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    1.1    INTRODUCTION OF ELECTRONIC 
PACKAGE INTEGRATION 

 The rapid growth and convergence of digital computers and wireless 
communication have been driving semiconductor technology to con-
tinue its evolution following Moore ’ s law in today ’ s nanometer regime. 
Future electronic systems require higher bandwidth with lower power 
consumption to handle the massive amount of data, especially for 
large memory systems, high - defi nition displays, and high - performance 
microprocessors. Electronic packaging is one of the key technologies 
to realize a wider bus architecture with high bandwidth operating at 
higher frequencies. Various packages have been developed toward a 
higher density structure. In particular, a  three - dimensional  ( 3D ) integra-
tion based on  through - silicon via  ( TSV )  [1]  arrays technology provides 
a potential solution to reduce the size and to increase the performance 
of the systems. Furthermore, nano - interconnects to replace the Cu - based 
interconnects provides a promising solution for long - term application. 

 There is a great challenge for further increasing of the signal speed 
in electronic systems due to the serious  electromagnetic compatibi-
lity  ( EMC ) problem. Figure  1.1  plots the technology trends versus 
actuals and survey, and Figure  1.2  shows the trends of microprocessors 
predicted by the  International Technology Roadmap for Semiconduc-
tors  ( ITRS )  [2, 3] . From these fi gures one can see that 
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2 CHAPTER 1 Introduction

     Figure 1.1     2008 ITRS update — technology trends versus actuals and survey  [2] .  
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     Figure 1.2     The trends of microprocessor predicted by the International Technology 
Roadmap for Semiconductors (ITRS).  
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1.1 Introduction of Electronic Package Integration 3

   •      Interconnect pitch will continue to decrease to 11.3 nanometer, 
while the on - chip clock frequency will be increased to 14.3   GHz 
by 2022. Due to the reduction of the feature size and pitch, more 
and more circuits are integrated into one electronic package, such 
as the  system in package  ( SIP ) and the 3D integration. This 
results in a complex and high - density environment inside the 
electronic systems. At the same time, with the ever - increasing 
clock frequency (also its high - frequency harmonics), the physical 
size of the small electronic package becomes electrically large, 
and so the electromagnetic wave propagation inside such a small 
structure must be considered.    

   •      Until 2011, the voltage supply of the microprocessor is continu-
ally reduced with an increased power density. The electromag-
netic noise will be pronounced due to the increased power density, 
which then makes the decreased voltage supply unstable. To 
design a high - speed and stable electronic system, we need better 
understand the electromagnetic interactions and the EMC issues 
inside the electronic package.    

 The EMC researches related to the high - speed circuit systems have 
a long history, which can be classifi ed into different levels according 
to the size of the interested objects, which includes the system level, 
 printed circuit board  ( PCB ) level, electronic package level, and com-
ponent level. The increasing clock frequency makes the size of tiny 
structures on the chip be comparable with the wavelength of interest. 
The fl uctuation of electromagnetic wave cannot be ignored any more. 
Therefore, we must accurately model the electromagnetic wave behav-
ior for all scales of the high - speed circuit systems. In the near future, 
the nanoscale integrated circuits (ICs) will be characterized by using 
the  electric and magnetic fi elds  instead of the conventional  voltage and 
current .  EM in micro - E  is becoming a hot topic in both academic com-
munity and industrial applications. 

 The EMC analysis for high - speed electronics includes lots of 
issues, such as the ground bounce, cross talk, conducted emission, radi-
ated emission, conducted immunity, and radiated immunity. The inter-
action between on - board capacitance and on - chip capacitance causes 
an antiresonance which induces a peak in the total power distribution 
network (PDN) impedance as shown in Figure  1.3 . Figure  1.4  shows a 
typical multilayered advanced electronic package which consists of two 
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main electrically functional systems: the PDN and the  signal distribu-
tion network  ( SDN ). The passive structures are composed of three main 
categories: (1) traces or transmission lines, typically microstrip lines or 
striplines, (2) vias used as vertical interconnections, and (3) conductor 
plates serving as power or ground planes. Because of the complexity 
of an advanced package, it is diffi cult to model the entire SDN or PDN 
simultaneously. Yet, we need to consider the impact of the PDN on the 
SDN in order to characterize the SDN more accurately. Many research-
ers have proposed various approaches to study the electrical properties 
of the above passive structures  [4 – 44] .   

 A typical EMC problem residing in this PDN of the electronic 
package is illustrated in Figure  1.5 . In Figure  1.5 , the power and ground 
planes are used to supply DC power for the circuits integrated in the 
electronic package. The signal traces are often laid out in different 

     Figure 1.3     Example of antiresonances in total PDN impedances for various on - chip 
capacitance values  [3] . (See color insert.)  
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     Figure 1.4     A schematic diagram of a multilayered electronic package  [37] .  
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1.1 Introduction of Electronic Package Integration 5

layers of power - ground planes. Their return currents fl ow on the power - 
ground planes just below them. When the traces pass through different 
layers, their return currents also exchange from one plane to another 
plane, as shown in Figure  1.5 . Accordingly, a vertical displacement 
current is induced between different planes for the continuity of the 
return currents. This displacement current will excite electromagnetic 
fi eld noise, which then propagates inside the power - ground planes and 
couples to other signal traces passing through the same layer. At the 
same time, this noise also leaks to the surrounding area of the electronic 
package through the periphery and gaps of the power - ground planes. 
These interferences will be further amplifi ed if the noise ’ s spectrum 
covers any inherent resonant frequency of the cavity - like power - ground 
planes.   

 To achieve fi rst - pass design success, we must employ an advanced 
modeling and simulation technique to analyze the electrical perfor-
mance of the 3D electronic packages, PCB, and chips at the system 
level. However, both industry and academia communities face the great 
challenges in developing the electrical design and simulation tools due 
to the multiscale nature of the problem, the strong local and global 
electromagnetic coupling, and the complexity of 3D integration systems. 
ITRS has summarized the state of the art of current semiconductor 
industry development, where the major challenges for simulation and 
modeling are listed as  [2]  mixed - signal co - design and simulation envi-
ronment, rapid turnaround modeling and simulation, electrical (power 
disturbs, electromagnetic interference (EMI), signal and power integ-
rity associated with higher frequency/current and lower voltage switch-
ing), system - level co - design,  electronic design automation  ( EDA ) for 
 “ native ”  area array to meet the roadmap projections, and models for 

     Figure 1.5     Noise coupling inside and emission from the power - ground planes.  
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reliability prediction. Therefore, advanced modeling techniques, which 
stand up to the challenges imposed by the complexity of nanoscale 
silicon chips and their interconnections including 3D ICs, 3D packag-
ing, and PCB  [45 – 47] , are in great demand.  

   1.2    REVIEW OF MODELING TECHNOLOGIES 

 Modeling of transmission lines has a long history and is well docu-
mented in many textbooks  [4] . So in the following, we will mainly 
review the modeling of vias and power - ground planes for electronic 
packaging and PCBs. Such modeling methods can be roughly classifi ed 
into three categories: (1) lumped circuit approaches, (2) full - wave 
approaches, and (3) hybrid circuit coupled full - wave approaches. 

 For its simplifi cation and ease of understanding, at the beginning 
of the research, lumped circuit approaches have been used for the elec-
trical modeling of electronic packages. Such examples are shown in 
Figures  1.6  and  1.7 . Empirical and analytical formulae for via capaci-
tance and inductance can be easily found in many handbooks. Quasi -
 static numerical methods have also been introduced to calculate the 

     Figure 1.6     A typical transmission line model on a printed circuit board  [3] . PRBS: 
pseudo - random binary sequence. ODT: on die termination.  
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lumped circuit values in T or PI types of via models  [5, 6] . These 
methods allow rapid computation, but often suffer from accuracy prob-
lems. The authors in Reference  7  proposed a model of a magnetic - frill 
array and utilized microwave network theory for analysis of vias in 
multilayered packages. But it is a single via model which is diffi cult to 
be generalized to multiple vias. The equivalent circuits of much com-
plex via array can be extracted by using de - embedding method  [8] . 
Distributed circuit approaches have also been widely used for pack-
age modeling, such as the  partial element equivalent circuit  ( PEEC ) 
method  [9, 10] .   

 Second, full - wave methods both in the time and frequency domains 
have been employed to study the packaging problems. The commonly 
used full - wave commercial simulators include Ansoft HFSS and CST 
Microwave Studio, which are based on fi nite element method (FEM) 
 [11, 12]  and fi nite integral technique, respectively. Other full - wave 
algorithm includes the fi nite - difference time - domain (FDTD) method 
 [13]  and the  transmission line matrix method  ( TLM )  [14] . Recently, 
the integral equation - based full - wave method begins to attract more 
attention and had been employed. The advantage of the integral equa-
tion method is that it can use the suitable Green ’ s function to present 

     Figure 1.7     Power distribution network  [3] .  
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the effect of the complex environment, so that the unknowns are only 
placed on discontinuities inside the PDN. This can give an effi cient 
simulation. According to the different Green ’ s functions used, the inte-
gral equation methods can be classifi ed into (a) two - dimensional (2D) 
integral equations, including 2D mode method  [15]  and image method 
for rectangular power and ground planes, and 2D  transverse magnetic  
( TM ) integral equation for arbitrarily shaped power and ground planes 
 [16 – 18] ; (b) 3D integral equations, including 3D cavity mode method 
for rectangular power and ground planes  [19]  and parallel plate mode 
method for arbitrarily shaped power and ground planes  [20, 21] . For 
most real applications the parallel plates have regular shapes, such as 
rectangles, circles, or triangles, a closed form of the Green ’ s functions 
can be formulated which results in an impedance formula in terms of 
the summation of infi nite number of resonant modes  [22 – 24] . This 2D 
integral equation method is sometimes called the cavity resonator 
method. Segmentation techniques may be applied to extend the cavity 
resonator method for parallel plates with irregular shapes. 

 These full - wave methods are versatile and able to solve a wide 
range of problems, but at the expense of large memory usage and long 
CPU time, especially for those 3D full - wave methods. Although the 
overall size of the electronic packages is small enough to apply these 
full - wave methods, the high aspect ratio of the power and ground 
planes and the tiny structures, such as the signal traces and narrow slots, 
result in a huge number of meshing. This makes these full - wave 
methods very expensive in terms of computing time and memory 
requirement. 

 Third, to avoid the computational cost of these full - wave methods 
and the geometrical limitations of the analytical methods, a more effi -
cient approach is to combine both methods together, so that we can 
benefi t from both analytic and numerical techniques. The coupled 
circuit - fi eld approaches are also widely used to model the electronic 
packages in order to leverage the advantages of both circuit and full -
 wave approaches. An important approach under this category is rooted 
in the theory of modal decomposition and the salient features of elec-
tronic packages. The transmission lines and power - ground planes in an 
electronic package convey different modes, that is, transmission line 
modes and parallel plate modes. Modal decomposition can be used to 
decouple these two modes, which are then solved independently. These 
two modes are fi nally recombined to refl ect the original problem. The 
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coupling between the transmission line mode and the parallel - plate 
mode often occurs due to the vias. The current fl owing in the via excites 
the parallel - plate mode fi eld, while the transmission line experiences 
the loading effect of the power - ground plane in the presence of the via. 

 The complete modal decomposition and recombination approach 
has been demonstrated by several researchers. Current or voltage con-
trolled sources are used to link these two modes. A general modal 
recombination approach was presented in Reference  26  for coupled 
striplines and nonideal power - ground planes, while the parallel - plate 
mode associated with the power - ground planes has been studied by 
many researchers. 2D full - wave methods have been extensively 
employed in the literature to model the power - ground planes. The 2D 
integral equation method is also called the contour integral method and 
has been used in Reference  16  to study general parallel - plate structures 
with arbitrary shapes. Another 2D approach, called the 2D FDTD, has 
also been used to model parallel plates  [27] . Discretization of the metal 
plates by the fi nite - difference method was interpreted as a 2D distrib-
uted  LC  circuit, and a rigorous derivation is given in Reference  [27] . 
The 2D distributed  RLCG  (resistance, inductance, capacitance, and 
conductance) circuit network, which is widely used in the literature to 
represent the power and ground planes, can be considered as an exten-
sion of the  LC  network derived from the fi nite - difference method. 
Instead of using Simulation Program with Integrated Circuit Emphasis 
(SPICE) - like solvers to simulate the large equivalent circuit network 
of power - ground planes, the latency insertion method is proposed in 
Reference  28  to perform fast transient simulation of large  RLC  net-
works. Moreover, a transmission matrix method reported in Reference 
 29  divides the 2D distributed  RLCG  circuit network into many inter-
dependent blocks, and each block is formulated as a transmission 
( ABCD ) matrix. Cascading those transmission matrices produces a fast 
way to obtain the desired impedance of the power - ground plane. A 
 multilayered fi nite - difference method  ( MFDM ) was recently proposed 
in Reference  26 . The  2D fi nite element method  ( 2D FEM ) is also used 
to simulate power - ground planes  [30]  and had been integrated into the 
commercial software Ansoft SIWave. In addition, the radial transmis-
sion line theory has been applied to derive an admittance matrix to 
account for the effect of the parallel plates  [31] . However, image theory 
 [32]  is needed to model the refl ection from the edges of fi nite - sized 
substrates. Image theory is elegant for modeling the boundary with a 
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regular shape but is cumbersome for modeling arbitrary shapes of the 
edges of PCBs or packages. In the model decomposition and recom-
bination approach, a single via can be represented by a PI type of 
equivalent circuit. The capacitance and inductance in the PI circuit are 
usually computed by analytical formulae or quasi - static solvers. 
Recently, an elegant analytical formula was derived for the via barrel -
 plate capacitance  [6] .  

   1.3    ORGANIZATION OF THE BOOK 

 This book is organized in six chapters. Chapter  1  provides an overview 
of the state - of - art of electrical modeling and simulation techniques for 
electrical packaging systems. Chapter  2  focuses on the macromodeling 
technique widely used in the electrical and electromagnetic modeling 
and simulation of complex interconnects in 3D integrated systems. 
Macromodels are generated by employing the  vector fi tting  ( VF ) 
method to perform rational - function approximation of scattering or 
admittance network parameters of high - speed complex interconnects 
and passive circuits. Subsequently, the macromodel can be synthesized 
as an equivalent circuit, which is compatible with the SPICE circuit 
simulator and can be combined with other external linear or nonlinear 
circuits to perform signal and power integrity analysis or other electri-
cal performance analysis of electronic systems. The stability, causality, 
and passivity assessment and enforcement of the macromodel are also 
discussed in detail. Finally, numerical examples of macromodeling are 
presented and discussed. 

 In Chapter  3 , the semianalytical  scattering matrix method  ( SMM ) 
based on the  N  - body scattering theory is presented for modeling of 3D 
electronic package and multilayered PCBs with multiple vias. Using 
the modal expansion of fi elds in a parallel - plate waveguide, the formula 
derivation of the SMM is presented in detail. In the conventional SMM, 
the power - ground planes are assumed to be infi nitely large so they 
cannot capture the resonant behavior of the real - world packages. In 
particular, the SMM method has been extended to solve the fi nite 
domain of power - ground planes in coupling with a novel boundary 
modeling method proposed by the author ’ s group. This method has 
demonstrated its unique features which is capable to effi ciently handle 
the complex real - world 3D package integration and PCB structures. 
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 In Chapter  4 , 2D and 3D integral equation methods are employed 
for the analysis of PDN in 3D package integration. The 2D integral 
equation method provides a comprehensive way for one to quickly 
extract the equivalent circuits of the PDN, and then substitute them into 
a SPICE - like simulator to perform the signal and power integrity analy-
sis. The 3D integral equation method provides a more accurate solution 
for both the emission and susceptibility issues of the PDN. Both of the 
2D and 3D integral equation methods are optimized by making a full 
use of the structural features of the PDN. 

 Chapter  5  is based on the physical - based algorithm to extract the 
equivalent circuit of the complex PDN in 3D integrated systems and 
PCBs. An intrinsic via circuit model is fi rst derived through rigorous 
electromagnetic analysis for an irregular plate pair with multiple vias 
in a PCB. The derivation of the intrinsic via circuit model naturally 
leads to a new impedance defi nition of plate pair or power - bus, which 
is expressed in terms of cylindrical waves. The new plate pair imped-
ance has clear physical meaning and makes possible signal/power 
integrity co - simulations. Numerical and measurement examples have 
indicated that while the new impedance gives almost the same results 
to the conventional one in a plate pair with few vias, it can correctly 
predict the resonant frequency shift in the case of a plate pair with a 
large amount of vias. 

 Chapter  6  presents a compact wideband equivalent - circuit model 
for electrical modeling of TSVs and addresses the  metal - oxide - semi-
conductor  ( MOS ) capacitance effects of TSVs.  
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