Specifically, the continuum 
mechanics method is an effective tool to physically explain and mathematically 
describe various transport phenomena without detailed knowledge of their internal 
molecular structures. In summary, continuum mechanics deals with three aspects:

⦁ Kinematics, i.e., fluid element motion regardless of the cause
⦁ Dynamics, i.e., the origin and impact of forces and fluxes generating fluid 

motion and waste heat, e.g., the stress tensor or heat flux vector, leading to 
entropy increase

⦁ Balance principles, i.e., the mass, momentum, and energy conservation laws

Also, usually all flow properties are in local thermodynamic equilibrium, 
implying that the macroscopic quantities of the flow field can adjust swiftly to their 
surroundings. This local adjustment to varying conditions is rapidly achieved if  the 
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fluid has very small characteristic length and time scales of molecular collisions, 
when compared to the macroscopic flow variations. However, as the channel 
(or tube) size, typically indicated by the hydraulic diameter Dh, is reduced to the 
microscale, the surface-area-to-volume ratio becomes larger because  and 
wall surface effects may become important, as mentioned in Sect. 1.1. 

Flow Dynamics and Fluid Kinematics. Here, the overall goal is to find and analyze 
the interactions between fluid forces, e.g., pressure, gravity/buoyancy, drag/friction, 
inertia, etc., and fluid motion, i.e., the velocity vector field and pressure distribution 
from which everything else can be directly obtained or derived (see Figure 1.2). 
In turn, scalar transport equations, i.e., convection mass and heat transfer, can 
be solved based on the velocity field to obtain critical magnitudes and gradients 
(or fluxes) of species concentrations and temperatures, respectively. 

Figure 1.2 Dynamics and kinematics of fluid flow: (a) force-motion interactions; and (b) 2-D fluid 

kinematics

In summary, unbalanced surface/body forces and gradients cause motion in the 
form of fluid translation, rotation, and/or deformation, while temperature or concentration 
gradients cause mainly heat or species mass transfer. Note that flow visualization CDs 
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plus web-based university sources provide fascinating videos of complex fluid flow, 
temperature, and species concentration fields. Please check out the following links:
http://en.wikipedia.org/wiki/Flow_visualization  
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.6782&rep=rep1&type
=pdf

Balance Principles. The fundamental laws of mass, energy, and momentum 
conservation are typically derived in the form of mass, energy, and force balances 
for a differential fluid volume (i.e., a representative elementary volume) generating 
partial differential equations (PDEs). When a much larger open system is considered 
for mass, momentum, and/or energy balances, integral expressions result. Such 
balances in integral form, known as the Reynolds Transport Theorem (RTT), 
can be readily transformed into PDEs by employing the Divergence Theorem 
(see Sect. 1.3 and App. A). 

Within the continuum mechanics framework, two basic flow field descriptions 
are of interest, i.e., the Lagrangian viewpoint and the Eulerian (or control volume) 
approach (see Figure 1.3, where  and ).

Figure 1.3 Closed versus open systems

For the Lagrangian description (see Figure 1.3a) one could consider first just a 
particle moving on a pathline with respect to a fixed Cartesian coordinate system. 
Initially, the particle position is at  and a moment later at  
where based on vector algebra . Following the particle’s motion for , 
the position vector is in general:
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(1.12)

In the limit the time rate of change in location is the particle (or fluid element) 
velocity, i.e.,

(1.13)

and after a second time derivation:

(1.14)

Now, the “material point concept” is extended to a material volume with constant 
identifiable mass, forming a “closed system” that moves and deforms with the flow but 
no mass crosses the material volume surface, because it is closed (see Figure 1.3a, second 
example). Again, the system is tracked through space, and as time expires it is of 
interest to know what the changes in system mass, momentum, and energy are. 
This can be expressed in terms of the system’s extensive property Bsystem which 
could be mass m, momentum , or total energy E. Thus, the key question is: 
“How can we express the fate of the Bsystem” or, in mathematical shorthand, what is 
“ ”? Clearly, the material time (or Stokes) derivative  (see 
Example 1.1) follows the closed system and records the total time rate of change of 
whatever is being tracked.

In order to elaborate on the material derivative (see Example 1.1) as employed 
in the Lagrangian description, a brief  illustration of the various time derivatives is 
in order, i.e.,  (local),  (total of a material point or solid particle), and  
(total of a fluid element). Their differences can be illustrated using acceleration (see 
Example 1.1 and App. A):

⦁ , where u is the fluid element velocity in the x-direction,
⦁  is employed in solid particle dynamics, 

whereas
⦁  is the total fluid element acceleration.

In the Eulerian frame, an “open system” is considered where mass, momentum, 
and energy may readily cross boundaries, i.e., being convected across the control 
volume surface and local fluid flow changes may occur within the control volume 
over time (see Figure 1.3b). The fixed or moving control volume may be a large 
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system/device with inlet and outlet ports, it may be small finite volumes generated 
by a computational mesh, or it may be in the limit a “point” in the flow field. In 
general, the Eulerian observer fixed to an inertial reference frame records temporal 
and spatial changes of the flow field at all “points” or, in case of a control volume, 
transient mass, momentum, and/or energy changes inside and fluxes across its 
control surfaces.

In contrast, the Lagrangian observer stays with each fluid element or material 
volume and records its basic changes while moving through space. Section 1.3 
employs both viewpoints to describe mass, momentum, and heat transfer in integral 
form, known as the Reynolds Transport Theorem (RTT). Thus, the RTT simply links 
the conservation laws from the Lagrangian to the Eulerian frame. In turn, a surface-to-
volume integral transformation then yields the conservation laws in differential form 
(i.e., PDEs) in the Eulerian framework, also known as the control volume approach.

1.2.3 Flow Field   Categorization
Exact flow problem identification, especially in industrial settings, is one of the more 
important and sometimes the most difficult first task. After obtaining some basic 
information and reliable data, it helps to think and speculate about the physics of 
the fluid flow, asking:

(i) What category does the given flow system fall into, and how does it respond 
to normal as well as extreme changes in operating conditions? Figure 1.4 
may be useful for categorization of real fluids and types of flows.

(ii) What variables and system parameters play an important role in the 
observed transport phenomena, i.e., linear or angular momentum transfer, 
fluid mass or species mass transfer, and heat transfer? 

(iii) What are the key dimensionless groups and what are their expected ranges?

Answers to these questions assist in grouping the flow problem at hand. For 
example, with the exception of “superfluids,” all others are viscous, some more (e.g., 
syrup) and some less (e.g., rarefied gases). However, with the advent of Prandtl’s 
boundary-layer concept the flow field, say, around an airfoil has been traditionally 
divided into a very thin (growing) viscous layer and beyond that an unperturbed 
inviscid region (see Schlichting & Ge  rsten, 2000). This paradigm helped to better 
understand actual fluid mechanics phenomena and to simplify velocity and pressure 
as well as drag and lift calculations. Specifically, at sufficiently high approach 
velocities a fluid layer adjacent to a submerged body experiences steep gradients 
due to the “no-slip” condition and hence constitutes a viscous flow region, while 
outside the boundary layer frictional effects are negligible (see Prandtl equations 
versus Euler equation in Sect. 1.3.3.3). Clearly, with the prevalence of powerful 
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CFD software and engineering workstations, such a fluid flow classification is 
becoming more and more superfluous for practical applications.

Figure 1.4 Special cases of viscous fluid flows

While, in addition to air, water and almost all oils are Newtonian, some synthetic 
motor oils are shear rate dependent and that holds as well for a variety of new 
(fluidic) products. This implies that modern engineers have to cope with the analysis 
and computer modeling of non-Newtonian fluids (see Sect. 2.3.4). For example, 
Latex paint is shear thinning, i.e., when painting a vertical door rapid brush strokes 
induce high shear rates ( ) and the paint viscosity/resistance is very low. 
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When brushing stops, locally thicker paint layers (due to gravity) try to descend 
slowly; however, at low shear rates the paint viscosity is very high and hence “tear-
drop” formation is avoided and a near-perfect coating can dry on the vertical door.

All natural phenomena change with time and hence are unsteady (i.e., transient) 
while in industry it is mostly desirable that processes are steady, except during 
production line start-up, failure, or shut-down. For example, turbines, compressors, 
and heat exchangers operate continuously for long periods of time and hence are 
labeled “steady-flow devices”; in contrast, pacemakers, control systems, and drink 
dispensers work in a time-dependent fashion. In some cases, like a heart valve, 
devices change their orientation periodically and the associated flows oscillate 
about a mean value. In contrast, it should be noted that the term uniform implies 
“no change with system location,” as in uniform (i.e., constant over a cross section) 
velocity or uniform particle distribution, which all could still vary with time.

Mathematical flow field descriptions become complicated when laminar flow 
turns unstable due to high speed and/or geometric irregularities ranging from surface 
roughness to complex conduits. The deterministic laminar flow turns transitional on 
its way to become fully turbulent, i.e., chaotic, transient 3-D with random velocity 
fluctuations, which help in mixing but also induce high apparent stresses. As an 
example of “flow transition,” picture a group (on bikes or skis) going faster and 
faster down a mountain while the terrain gets rougher. The initially quite ordered 
group of riders/skiers may change swiftly into an unbalanced, chaotic group. So far 
no universal model for turbulence, let alone for the transitional regime from laminar 
to turbulent flow, has been found. Thus, major efforts focus on direct numerical 
simulation (DNS) of turbulent flows which are characterized by relatively high 
Reynolds numbers and chaotic, transient 3-D flow pattern. 

Basic Flow Assumptions and Their Mathematical Statements. Once a given fluid 
dynamics problem has been categorized (Figure 1.4), some justifiable assumptions 
have to be considered in order to simplify the equations describing the flow system’s 
transport phenomena. The three most important ones are time dependence, 
dimensionality, and flow (or Reynolds number) regime. Especially, if  justifiable, 
steady laminar 1-D (parallel or unidirectional or fully developed) flow simplifies a 
given problem analysis (see Sect. 1.3.3.3 with Table 1.2 as well as Table 2.1). 

1.2.4 Thermodynamic Properties and Constitutive Equations

Thermodynamic Properties. Examples of thermodynamic properties are mass and 
volume (extensive properties) as well as velocity, pressure, and temperature (intensive 
properties), all essential to characterize a general system, process, or device. In 
addition, there are transport properties, such as viscosity, diffusivity, and thermal 
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conductivity, which are all temperature dependent and may greatly influence, or even 
largely determine, a fluid flow field. Any extensive, i.e., mass-dependent, property 
divided by a unit mass is called a specific property, such as the specific volume  
(where its inverse is the fluid density) or the specific energy  (see Sect. 1.3). 
An equation of state is a correlation of independent intensive properties, where for 
a simple compressible system just two describe the state of such a system. A famous 
example is the ideal-gas relation, , where  and R is the gas constant. 

At the microscopic level (based on kinetic theory), the fluid temperature is directly 
proportional to the kinetic energy of the fluid’s molecular motion (Probstein, 1994). 
Specifically, , where k is the Boltzmann constant, m is the molecular 
mass, and  is the fluctuating velocity vector. The pressure, as indicated, is the 
result of molecular bombardment. The density depends macroscopically on both 
pressure and temperature and microscopically on the number of molecules per unit 
volume; for example, there are  air molecules in 1 cm3. Comparing the 
compressibility of liquids vs. gases, it takes  to achieve the 
same fractional change in density. 

Constitutive Equations. Looking ahead (see Sect. 1.3), when considering the 
conservation laws for fluid flow and heat transfer, it is apparent that additional 
relationships must be found in order to solve for the variables: velocity vector , 
fluid pressure p, fluid temperature T, and species concentration c as well as stress 
tensor , heat flux vector , and species flux . Thus, this is necessary for reasons of 
(i) mathematical closure, i.e., a number of unknowns require the same number of 
equations, and (ii) physical evidence, i.e., additional material properties other than 
the density  are important in the description of system/material/fluid behavior. 
These additional relations, or constitutive equations, are fluxes which relate via 
“material properties” to gradients of the principal unknowns. Specifically, for basic 
linear proportionalities we recall:

Stokes’ postulate, i.e., the fluid stress tensor

(1.15)

where  is the dynamic viscosity;
Fourier’s law, i.e., the heat conduction flux 

(1.16)

where k is the thermal conductivity; and
Fick’s law for the species mass flux 
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(1.17)

where  is the binary diffusion coefficient.

Of these three constitutive equations, the total stress tensor is in macrofluidics 
the most important and complex one (see Sect. 1.3.3.2 for more details). For, say, 
one-dimensional (1-D) cases to move fluid elements relative to each other, a shear 
force 

 
is necessary. Thus, for simple shear flows (see Figure 1.5) 

. In general, the shear stress is proportional to  and the dynamic 
viscosity is just temperature dependent for Newtonian fluids (e.g., air, water, 
and oil) or shear rate dependent for polymeric liquids, paints, blood (at low shear 
rates), food stuff, etc. 

Figure 1.5 Illustration of the shear stress derivation for simple shear flow
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1.3 Conservation Laws
After proper problem recognition and classification (see Sect. 1.2.3), central to 
engineering analysis are the tasks of realistic, accurate, and manageable modeling 
followed by analytical (or numerical) solution. While in most cases a given 
system’s conservation laws are known, to solve the equations, often subject to 
complex boundary conditions and closure models, is quite a different story. So, 
after highlighting different approaches to derive conservation laws for mass, linear 
momentum, and energy, several examples in this section as well as in Chapter 2 
illustrate basic phenomena and solution techniques.

  1.3.1 Derivation Approaches
Derivation of  the conservation laws describing all essential transport phenomena 
is very important because they provide a deeper understanding of the underlying 
physics and implied assumptions, i.e., the power and limitations of a particular 
mathematical model. Of course, derivations are regarded by most as boring and 
mathematically quite taxing; however, for those, it’s time to become a convert 
for the two beneficial reasons stated. Furthermore, one should not forget the 
power of dimensional analysis (DA) which requires only simple algebra when 
nondimensionalizing governing equations and hence generating dimensionless 
groups. Alternatively, scale analysis (SA) is a nifty way of deriving dimensionless 
groups as demonstrated in this chapter (see Example 1.2). Both DA and SA are 
standard laboratory/computational tools for estimating dominant transport 
phenomena, graphing results, to evaluate engineering systems, and to test kinematic/
dynamic similarities between a physical model and the actual prototype.

Outside the cutting-edge research environment, fluid mechanics problems are 
solved as special cases, i.e., the conservation equations are greatly reduced based 
on justifiable assumptions on a case-by-case basis (see Sect. 1.3.3.3). Clearly, the 
simplest case is fluid statics where the fluid mass forms a “whole body,” either 
stationary or moving without any relative velocities (see Eq. (1.7)). The popular 
(because very simple) Bernoulli equation, for frictionless fluid flow along a 
representative streamline, balances kinetic energy , flow work , and 
potential energy  and hence in some cases provides useful pressure-velocity-
elevation correlations. The most frequently used equations in macrofluidics and 
microfluidics are the Navier-Stokes (N-S) equations, describing momentum and 
heat transfer for constant-property fluids, assuming that the flow is a continuum. 
After some basic fluid flow applications, relatively new material is introduced to 
broaden the student’s knowledge base and provide a higher skill level to cope with 
today’s engineering problems encountered in industry or graduate school.

There are basically four ways of obtaining specific equations expressing the 
conservation laws: 
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(i) Molecular Approach: Fluid properties and transport equations can be 
obtained from kinetic theory and the Boltzmann equation, respectively, employing 
statistical means. Alternatively,  is solved for each molecule using direct 
numerical integration.

(ii) Integral Approach: Starting with the RTT for a fixed open control volume 
(Euler), specific transport equations in integral form can be obtained (see Sect. 1.3.2).

(iii) Differential Approach: Starting with 1-D balances over an REV 
(representative elementary volume) and then expanding them to 3-D, the mass, 
momentum, and energy transfer equations in differential form can be formulated. 
Alternatively, the RTT is transformed via the divergence theorem, where in the limit 
the field equations in differential form are obtained (see Sect. 1.3.3). 

(iv) Phenomenological Approach: Starting with balance equations for an open 
system, transport phenomena in complex transitional, turbulent, or multiphase 
flows are derived largely based on empirical correlations and dimensional analysis 
considerations. A very practical example is the description of transport phenomena 
with fluid compartment models. These “compartments” are either well-mixed, i.e., 
transient lumped-parameter models without any spatial resolution, or transient with 
a one-dimensional resolution in the axial direction. 

Especially for the (here preferred) differential approach (iii), the system-specific 
fluid flow assumptions have to be carefully stated and justified. 

1.3.  2 Reynolds Transport Theorem
Consider  to be an arbitrary extensive quantity of a closed system, say, a 
moving material volume. In general, such a system could be an ideal piston-cylinder 
device with enclosed (constant) gas mass, a rigid tank without any fluid leaks, 
or an identifiable pollutant cloud—all subject to forces and energy transfer  (see 
Figure 1.3a). In any case,  represents the system’s mass, momentum, or energy. 

Task 1 is to express in the Lagrangian frame the fate of  in terms of the 
material derivative, , i.e., the total time rate of change of  (see Sect. l.2.2 
reviewing the two system approaches and Example 1.1 discussing the operator 
D/Dt). Specifically, based on:

⦁ Conservation of mass

(1.18a)
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⦁ Conservation of momentum (or Newton’s second law)

(1.18b)

⦁ Conservation of energy or first law of thermodynamics

(1.18c)

In Task 2 the conservation laws, in terms of , are related to an open system, 
i.e., in the Eulerian frame. Here, for a fixed control volume ( ) with material 
streams flowing across the control surface (C.S.), and possibly accumulating inside 

, we observe with specific quantity , or :

or in mathematical shorthand:

(1.19)

Equation (1.19), which is formally derived in any undergraduate fluids text, is the 
RTT for a fixed control volume. Clearly, the specific quantity β can be expressed as:

(1.20a-c)

Extended Cases. For a moving control volume the fluid velocity  is replaced 
by   (see Example 1.6). The operator , acting on the first term 
on the right-hand-side (RHS) of Eq. (1.19), has to be replaced by  when the 
control volume is deformable, i.e., the C.S. moves with time (see Example 1.5). 
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For a noninertial coordinate system, for example, when tracking an accelerating 
system such as a rocket,  of Eq. (1.18b) is expressed as:

(1.21a)

where  accounts for noninertial effects (e.g., arbitrary  acceleration):

(1.21b)

In case of . rotation,

(1.21c)

Specifically, for a rotating material volume, the fluid angular momentum per 
unit volume  has to be considered. The law of conservation of angular 
momentum states that the rate of change of angular momentum of a material 
volume is equal to the resultant moment on the volume (see any undergraduate 
fluids text for more details).

Setting Up the Reynolds Transport Theorem. There are a few sequential steps 
necessary for tailoring the general RTT toward a specific flow system description 
and solving the resulting integral equations:

(1) Identify the extensive quantity , e.g., the mass of the identifiable material, 
linear (or angular) momentum, or total energy. As a result, the specific 
property of the closed system  is known (see Eqs. (1.18 and 1.20)).

(2) Determine  for each conservation case, i.e., mass, momentum, or 
 energy (see Eq. (1.18)).
(3) Select a “smart” control volume and determine if:

⦁ the control volume is fixed, or moving at , or accelerating at 
, or accelerating and rotating (see “Extended Cases” above);

⦁ the flow problem is steady or transient, i.e., is  or  (note, 
 when the rate of change of  inside the  is 

 negligible);
⦁ a control surface moves, i.e., we have a deformable  where 

;
⦁ the fluid properties are constant or variable;
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⦁ the inflow/outflow velocity fields are constant, i.e., uniform, or a 
function of inlet/exit space variables; and

⦁ the resulting integral balance equations for mass and momentum (or 
energy) are decoupled or not.

(1) Set up the momentum, i.e., force balance, equation for each coordinate 
direction.

(2) Solve the volume and/or surface integrals (use integration tables, if  nec-
essary).

(3) Follow the inflow/outflow sign convention (see Figure 1.6), i.e.,  
and 

(4) Check the results for correctness, i.e., apply common sense. 

Figure 1.6 Sign convention for the “net efflux” RTT term (Recall: ; and )

1.3.2.1 Fluid Mass Conservation in Integral Form
Conservation of mass is very intuitive and standard in daily-life observations. 
A given mass of a fluid may change its thermodynamic state, i.e., liquid or gaseous, 
but it can neither be destroyed nor created. This, as the other two conservation 
laws, can be expressed in integral form for a control volume of any size and shape 
or derived in differential form.

In order to track within the Lagrangian frame an identifiable constant mass of 
fluid, we set (see Figure 1.3a and Eq. (1.20a))

The conservation principle requires that, with ,  and hence Eq. (1.19) 
reads:
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(1.22)

Thus, we just completed Steps (i) and (ii) of the “setting-up-the-RTT” procedure. 
Aspects of Step (iii) are best illustrated with a couple of examples.

Example 1.3: Volumetric Flow Rate

Consider a liquid-filled tank (depth H) with a horizontal slot outlet (height 2h and 
width w) where the short-tube locally varying outlet velocity can be expressed as:

A constant fluid mass flow rate, , is added to maintain the liquid depth H. The 
z-coordinate indicates the location of the center of the outlet. Find  as a function of 
H and h.

Solution:

The given u(z)-equation is a special case of Bernoulli’s equation. Specifically, with 
 (steady state because no system parameter changes with time), we have 

with  (incompressible fluid):

(E1.3-1)

Fluid mass crosses the control surface at two locations (see graph). Recalling 
that “inflow” is negative and “ outflow” positive (see Figure 1.6), Eq. (E1.3-1) reads, 
with ,
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which yields

(E1.3-3)

where .
For , as it is often the case, Eq. (E1.3-3) can be simplified to (see Sect. 1.4):

(E1.3-4)

Comment: Equation (E1.3-4) is known as Torricelli’s law.

What can be deduced from Example 1.3 is that for incompressible fluid flow 
through a conduit,

(1.23)

or , i.e., in general:

(1.24)

where  is the cross-sectionally averaged velocity. We also recall that the mass 
flow rate at any point in a conduit is:
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(1.25)

which holds for any fluid and is a key “internal flow” condition, reflecting 
conservation of mass. Clearly, for a  with multiple inlets and outlets:

(1.26)

as illustrated in Example 1.4.

Example 1.4: Multiport Flow Junction

Consider a feed pipe ( ) bifurcating into two outlet pipes  
where a small hole ( ) has been detected in the junction area. Develop an equation 
for the leak .

Solution:

The fact that the inlet/outlet velocities are all constant simplifies Eq. (1.23) to 
Eq. (1.26), i.e.,

Thus,
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The next example considers a deforming control volume inside a tank due to a 
single outflow in terms of a variable velocity. Thus, Eq. (1.22) has to be rewritten as:

(1.27a)

For incompressible fluid flow, we have:

(1.27b)

Example 1.5: Draining of a Tank: A “deformable ” because the fluid level 
decreases and hence we have a shrinking  with moving C.S.

Consider a relatively small tank of diameter D and initially filled to height . 
The fluid drains through a pipe of radius  according to (see Example 2.1):

where  (see Example 1.3),  is the outlet pipe radius, and r is its variable 
radius, . The fluid depth was  at time . Find  for a limited 
observation time .

Solution:

Equation (1.27b) can be expanded for this problem with  to

(E1.5-1)
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where  is the variable ring element as part of the cross-sectional area of 
the outlet pipe. Thus,

(E1.5-2a)

or

(E1.5-2b)

subject to . Separation of variables and integration yield: 

(E1.5-3a)

or

(E1.5-3b)

Graph:
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Comments:

⦁ The standard assumption that , i.e., being a reservoir, is only 
approximately true when .

⦁ A variable speed , i.e., accelerated tank draining, occurs when .

1.3.2.2 Momentum Conservation in Integral Form
Focusing on linear momentum transfer (in contrast to angular momentum transfer) 
the momentum conservation law is again derived via the integral. 

Forces acting on an identifiable fluid element accelerate it, as it is well known 
from Newton’s second law of motion . Specifically, we set (see 
Eq. 1.18b)):

.

As previously indicated, with ,  and hence Eq. (1.19) reads:

(1.28a)

As discussed, for control volumes accelerating without rotation relative to 
inertial coordinates, an additional force  appears, where  is the  
acceleration relative to the fixed frame of reference X-Y-Z. Thus, with

we can express the sum of all forces as:

i.e., for an accelerating and deforming control volume:

(1.28b)
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Example 1.6: Force on a Disk Moving into an Axisymmetric Jet

A steady uniform round jet impinges upon an approaching conical disk as shown. 
Find the force exerted on the disk, where vjet, Ajet, vdisk, diameter D, angle θ, and fluid 
layer thickness t are given.

Assumptions: as stated; constant averaged velocities and properties
Approach: RTT (mass balance and 1-D force balance)
Solution:

(a) Mass Conservation:

(E1.6-1)

where  and .

Hence,

(E1.6-2)
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(b) Momentum Conservation:

(E1.6-3a.b)

Thus,

where with Eq. (E1.6-2):

(E1.6-4)

Comment:

The resultant fluid structure force (E1.6-4) can be rewritten as:

(E1.6-5)

which is the result of a change in fluid flow momentum. If  the disk would move 
away with , i.e., escaping the jet,  and hence .

Expanding on Eq. (E1.6-5), we can generalize that the net momentum flux due 
to applied forces is:

(1.29)

where the correction factor α accounts for the variation of v2 across the inlet ➀ or 
outlet ➁ duct section. Specifically,

so that 
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(1.30)

Example 1.7: Force on a Submerged Body

Find the drag on a submerged elliptic rod of characteristic thickness h, based on a 
measured velocity profile downstream from the body, say,

Solution:

(a) Mass Conservation: 

(E1.7-1)

(E1.7-2a)

(E1.7-2b)

(b) Momentum Conservation (x-momentum):

(E1.7-3a)
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(E1.7-3b)

(E1.7-3c)

Comment:

The fluid flow field inside the , especially behind the submerged body, is 
very complex. The RTT treats it as a “black box” and elegantly obtains  
via “velocity defect” measurements, indicated with the given velocity profile u(y). 
Note that the given system is 2-D with ; but, after integration the result, 

, is obtained in 1-D.

1.3.2.3 Conservation Laws of Energy and Species Mass 
Although many natural and industrial fluid flow problems are nonisothermal, fluid 
mechanics education typically only deals with constant-temperature flows, leaving 
thermal flows for separate thermodynamics and convection heat transfer courses. 
Species mass transfer is almost entirely left for chemical and biomedical engineers. 
Being more comprehensive, we highlight the energy RTT plus the resulting heat 
transfer equation with an analogy to mass transfer, to lay the groundwork for some 
interesting engineering applications in remaining sections plus Chapters 3, 5 and 6.

Two approaches are considered which highlight global energy balance for closed 
and open systems, as well as convection heat transfer described by the energy RTT.

Global Energy Balance. The first law of thermodynamics states that energy forms 
can be converted but the total energy is constant, i.e., conserved:

(1.31)

Taking the total time derivative in an “engineering approach” yields:

(1.32a)

Expressing the net energy rate efflux as , we have:
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(1.32b)

For observation time  the global energy balance for any system can be written as:

(1.33)

where the internal energy U is the sum of all microscopic energy forms, i.e., mainly 
due to molecular vibration. 

For example, for a closed system with heat transferred to the system and work 
done by the system (see Figure 1.7):

(1.34)

or during  considering only an internal energy change from State 1 <initial> to 
State 2 <final>:

(1.35)

Heat can be transferred via conduction, convection, and/or thermal radiation, 
while work done by the closed system, such as a piston-cylinder device, is typically 
boundary or electric work:

Figure 1.7 Energy transfer for closed and open systems
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(1.36a,b)

For an open system, i.e., control volume, energy forms flowing in and out of the 
system have to be accounted for. Thus, Eq. (1.33) can be written for a fixed control 
volume with uniform streams entering and leaving (see Figure 1.7b):

(1.37)

where for constant fluid properties  is the enthalpy per unit mass; h 
combines internal energy and flow work due to pressure p moving specific volume , 
i.e., ;  is the specific kinetic energy, and  is the potential energy 
per unit mass.

As an aside, for steady, single-inlet/outlet, frictionless flows without internal 
energy changes, heat transferred, and work done, the Bernoulli equation appears:

(1.38)

Energy Conservation in Integral Form. The global energy balance (see Eq. (1.33) 
or Eq. (1.37)) is a special case of the energy RTT (see Eq. (1.40)). Specifically, taking 

 and hence , the energy RTT reads [Recall: Eqs. (1.18) and (1.34)]:

(1.39)

Typically, , i.e., the left-hand-side (LHS) has 
to be separately expressed. The physical meaning of each term in Eq. (1.39) can be 
summarized as:
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where the total heat flux . In some cases, in order to complete the 
energy conservation law, a distributed internal heat source term, e.g., , may 
have to be added. Finally, using Eq. (1.39), the energy RTT reads for a stationary 
control volume:

(1.40)

Employing the Divergence Theorem (see App. A), the RTTs (i.e., Eqs. (1.22), (1.28), 
and (1.40)) can be transformed into PDEs as shown in Sects. 1.3.3.1 to 1.3.3.4. To 
connect Eqs. (1.37) and (1.40) is left as a homework assignment.

1.3.3 Conservation Equations in Differential Form
As discussed and illustrated in Sect. 1.3.2, the RTT provides integral system 
quantities such as flow rate, fluxes, and forces. In microfluidics and nanofluidics, 
high-resolution results in terms of local velocities, pressures, temperatures, 
concentrations as well as shear rates and fluxes are most desirable. Hence, 
starting with the RTT, fluid mass continuity, linear momentum, heat transfer, and 
species mass transfer equations are derived in differential form. Alternatively, the 
conservation laws are then also derived starting with mass, momentum, and energy 
balances for a fluid element.

1.3.3.1 Fluid Mass Conservation

Continuity Equation in Differential Form Based on the RTT. As discussed, the 
RTT is great for computing global (or integral) quantities, such as flow rates and 
mass fluxes or forces and energies without knowledge of the detailed fluid flow field 
inside the open system (i.e., the control volume). However, if  it is necessary to find 
point-by-point density variations as well as velocity and pressure distributions in 
order to analyze fluid flow patterns, the conservation laws in differential rather than 
integral form have to be solved.

The conservation equations can be readily derived from the RTT, e.g., Eq. (1.19), 
by considering an infinitesimally small control volume  and then expressing each 
term in the form of a volume integral. For example, Eq. (1.22) contains a surface 
integral which has to be transformed into a volume integral, employing Gauss’ 
Divergence Theorem (App. A):
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(1.41)

where  is a vector in surface S,  is the del operator (see App. A), and ( ) is the 
divergence of the vector field. 

Using Eq. (1.41) to express the surface integral in Eq. (1.22) as a volume integral, 
Eq. (1.22) can be written as:

or, following Leibniz’s rule (App. A) and switching the operation for the first term, 
we have

Clearly, either  (not physical) or

(1.42)

Equation (1.42) is known as the continuity equation, stating fluid mass conservation 
on a differential basis. Note the special cases:

⦁ For steady flow : 
(1.43)

⦁ For incompressible fluids : (1.44)

It should be noted that the widely applicable Eq. (1.44) holds for transient flow as 
well. 

Continuity Derived from a Mass Balance. In order to gain more physical insight, 
Eq. (1.42) is now derived based on a 3-D mass balance. A fluid mass balance over 
an open system, say, a cube of volume , yields:

(1.45)
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from a global perspective. Using Eq. (1.45) in 1-D on a differential basis (see 
Figure 1.8):

(1.46)

Now, Taylor’s truncated series expansion (see App. A) states:

(1.47)

so that

(1.48)

Adding the other two net fluxes  and  in the y- and z-direction, respectively, 
and dividing by the arbitrary volume, , yield:

 (1.49)

Thus,

(1.50)

Figure 1.8 One-dimensional fluid mass balance for a 3-D control volume
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Example 1.8: Use of the Continuity Equation (Two Problems: A&B)

(a) For steady laminar fully developed pipe flow of an incompressible fluid, the 
axial flow is:

(E1.8-1)

Show that the radial (or normal) velocity .

Solution:

Based on the assumptions, Eq. (1.42) is appropriate and reads in cylindrical 
coordinates (App. A):

(E1.8-2)

Clearly, the given velocity profile  (see Eq. (E1.8-1)) is not a function of z, i.e., 
, which implies with  (axisymmetry) that Eq. (E1.8-2) reduces to:

(E1.8-3)

Partial integration yields:

(E1.8-4)

where , i.e., r could be zero. That fact and the boundary condition 
, i.e., no fluid penetrates the pipe wall, force the physical solution . 
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Indeed, if  , such a radial velocity component would alter the axial velocity 
profile to , which implies developing flow; that happens, for example, 
in the pipe’s entrance region or due to a porous pipe wall through which fluid can 
escape or is being injected.

(b) Consider 2-D steady laminar symmetric flow in a smooth converging channel 
where axial velocity values were measured at five points (see sketch). Estimate the 
fluid element acceleration ax at point C as well as the normal velocity v at point B′. 
All distances are 2 cm and the centerline velocities are 5 m/s at A; 7 m/s at B; 10 m/s 
at C; and 12 m/s at D.

Solution:

From Sect. 1.2.2 (Eq. (1.14)) the axial acceleration can be written as:

(E1.8-5)

Based on the stated assumptions :

              

In order to find , we employ the 2-D continuity equation in rectangular 
coordinates:

(E1.8-6)

which can be approximated as:
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or

Recall that  where  <symmetry> so that

Comment:

This is a very simple example of finite differencing where derivatives are 
approximated by finite differences of all variables. Discretization of the governing 
equations describing the conservation laws is the underlying principle of CFD 
(computational fluid dynamics) software (see Chapter 7).

1.3.3.2 Linear Momentum Conservation

Momentum Equation in Differential Form Based on the RTT. In order to obtain 
the equation of motion describing any point in a fluid flow field, all terms in the 
RTT have to be again converted to volume integrals, employing Gauss’ Divergence 
Theorem (see Eq. (1.39)).

The Equation of Motion. First, body forces in Eq. (1.28) are logically expressed 
in terms of volume integrals, i.e., 

and surface forces in terms of surface integrals, i.e., 

where  is a body force per unit mass and  is the total (or Cauchy) stress tensor. 
Now, for a stationary control volume the linear momentum equation in integral 
form reads:
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(1.51)

Recall: This is a (3-component) vector equation in principle for the velocity field . 
It contains , i.e., the (9-component) total stress tensor (see App. A), as an 
additional unknown because in most cases  is simply weight  per unit mass. Thus, 
in order to solve this closure problem, we have to know the thermodynamic pressure p 
and an expression for the stress tensor . Recall that  is the unit tensor, i.e., only ones 
on the diagonal and zeros everywhere else in the 3×3 matrix, elevating the product 

 to a “pseudotensor” because p is just a scalar.
Now, converting all surface integrals of Eq. (1.51) into volume integrals yields:

(1.52)

or

(1.53)

Equation (1.53) is the Cauchy equation of motion (or linear momentum equation) 
for any fluid and with gravity as the body force. In order to reduce it in complexity 
and provide some physical meaning, let’s consider constant fluid properties and 
express the unknown stress tensor in terms of the principal variable. Employing 
Stokes’ hypothesis, we have in vector notation:

(1.54a)

and in index (or tensor) notation:

(1.54b)

where  is the shear rate tensor.

Stress Tensors and Stress Vectors. Physically  represents a force field per unit 
area (see Sect. 1.2.4 and Example 1.9) as a result of the resistance to the rate of 
deformation of fluid elements, i.e., internal friction. This insight leads for Newtonian 
fluids, such as air, water, and typical oils, to the postulate:
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(1.55)

where  is the strain rate tensor, familiar from solid mechanics. 
Now, Stokes suggested that  is a linear function of , which is not the case for 
non-Newtonian fluids and rarefied gases, as well as some fluid flow in microscale 
devices. Specifically, for Newtonian fluids:

(1.56)

where the viscosity coefficients  and  depend only on the thermodynamic state 
of the fluid. For incompressible flow  (see Eq. (1.44)) and the total stress 
tensor reduces to

(1.57)

where again

(1.58)

so that

(1.59)

The Cauchy or total stress tensor  being an unknown in Eq. (1.53) 
constitutes a closure problem, i.e.,  has to be related to the principal variable  or 
its derivatives. As mentioned, p is the thermodynamic pressure,  is the necessary 
unit tensor for homogeneity, and  is the stress tensor. For any coordinate system, 
the stress vector  relates to the symmetric second-order tensor  as:

(1.60)

where  is the normal (unit) vector. Note, without tensor symmetry, i.e., , 
angular momentum would not be conserved (see Batchelor, 1967). It is more insightful 
to wr  ite  in tensor (or index) notation so that the total stress tensor reads:

(1.61)
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where  is interpreted as the isotropic part (e.g., fluid statics and inviscid flow) and 
 is the deviatoric part for which a constitutive equation has to be found. Physically, 

 represents a force field per unit area as a result of the 
resistance to the rate of deformation of fluid elements, i.e.,  (see Figure 1.5). 

The relation between  and  (plus vorticity tensor ) can be more formally 
derived, starting with a fluid element displacement from point P (with  at t) to 
point P ′ (  at ) a distance ds apart. Expanding the total derivative in 
Cartesian coordinates:

(1.62)

The spatial changes, or deformations, the fluid element is experiencing can be 
expressed as the “rate-of-deformation” tensor (see dyadic product  in App. A):

(1.63a,b)

Equation (1.63) can be decomposed into the strain rate tensor  (symmetrical part) 
and the vorticity (or rotation tensor) :

(1.64)

It can be readily shown that:

⦁ , , and , where  
, etc.; thus, the tensor  collapses to the vorticity vector:

(1.65a,b)

⦁  indicates volume change (dilation)
⦁ , represents element distortion
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⦁ The shear rate tensor  and hence the  in  is 
mathematically necessary in order to match Eq. (1.64).

As mentioned, Stokes suggested that  is a linear function of , which is not the 
case for non-Newtonian fluids, rarefied gases, and some fluid flows in microscale 
devices, e.g., bioMEMS. Specifically, for Newtonian fluids, i.e., air, water, and most 
oils:

(1.66)

where the viscosity coefficients  and  depend only on the thermodynamic state 
of the fluid. For incompressible flow  and the total stress tensor reduces to:

(1.67)

where

(1.68)

Here,  is called the shear rate tensor (see App. A for all stress and shear rate 
components in rectangular and cylindrical coordinates).

Of great importance is the wall shear stress vector ( ) as a result of 
frictional (or viscous) effects and the no-slip condition for macroscale systems, i.e., 
at any solid surface:

(1.69)

Typically, , i.e., the wall is stationary and impermeable. The experimentally 
verified no-slip condition in macrofluidics generates velocity gradients normal to 
the wall at all axial flow speeds. As illustrated in Figure 1.5,

(1.70a-c)

Very high or low WSS values have been related to device malfunctions in 
mechanical and arterial diseases in biomedical engineering (Kleinstreuer, 2006). 
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Integration of  over the entire surface of a submerged body or inside a conduit 
yields the frictional drag:

(1.71)

Viscous drag (frictional effect) plus form drag (pressure effect) make up the total 
drag:

(1.72)

which, for most cases, would require elaborate CFD (computational fluid dynamics) 
analysis to evaluate the WSS and pressure distributions on the submerged body 
surface and then integrating.

Force Balance Derivation. A more physical approach for deriving the (linear) 
momentum equation starts with a force balance for a representative elementary 
volume (REV). Employing rectangular coordinates and an incompressible fluid, 
external surface and body forces accelerate an REV of mass m, so that we can write 
Newton’s second law of motion per unit volume as (cf. Figure 1.9):

(1.73)

Figure 1.9 Closed system, i.e., accelerating material volume (REV)
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Applying Newton’s second law of motion, the REV is a control volume (i.e., 
fluid element) for which we record local and convective momentum changes due to 
net pressure, viscous, and gravitational forces per unit volume, viz.:

(1.74)

(1.75)

and with 

, , etc.

In 3-D:

(1.76)

Similarly, the net viscous force per unit volume in the x-direction reads (see Figure 
1.10):

(1.77)

and with 

, , etc.

Figure 1.10 Control volume for 1-D force balances
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In 3-D, the net frictional force can be expressed as:

(1.78)

As discussed, with Stokes’ hypothesis for incompressible Newtonian fluids, we have 
(see Eq. (1.59)):

(1.79)

Taking the divergence of the tensor field, i.e.,  (see App. A) allows 
expressing Eq. (1.73) as:

v
t

v v p g2
� � � � �ρ μ ρ( )∂

∂ + ⋅∇⎡
⎣⎢

⎤
⎦⎥

= −∇ + ∇ v + (1.80)

This linear momentum equation and the continuity equation  are the N-S 
equations.

At the molecular level for gas flow, momentum transfer can be explained via the 
net shear stress as the result of mean momentum flux in the normal direction of 
flow (see Wilcox, 2007):

(1.81a,b)

where  (approximately 4/3 times the speed of sound in air) is the average 
molecular velocity and  is the mean free path, i.e., the average distance traveled 
by a gas molecule before collision.

Example 1.9: Wall Boundary Conditions and Shear Stress in Simple Couette Flow

Note: This detailed solution illustrates the differential approach for solving the reduced 
Navier-Stokes equations.

Consider Couette flow, i.e., a viscous fluid between two parallel plates a small 
gap h apart, where the upper plate moves with a constant velocity , in general due 
to an external tangential force, .
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Note: The experimentally observed boundary condition for a conventional fluid at 
any solid surface demands that:

where in rectangular coordinates  or .
Applying for the present case (see system sketch), we have for a stationary solid 

wall 

For the moving wall 

and the normal velocity component at both walls is:

Solution:

Translating the problem statement plus assumptions into mathematical shorthand, 
we have (see Sect. 1.2.3):

Movement of the upper plate (  keeps the viscous fluid between the 
plates in motion via frictional effects propagating normal to the plate; hence, the 
usual “driving force” .
Steady flow all time derivatives are zero, i.e., .

Laminar unidirectional flow only one velocity component dependent on 
one dimension (1-D) is nonzero, i.e., , where  only. This implies 
parallel or fully developed flow where  and hence .
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In summary, we can postulate that

Checking Eqs. (1.82a-c) with these postulates, we realize the following using 
Sect. A.5:

(E1.9-1)

or better, ; i.e., fully developed flow:

(E1.9-2)

and

(E1.9-3)

Thus, Eq. (E1.9-2) can be written as

(E1.9-4a)

subject to the “no-slip” conditions

(E1.9-4b,c)

Double integration of (E1.9-4a) and inserting the boundary conditions (BCs) 
(E1.9-4b,c) yields:

(E1.9-5)

Of the stress tensor (Eq. (1.54b)), , only  is nonzero, i.e.,
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(E1.9-6)

With v = 0 and Eq. (E1.9-5)

Of the vorticity tensor  (Sect. A5), only  is nonzero, i.e., 

(E1.9-7)

which implies that the fluid elements between the plates rotate with constant angular 
velocity , while translating with u(y).

Note: The wall shear stress at the upper (moving) plate is also constant, i.e., 

so that 

Profiles:

Comments:

In the absence of a pressure gradient, only viscous effects set the fluid layer into 
(linear) motion. The necessary “pulling force” is inversely proportional to the gap 
height, i.e., the thinner the fluid layer, the larger is the shear stress and hence Fpull. 

1.3.3.3 Reduced Forms of the Momentum Equation
Returning to Eq. (1.53), which is generally known as Cauchy’s equation of motion, 
we now introduce simplifications of increasing magnitude. Fluid properties, i.e., 
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density ρ and dynamic viscosity μ, are typically constant; but, in general, ρ and μ 
are functions of temperature T, pressure p, and species concentration c. Thus, the 
underlying assumptions for  are that:

⦁ only relatively small temperature variations occur;
⦁ the Mach number , which may be only violated by gases;
⦁ pressure drops in gas flow are relatively small, and cavitation in liquid flow 

is avoided;
⦁ concentration variations of components in mixture flows are small.

(i) The Navier-Stokes Linear Momentum Equation:
Dividing Eq. (1.53) through by the constant density ρ and recalling that , 

the kinematic viscosity, we have with Stokes’ hypothesis (Eq. (1.59)):

(1.80)

Clearly, Eq. (1.80) is Newton’s particle dynamics equation applied to fluid elements.
For example, for steady 2-D flows, the N-S equations read in rectangular 

coordinates (see App. A):

⦁ (Continuity)   

⦁ (x-Momentum)  

⦁ (y-Momentum)  

(1.82a-c)

On a professional level this set of four PDEs, subject to appropriate boundary 
conditions, is now being routinely solved for the four unknowns, u, v, w, and p, 
using numerical software packages on desktop workstations, HPC clusters, and 
supercomputers (see Chapter 8). In a classroom environment, only reduced forms 
of Eqs. (1.82a-c) can be solved.
(ii) Prandtl’s Boundary-Layer Equations: 

As indicated in Example 1.9, the fluid velocity is zero at a stationary wall. Now, 
considering relatively high-speed fluid flow past a (horizontal) solid surface, the 
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quasi-uniform high velocity suddenly has to reduce, within a narrow region, to zero 
at the stationary wall. This region of high-velocity gradients is called a “thin shear 
layer,” or more generally a boundary layer. For example, Figure 1.11 depicts such a 
(laminar) boundary layer of thickness δ(x), formed along a horizontal stationary 
flat plate (e.g., a giant razor blade) which is approached by a uniform fluid stream 
of velocity  with . It can be readily demonstrated that the 

 term (axial momentum diffusion) of Eq. (1.82b) is negligible and that the 
y-momentum equation collapses to ; i.e.,  only. As a result, 
Eqs. (1.82a-c) reduce to:

(1.83)

and

(1.84)

inside the boundary layer  and .

Figure 1.11 Laminar flat-plate boundary layer

(iii) Stokes’ Creeping Flow Equation:
When the viscous forces are dominant, the Reynolds number 

( ) is very small, i.e., the term  in Eq. (1.80) 
is negligible. As a result, the Stokes equation is obtained which holds for “creeping” 
flows Eq. (1.80) (see Example 2.13 for an application):

(1.85)

(iv) Euler’s Inviscid Flow Equation:
For frictionless flows , Eq. (1.80) reduces to:
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Dv
Dt pg

� �= −∇ +pρ (1.86)

which is the Euler equation. Although ideal fluids, i.e., inviscid flows, hardly exist, the 
second-order term also vanishes when ; for example, outside boundary layers 
as indicated with the velocity profile in Figure 1.11. In fact, aerodynamics people 
employ Eq. (1.86) to find the pressure field around airfoils (see pouter in Figure 1.11).
(v) Bernoulli’s Equation:

Equation (1.86) applied in 2-D to a representative streamline along coordinate 
“s” yields (see Figure 1.12):

(1.87a)

Figure 1.12 A fluid element along a representative streamline

which leads to the Bernoulli equation. Multiplying Eq. (1.87a) through by ∂s and 
integrating yield for steady incompressible inviscid flows:

(1.87b)

where v and p are locally averaged quantities along a representative streamline and 
the z-coordinate extends against the direction of gravity. Thus, for two points on a 
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representative streamline the total energy per unit mass is balanced, i.e. (see also 
Eq. (1.38)):

(1.88)

For example, for a given system where  (e.g., point 2 of a streamline is on the 
front of a submerged body) and , we have:

(1.89)

where p2 is the total or stagnation point pressure, p1 is the thermodynamic (or 
a static) pressure at point 1, and  is the dynamic pressure at point 1. One 
application of Eq. (1.89) is the Pitot-static tube, which measures , so that 

 (see Figure 1.13).
An extended, i.e., more realistic form of Bernoulli’s equation adds a frictional 

loss term to the RHS of Eq. (1.88). For example, multiplying Eq. (1.88) through by 
ρ yields an energy balance per unit volume:

(1.90)

where  represents an energy loss between stations ① and ②.

Figure 1.13 Different manometers to measure different pressures
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Naturally, Eq. (1.90) can also be expressed in terms of heights (or “heads”):

(1.91)

The specific weight  and the frictional loss term  is usually 
expressed as a portion of the kinetic energy. Clearly, while Eq. (1.91) is based on the 
conservation of energy, Eq. (1.88) is based on the conservation of linear momentum.

1.3.3.4 Energy and Species Mass Conservation 
Employing again the divergence theorem (see Eq. (1.41)), we can rewrite Eq. (1.40) 
as:

(1.92)

where the specific total energy is simply . 
Clearly, T is now the temperature.

Another derivation of the energy equation, resulting in a directly applicable 
form, starts with  <enthalpy per unit mass> as the principal unknown, 
and considering  <diffusive heat flux> and  <energy dissipation due to viscous 
stress>, we obtain:

(1.93)

With , or simplified to  when ,  after Fourier, 
and , we obtain for thermal flow with constant fluid properties the 
heat transfer equation:

(1.94)

where  is the thermal diffusivity and  is given in Sect. A.5. 
It is interesting to note that when contracting Eq. (1.94),

(1.95)
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has the same form as the species mass transfer equation:

(1.96)

where  is the binary diffusion coefficient and Sc denotes possible species sinks or 
sources. Clearly, momentum diffusivity  (Eq. (1.80)), thermal diffusivity a (Eq. 
(1.94)), and mass diffusivity  (Eq. (1.96)) have the same dimensions [length2/time].

Section 1.3 is summarized in compact form via Table 1.2 and Figure 1.14. 
Specifically, Table 1.2 highlights the governing equations plus solution methods 
needed for the remainder of the book. Figure 1.14 conveys that nowadays all 
transport phenomena with constant fluid properties are described by the Navier-
Stokes system of equations, and it provides an overview of the fluidics topics and 
associated equations of interest.

Figure 1.14 Navier-Stokes system of equations (Note: Topics and equations in italics are the 

main focus in this book)
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Table 1.2 Solutions of Special Cases of the N-S Equations
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Example 1.10: Thermal Pipe Flow ( )

Consider Poiseuille flow where a uniform heat flux, , is applied to the wall of a 
pipe with radius . 

Set up the governing equations for the fluid temperature assuming thermally 
fully developed flow, i.e.,

(E1.10-1)

where  is the wall temperature,  is the fluid temperature, and  is 
the cross-sectionally averaged temperature, i.e., 

(E1.10-2)

Note that  only, describing thermally fully developed flow.
Solve a reduced form of the heat transfer equation (1.75) and develop an 

expression for the Nusselt number, defined as:

(E1.10-3a,b)

where k is the fluid conductivity and D is the pipe diameter.
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Solution:

With the reduced heat transfer equation in cylindrical coordinates from App. A (see 
also list of assumptions), we have:

(E1.10-4)

Employing the dimensionless temperature profile  given as 
Eq. (E1.10-1), we can rewrite Eq. (E1.10-4) as

(E1.10-5)

Specifically,

(E1.10-6a-c)

as stated, 

(E1.10-7a, b)

and with  being finite at , we obtain

(E1.10-8)

Now, by definition

(E1.10-9)

so that, when combining both equations and integrating, we have
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(E1.10-10)

from which we finally obtain:

(E1.10-11)

Comment:

It is interesting to note that for hydrodynamically and thermally fully developed 
flow in a tube, subject to a constant wall heat flux, the Nusselt number (or the 
heat transfer coefficient) is constant. The same holds for the isothermal wall 
condition; however, the Nu value is lower (see Kleinstreue  r, 1997; or Bejan, 2002), 
as summarized in Table 1.3.

1.3.4 Entropy Generation Analysis

Background Information. The second law of thermodynamics is the “increase of 
entropy” principle for any real process, i.e., 

(1.97a-c)

An entropy value S [kJ/K] indicates the degree of molecular activity or 
randomness and the condition  is necessary for a process to proceed or a 
device to work. The source of entropy change is heat transferred from different 
sources. As Clausius stated, , implying all irreversibilities are contributing, 
e.g., due to heat exchange with internal and/or external sources as well as internal 
friction (or viscous effects) and net influx of entropy carried by fluid streams. The 
inequality (1.97c) can be recast as an entropy “balance” by recasting Eq. (1.97b) as:

(1.98a)

where

(1.98b)
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Table 1.3 Nusselt Numbers and Poiseuille Numbers for Fully Developed Flows in 

Different Conduits

Notes: (i) The Poiseuille number , where the Darcy friction factor , (ii) The Nusselt number 
.

Clearly, the larger , the more inefficient a process, device, or system is, i.e.,  is 
equivalent to “amount of waste generated.” In convection heat transfer this “energy 
destruction” appears as viscous dissipation and random disorder due to heat input:

(1.99a)

or

(1.99b)
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Entropy Generation Derivation. For optimal system/device design it is important 
to find for a given objective the best possible system geometry and operational 
conditions so that  is a minimum. Thus, within the framework of convection 
heat transfer with Newtonian fluids, it is of interest to derive an expression for

(1.100)

Clearly, Eq. (1.100) encapsulates the irreversibilities due to heat transfer 
( ) and viscous fluid flow ( ). 

Considering a point (x,y,z) in a fluid with convective heat transfer, the fluid 
element dx-dy-dz surrounding this point is part of a thermal flow system. Thus, the 
small element dx-dy-dz can be regarded as an open thermodynamic system, subject 
to mass fluxes, energy transfer, and entropy transfer interactions that penetrate the 
fixed control surface formed by the dx-dy-dz box of Figure 1.15. Hence, the local 
volumetric rate of entropy generation  is considered inside 
a viscous fluid with convective heat transfer without internal heat generation. The 
second law of thermodynamics for the dx-dy-dz box as an open system experiencing 
fluid flow and convective heat transfer then reads, based on the Clausius definition 

 and Figure 1.15:

Figure 1.15   The local generation of entropy in a flow with a viscous fluid and conductive heat 

transfer
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(1.101a)

The first six terms on the right side of Eq. (1.101a) account for the entropy transfer 
associated with heat transfer. Combining terms 1 and 2, 3 and 4, and 5 and 6 and 
dividing by dx-dy-dz and taking the limit, the former six terms in Eq. (1.101a) can 
be reduced to:

(1.101b)

Terms 7 to 12 in Eq. (1.101a) represent the entropy convected into and out of the 
system, while the last term is the time rate of entropy accumulation in the dx-dy-dz 
control volume. Decomposing and combining the last seven terms as well as 
considering the limit, the last seven terms can be rearranged as:

(1.101c)
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Combining Eq. (1.101b) and Eq. (1.101c), the local rate of entropy generation 
becomes:

(1.102)

Note that the last term of Eq. (1.102) (in square brackets) vanishes identically based 
on the mass conservation principle. Equation (1.102) can be recast, so that in vector 
notation the volume rate of entropy generation reads:

(1.103)

According to the first law of thermodynamics, the rate of change in internal energy 
per unit volume is equal to the net heat transfer rate by conduction, plus the work 
transfer rate due to compression, plus the work transfer rate per unit volume 
associated with viscous dissipation, i.e.,

(1.104)

Employing the Gibbs relation in the form  and using the 
substantial derivative notation Eq. (1.104), we obtain:

 (1.105)

Combining Eq. (1.105) with  given by Eq. (1.103) and  given by Eq. 
(1.104), the volumetric entropy generation rate can be expressed as:

(1.106)

If  the Fourier law of heat conduction for an isotropic medium applies, i.e.,

(1.107)



70 Chapter 1 Theory

the rate of volumetric entropy generation ( ) in three-dimensional Cartesian 
coordinates is then (see also Bejan, 1996):

(1.108)

where , , and  are velocity vectors in the x-, y-, and z-directions, respectively;  is 
the temperature,  is the thermal conductivity, and  is the dynamic viscosity.

Specifically, the dimensionless entropy generation rate induced by fluid friction 
and heat transfer can be defined as follows:

(1.109)

where 

(1.110)

while for the thermal entropy source,

(1.111)

where 

(1.112)

Finally,
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(1.113)

where  is the fluid inlet temperature and  is the wall heat flux. 

Example 1.11: Thermal Pipe Flow with Entropy Generation

Deriving the irreversibility profiles for Hagen-Poiseuille (H-P) flow through a 
smooth tube of radius  with uniform wall heat flux  at the wall, the 
velocity and temperature for the fully developed regime are given by:

(E1.11-1)

and

(E1.11-2)

Solution:

The wall temperature  can be obtained from the condition

(E1.11-3)

(E1.11-4)

(E1.11-5)
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Hence, the dimensionless entropy generation for fully developed tubular H-P flow 
can be expressed as:

(E1.11-6)

with

(E1.11-7)

and

(E1.11-8a,b)

Here,  is the dimensionless radius,  is the inlet temperature which was selected 
as the reference temperature. On the right side of Eq. (E1.11-6), the first term 
represents the entropy generation by axial conduction, the second term is the 
entropy generated by heat transfer in the radial direction, and the last term is the 
fluid friction contribution. Parameter φ is the irreversibility distribution ratio 
( ).

Graph:



1.3 Conservation Laws 73

Comments:

As expected, according to Eq. (E1.11-6), at the center point, i.e., , only the 
first term on the right side contributed to the dimensionless entropy generation rate; 
however, for , the irreversibility due to axial conduction is negligible in the 
fully developed range. In contrast, in the wall region both thermal and frictional 
effects produce entropy with a maximum at  generated by dominant heat 
transfer induced entropy generation.
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1.4 Homework Assignments
The suggested homework assignments either try to illuminate the text material 
via questions and tasks (Category I), probing basic understanding and “physical 
insight,” or pose typical fluid dynamics problems whose solutions illustrate the 
chapter theory. These “text problems” (Category II) were accumulated selectively in 
revised and extended form over years of undergraduate teaching at North Carolina 
State University with books by Cengel & Cimbala, Fox et al., Potter & Wiggert, 
and White. Again, their contributions are gratefully acknowledged. 

1.4.1 Physical Insight
1.1 Discuss additional implications of fluidic-device miniaturization down to 

the molecular level, i.e., provide examples of new (or unusual) material/fluid 
properties, fluid flow behavior, and device/system applications.

1.2 A force per unit area is labeled “pressure” or “stress”; however, one is a 
scalar and the other, in general, a tensor of rank 2: Explain the differences 
mathematically and physically.

1.3 Fluid flow through micro/nanochannels requires a driving force (e.g., in 
the form of a pressure drop). Contrast necessary “pumps” providing such 
a pressure differential for: (a) conventional (i.e., macroscale) systems and 
(b) micro/nanoscale systems.

1.4 Considering an ideal gas, derive expressions for pressure p, temperature T, and 
dynamic viscosity μ on the molecular level and explain.

1.5 Discuss the continuum mechanics assumption in light of “fluid flow” borderline 
cases, such as grain flow in a silo or jelly movement in food processing.

1.6 Is “open-channel flow” an example of internal flow or external flow?
1.7 Derive Eq. (1.10) and plot the case  in .
1.8 Employing scale analysis, derive the following dimensionless groups: Peclet number, 

Euler number, Nusselt number, Weber number, and Sherwood number; also 
provide sample applications.

1.9 Considering Figure 1.3, set up a general energy balance (i.e., a first-order 
difference equation) for a transient open system, and show that any closed 
system is just a special case. What are the advantages/disadvantages of such a 
lumped-parameter approach vs. a differential approach with spatial resolution?

1.10 Recast Eqs. (1.15) to (1.17) so that the material properties all appear as 
(momentum, thermal, and mass) diffusivities, say, all in [m2/s].

1.11 Design an illustrative figure depicting the four “derivation approaches” 
mentioned in Sect. 1.3.1. Specifically, list math and physics aspects as well as 
possible approach interactions and applications.
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1.12 Considering the extended cases of the RTT discussed in Sect. 1.3.2, expand Eq. 
(1.19) and derive two more general RTTs, i.e., one for a translating, accelerating, 
and deforming control volume and another one for a rotating control volume.

1.13 Concerning Example 1.3: (a) what are the limits on vertical coordinate z and 
(b) derive Eq. (E1.3-4), i.e., Torricelli’s law.

1.14 Looking at Sect. 1.3.2.2, expand the D/Dt operator in the LHS of Eq. (1.28a) 
and express properly the RHS to arrive directly at the Navier-Stokes equation 
for linear momentum transfer (see Eq. (1.80)).

1.15 Provide some additional math and physics details to the “derivation” of Eq. 
(1.33), starting with the energy conservation law (1.31) in Sect. 1.3.2.3.

1.16 Starting with Eq. (1.37), derive a useful form of Eq. (1.40). Contrast that to 
the derivation approach when using the energy RTT.

1.17 What are the mathematical expressions for the three heat fluxes making up the 
total heat flux in Eq. (1.40)?

1.18 List and comment on the advantages of the conservation laws in differential 
form (see Sect. 1.3.3) over the integral form.

1.19 What is the mathematical reason and give a physical explanation for attaching 
the unit tensor to the pressure p in Eq. (1.52) and in other similar cases?

1.20 Explain the need and meaning of the transpose of the “velocity field gradient” 
in Eq. (1.54); also comment on the advantages/disadvantages of equations 
written/manipulated in “vector notation” versus “index notation.”

1.21 Illustrate and contrast with an application each the following: the stress vector 
versus the stress tensor versus the total stress tensor. 

1.22 Why is the (total) stress tensor symmetric?
1.23 Considering shear flow, illustrate Eq. (1.62) to explain Eqs. (1.63) and (1.64).
1.24 Prove Eq. (1.65) and illustrate/explain the “collapse” of the vorticity tensor to 

the vorticity vector
1.25 Equation (1.69) implies a host of boundary conditions. Discuss three basic 

cases.
1.26 Most solved book examples assume steady laminar fully developed flow, known 

as “Poiseuille-type” flow. Discuss the mathematical and physical implications 
and show three applications for which that flow field simplification would be 
incorrect.

1.27 In Sect. 1.3.3.3, four assumptions are listed for the transformation of the Cauchy 
equation to the Navier-Stokes equation: (a) justify these four assumptions; 
(b) derive Eq. (1.81) from Eq. (1.52); (c) give two examples when using the N-S 
equation would be inadequate.
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1.28 Prandtl’s boundary layer equations plus Euler’s equation are still quite popular 
in aerodynamics and hardly used everywhere else. Why? In contrast, Stokes’ 
equation (see Sect. 1.3.3.3) is often applicable in micro/nanofluidics. Why?

1.29 On a macroscale, enthalpy encapsulates internal energy plus flow energy and 
hence the essential contributions to “total energy” for many flow systems, 
devices, and processes. Hence, replacing etotal with h in Eq. (1.92), derive Eq. 
(1.93) and Eq. (1.95). 

1.30 Starting with the “species mass” RTT, i.e., , and assuming Fourier’s 
law plus constant properties, derive Eq. (1.96). What are examples of Sc?

1.31 Show that, in general, hydrodynamic and thermal entrance lengths differ, i.e., 
provide math/physics/graphical explanations. Under what condition are they 
the same, if  any?

1.32 Looking at Table 1.3, why is Nu ( ) always greater than Nu 
( )?

1.33 Derive Eq. (1.98) from the inequality stated in (1.97). 
1.34 Explain/illustrate the two proportionalities for Sgen in Eq. (1.99a).
1.35 Derive Eqs. (1.104) and (1.105) and show that Eq. (1.106) is correct.

1.4.2 Text Problems
1.36 Tailored continuity equations in differential form: Set up the continuity equation 

for:
(a) steady 1-D compressible flow in a tube;
(b) compressible isothermal gas flow in terms of pressure p;
(c) an incompressible fluid flowing just radially into: (i) a line sink or (ii) a 

point sink.
1.37 Velocity components of incompressible flows: Determine and plot:

(a)  for planar flow with  if  

(b)  for cylindrical flow with  if  

(c)  for a near-surface 2-D flow with , 

 assuming , , and 
1.38 Reduced system of Navier-Stokes equations: Consider a large horizontal plate 

beneath a liquid to oscillate with . Propose the conservation laws 
for: (i) constant viscosity and (ii) temperature-dependent viscosity.

1.39 Transient fully developed pipe flow: Based on measurements, the following 1-D 
velocity profile has been constructed:
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 where , , and . Find the fluid element velocity and 
acceleration for  at  and . At what times t do the maximum 
values appear at these locations? Plot the parabolic profiles at different time 
levels during .

1.40 Periodically changed temperature field: In a steady flow field described by 
, the temperature varies as 

 where , , , and . Find , plot 
, and comment!

1.41 Is the pipe entrance length important? Consider a horizontal 2 mm tube 3 m long 
connected to a constant-head reservoir. If  9 L/h of water at 15°C is collected, 
determine the ratio of Lentrance/Ltube and comment.

1.42 Show qualitatively that . Now, consider an 
(radius R and thickness ) for steady laminar pipe flow, and obtain  
from a 1-D force balance. Based on physical insight conclude the stated 
results.

1.43 Poiseuille flow in a slanted pipe: Its radius is R and elevation change is h, with 
fluid properties  and . First show that the average velocity 

 Then compute the Reynolds number and wall shear stress for 20°C water flow 
in a pipe (  and ) slanted upward by 10° and with a pressure 
rise of 6 kPa over the 10 m.

1.44 Poiseuille flow in a horizontal pipe or in an annulus:
(a) Find the radial ratio  where .
(b) Find the radial ratio  where .
(c) Find  where the pipe radius is R and the annulus is formed by 

 and .
1.45 Poiseuille flow in an annulus of radii R1 and R2, R2>R1:

(a) Show that .

(b) Determine the special case of  (pipe flow) and  where 
 (i.e., parallel plate flow).
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1.46 Run-off from a parking lot: Consider a film of height  of water at 
20°C flowing down a 100 m-wide plane which is sloped at 0.00015. Check 
the Reynolds number and determine the volumetric flow rate. Plot Q(h) and 
comment.

1.47 Torque on a shaft: A cylinder of  rotates with 30 rad/s in a housing 
( ) and is lubricated with oil at 20°C, forming an 800-μm gap. Find 
the necessary torque, assuming first a linear velocity profile and then using 
the actual velocity distribution. Determine the induced error made. Plot the 
torque as a function of lubrication gap.

1.48 Rotating cone: A 90° cone of 10 cm side length rotates with 50 rad/s in a 
housing with a 2 mm lubrication film . Find the necessary 
torque when assuming: (a) a linear velocity profile and (b) a more realistic 
velocity distribution. Comment on the error invoked.

1.49 In the process of tape coating, the tape (width w and thickness d) is pulled 
at constant velocity U through a housing of height H and length , 
containing the coating liquid of viscosity . Develop an expression for Umax not 
quite reaching the maximum tensile force, Fpull , the tape can withstand. Plot 
Umax(μ) and comment.

1.50 Pulling vertically a rigid sheet out of an oil-bath will leave a film on the surface. 
Given a constant Upull , the sheet dimensions , and the oil properties, 
develop a dimensionless equation for the velocity profile and estimate the oil 
thickness h and the necessary pulling force.
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