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INTRODUCTION

1.1 DEFINITION OF THERMAL STRESS

Thermal stresses are stresses that result when a temperature change of the material
occurs in the presence of constraints. Thermal stresses are actually mechanical
stresses resulting from forces caused by a part attempting to expand or contract
when it is constrained.

Without constraints, there would be no thermal stresses. For example, consider
the bar shown in Figure 1-1. If the bar were subjected to a temperature change
�T of 20◦C and the ends were free to move, the stress in the bar would be zero.
On the other hand, if the same bar were subjected to the same temperature change
and the ends were rigidly fixed (no displacement at the ends of the bar), stresses
would be developed in the bar as a result of the forces (tensile or compressive)
on the ends of the bar. These stresses are called thermal stresses.

There are two types of constraints as far as thermal stresses are concerned:
(a) external constraints and (b) internal constraints. External constraints are
restraints on the entire system that prevent expansion or contraction of the system
when temperature changes occur. For example, if a length of pipe were fixed at
two places by pipe support brackets, this constraint would be an external one.

Internal constraints are restraints present within the material because the
material expands or contracts by different amounts in various locations, yet the
material must remain continuous. Suppose the pipe in the previous example were
simply supported on hangers, and the inner portion of the pipe were suddenly
heated 10◦C warmer than the outer surface by the introduction of a hot liquid
into the pipe, as shown in Figure 1-2. If the outer surface remains at the initial
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2 INTRODUCTION

Figure 1-1. Illustration of external constraints. (A) No constraint—the bar is free to
expand or contract. Thermal stresses are not present. (B) External constraint—the bar has
both ends rigidly fixed and no motion is possible. Thermal stresses are induced when the
bar experiences a change in temperature.

Figure 1-2. Internal constraints. The inner surface is heated by the fluid and tends to
expand, but the outer (cool) surface constrains the free motion. Thermal stresses are
induced by this constraint.

temperature, the outer layers would not expand, because the outer temperature
did not change, whereas the inner layers would tend to expand due to a tem-
perature change. Thermal stresses will arise in this case because the inner layer
of material and outer layer of material are not free to move independently. This
type of constraint is an internal one.
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1.2 THERMAL–MECHANICAL DESIGN

The design process involves more than “solving the problem” in a mathematical
manner [Shigley and Mischke, 1989]. Ideally, there would be no design limi-
tations other than safety. However, usually multiple factors must be considered
when designing a product. A general design flowchart is shown in Figure 1-3.

Initially, there is usually a perceived need for a product, process, or system.
The specifications for the item required to meet this need must be defined. Often
this specification process is called preliminary design . The input and output quan-
tities, operating environment, and reliability and economic considerations must be
determined. For example, anticipated forces that would be applied to the system
must be specified.

After the design problem has been defined, the next step involves an interaction
between synthesis, analysis, and optimization. Generally, there are many possible
design solutions for a given set of specifications. (Not everyone drives the same
model of car, for example, although all car models provide a solution to the
problem of transportation from one place to another.) Various components for a

Figure 1-3. General design flowchart.
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system may be proposed or synthesized. An abstract or mathematical model is
developed for the analysis of the system. The results of the analysis may be used
to synthesize an improved approach to the design solution. Based on specific
criteria defining what is meant by the “best” system, the optimum or best system
is selected to meet the design criteria.

In many cases, the optimal design emerging from the synthesis/analysis design
phase is evaluated or tested. A prototype may be constructed and subjected to
conditions given in the initial specifications for the system. After the evalu-
ation phase has been completed successfully, the design then moves into the
manufacturing and marketing arena.

When including consideration of thermal stresses in the design process, there
are many cases in which the stresses are weakly dependent or even independent
of the dimensions of the part. In these cases, the designer has at least three
alternatives to consider: (a) materials selection, (b) limitation of temperature
changes, and (c) relaxation of constraints.

For identical loading and environmental conditions, different materials will
experience different thermal stresses. For example, a bar of 304 stainless steel,
rigidly fixed at both ends, will experience a thermal stress that is about eight
times that for Invar under the same conditions. Many factors in addition to
thermal stresses dictate the final choice of materials in most design situations.
Cost, ease of fabrication, and corrosion resistance are some of these factors. The
designer may not have complete freedom to select a material based on thermal
stress considerations alone.

A reduction of the temperature change will generally reduce thermal stresses.
For a bar with rigidly fixed ends, if the temperature change is 50◦C instead of
100◦C, the thermal stress will be reduced to one-half of the thermal stress value
for the larger temperature difference. In some steady-state thermal conditions, the
temperature change of the part may be reduced by using thermal insulation. The
design temperature change is often determined by factors that cannot be changed
by the designer, however.

In many cases, the most effect approach to limit thermal stresses in the design
stage is to reduce or relax the constraints on the system. The system may be
made less constrained by introducing more flexible elements. This approach will
be illustrated in the following chapters.

1.3 FACTOR OF SAFETY IN DESIGN

In general, a part is designed such that it does not fail, except under desired
conditions. For example, fuses must fail when a specified electric current is
applied so that the electrical system may be protected. On the other hand, the
wall thickness for a transfer line carrying liquid oxygen is selected such that the
pipe does not rupture during operation of the system.

One issue in the design process is the level at which the part would tend to fail.
This issue is addressed in the factor of safety fs . It is defined as the ratio of the
failure parameter of the part to the design value of the same parameter. The first
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decision that the designer must make is to define what constitutes “failure” for
the component or system under consideration. There are several failure criteria,
including

(a) breaking (rupture) of the part
(b) excessive permanent deformation (yielding) of the part
(c) breaking after fluctuating loads have been applied for a period of time

(fatigue)
(d) buckling (elastic instability)
(e) excessive displacement or vibration
(f) intolerable wear of the part
(g) excessive noise generation by the part

The selection of the proper failure criteria is often the key to evaluating and
planning for safety considerations.

If the failure criterion is the breaking or rupture of the part when stress is
applied and the temperature is not high enough for creep effects to be significant,
the failure parameter would be the ultimate strength Su for the material. On the
other hand, if the failure criterion is yielding, then the yield strength Sy would
be the failure parameter selected. In either case, the design parameter would be
the maximum applied stress σ for the part. The factor of safety may be written
as follows, for these cases:

fs = Su

σ
or fs = Sy

σ
(1-1)

The factor of safety may be defined in a similar manner for the other failure
criteria.

The factor of safety may be prescribed, as is the case for such codes as the
ASME Code for Unfired Pressure Vessels, Section VIII, Division 1, in which the
factor of safety for design of cylindrical pressure vessels is set at 3.5. When the
factor of safety is not prescribed, the designer must select it during the early
stages of the design process. It is generally not economical to use a factor of
safety that assures that absolutely no failure will occur under the worst possible
combination of conditions. As a result, the selection of the factor is often based
on the experience of the designer in related design situations.

In general, the value of the factor of safety reflects uncertainties in many
factors involved in the design. Some of these uncertainties are as follows:

(a) Scatter (uncertainty) in the material property data
(b) Uncertainty in the maximum applied loading
(c) Validity of simplifications (assumptions) in the model used to estimate the

stresses or displacements for the system
(d) The type of environment (corrosive, etc.) to which the part will be exposed
(e) The extent to which initial stresses or deformations may be introduced

during fabrication and assembly of the system
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One of the more important factors in selection of the factor of safety is the
extent to which human life and limb would be endangered if a failure of the sys-
tem did occur or the possibility that failure would result in costly or unfavorable
litigation.

The probabilistic or reliability-based design method [Shigley and Mischke,
1989] attempts to reduce the uncertainty in the design process; however, the
disadvantage of this method lies in the fact that there is uncertainty in the “uncer-
tainty” (probabilistic) data and the data is not extensive.

The uncertainty in the value of the strength parameter (ultimate or yield
strength) may be alleviated somewhat by understanding the causes of the scat-
ter in the data for the strength parameter. The values of the ultimate and yields
strengths reported in the literature are generally average or mean values. In this
case, 50 percent of the data lies above the mean value and 50 percent of the
data lies below the reported value. A 1-in-2 chance would be excellent odds for
a horse race, but this is not what one would likely employ in the design of a
mechanical part. The value for the strength for which the probability of encoun-
tering a strength less than this value may be found from the normal probability
distribution tables, if the standard deviation σ̂S is known from the strength data.
The ultimate strength for this case is given by the following expression:

Su = kSSu (1-2)

The quantity Su is the average ultimate strength, and the factor kS is defined by

kS = 1 − Fp(σ̂S/Su) (1-3)

Values for the probability factor Fp are given in Table 1-1. Similar expressions
may be used for the yield strength and fatigue strength.

Information on the standard deviation for the strength data is not readily
available for all materials. If no specific standard deviation data are available,
the following approximation may be used for the ratio (σ̂S/S): 0.05 for ultimate

TABLE 1-1. Probability Factor Fp for Various Probabilities of Survival

Survival Ratea Failure Rateb Probability Factorc, Fp

0.900 0.100 1.282
0.950 0.050 1.645
0.975 0.025 1.960
0.990 0.010 2.33
0.999 0.001 3.09
0.9999 0.0001 3.72

aThe survival rate is the probability that the actual strength value is not less than the
S value given by eq. (1-2).
bThe failure rate is (1 − survival rate) or the probability that the actual strength is
less than the S value given by eq. (1-2).
cFp is used in eq. (1-3).
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strength; 0.075 for yield strength; and 0.10 for fatigue strength or endurance limit.
The designer has the task of deciding what risk is acceptable for the minimum
strength used in the design.

The reliability of the maximum anticipated loading (either mechanical or ther-
mal) used in the design affects the value of the factor of safety selected. If there
are safeguards (pressure relief valves, for example) on the system to prevent the
loading from exceeding a selected level, then the factor of safety may be smaller
than for the case in which the loading is more uncertain.

The validity of the mathematical model (set of assumptions or simplifications)
used in the design has a definite influence on the factor of safety selected. It may
be noted that a very complicated numerical analysis (or, as is commonly stated,
a “sophisticated” analysis) is not precisely accurate, despite the opinions of some
overly enthusiastic novice computer analysist. The estimated uncertainty in the
analysis may be used as a guide in selecting the factor of safety.

Example 1-1 304 stainless steel is to be used in a design. A factor of safety
of 2.5 is selected, based on yielding as the failure criterion. It is desired that
the uncertainty (failure rate) for the yield strength be 0.1%, and the standard
deviation for the yield strength data is 7.5 percent of the mean yield strength.
Determine the stress to be used in the design.

The average yield strength for 304 stainless steel is found in Appendix B:

Sy = 232 MPa (33,600 psi)

For a 0.1 percent failure rate or 99.9 percent survival rate, the probability factor
from Table 1-1 is Fp = 3.09. The factor kS may be found from eq. (1-3):

kS = 1 − (0.075)(3.09) = 0.7683

The yield strength value that will be exceeded 99.9 percent of the time for 304
stainless steel is found from eq. (1-2):

Sy = kSSy = (0.07683)(232) = 178.2 MPa (25,850 psi)

The design stress is found from the definition of the factor of safety:

σ(design) = Sy

fs

= 178.2

2.5
= 71.3 MPa (10,340 psi)

1.4 THERMAL EXPANSION COEFFICIENT

One of the important material properties related to thermal stresses is the thermal
expansion coefficient . There are generally two thermal expansion coefficients that
we will consider: (a) the linear thermal expansion coefficient, α, and (b) the
volumetric thermal expansion coefficient, βt .
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The linear thermal expansion coefficient is defined as the fractional change
in length (or any other linear dimension) per unit change in temperature while
the stress on the material is kept constant. The following is the mathematical
definition of the linear thermal expansion coefficient:

α = 1

L

(
∂L

∂T

)
σ

(1-4)

Usually, the linear thermal expansion coefficient is measured under conditions
of zero applied stress σ . Values for the linear thermal expansion coefficient for
several engineering materials are given in Appendix B. Values for the linear
thermal expansion coefficient as a function of temperature for several metals are
presented in Appendix C.

The volumetric thermal expansion coefficient is defined as the fractional
change in volume per unit change in temperature while the pressure (all-around
stress) is held constant. The following is the mathematical definition of the
volumetric thermal expansion coefficient:

βt = 1

V

(
∂V

∂T

)
p

(1-5)

For an isotropic material (properties the same in all directions), the two thermal
expansion coefficients are related by the following simple relation:

βt = 3α (1-6)

The variation of the thermal expansion coefficient with temperature may be
understood by considering the intermolecular forces of the material [Kittel, 1966].
The intermolecular potential energy curve for a pair of atoms, as shown in
Figure 1-4, is not symmetrical. As the atom acquires more energy (or as the
temperature is increased), the mean spacing of the two atoms becomes larger,
i.e., the material expands.

If the potential energy curve were symmetric, for example, if U = 1
2K(r −

r0)
2, then the positions of the two atoms at the extreme positions r1 and r2 for a

given energy E are

r1 = r0 −
√

2U/K and r2 = r0 +
√

2U/K (1-7)

The quantity r0 is the equilibrium spacing at T = 0. The average spacing of the
two atoms for a symmetrical energy curve is

rave = 1
2 (r1 + r2) = r0 = constant (1-8)

Because the equilibrium spacing remains constant, independent of the energy
level, for a pair of atoms with a symmetrical energy curve, there would be
no thermal expansion for this material, because, although the atoms would
move farther apart as the temperature is increased, their average spacing would
remain unchanged.
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Figure 1-4. Interatomic potential energy curve for the potential energy between two
atoms.

The actual potential energy curve is asymmetrical about the equilibrium spac-
ing at absolute zero; therefore, the equilibrium spacing of the atoms increases as
the temperature of the material is increased. The rate at which the mean spacing
of the atoms changes increases as the energy or temperature is increased. This
results in an increase of the thermal expansion coefficient as the temperature is
increased. The thermal expansion coefficient approaches a value of zero as the
material temperature approaches absolute zero, as required by the third law of
thermodynamics [McClintock et al., 1984].

For crystalline solids, the specific heat of the material is dependent on the
vibrational energy of the atoms. Since the thermal expansion coefficient is also
associated with interatomic vibrational energy, one might except to find a rela-
tionship between these two properties. This interdependence is given by the
Grüneisen relationship [Yates, 1972]:

βt = γGcvρ

B
(1-9)

or

α = γGcvρ(1 − 2μ)

E
(1-10)

The quantity cv is the specific heat at constant volume, ρ is the material density,
and B is the isothermal bulk modulus, discussed in Section 1.6. The quantity E
is Young’s modulus, which is directly related to the bulk modulus by eq. (1-20).
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TABLE 1-2. Values of the Grüneisen Constant for Selected Materials at
Ambient Temperature

Material Lattice Structure Grüneisen Constant, γG

Aluminum, Al FCC 2.17
Copper, Cu FCC 1.96
Gold, Au FCC 2.40
Lead, Pb FCC 2.73
Nickel, Ni FCC 1.88
Palladium, Pa FCC 2.23
Platinum, Pt FCC 2.54
Silver, Ag FCC 2.40
Iron, Fe BCC 1.60
Molybdenum, Mo BCC 1.57
Tantalum, Ta BCC 1.75
Tungsten, W BCC 1.62
Cobalt, Co HCP 1.87
Zinc, Zn HCP 2.01
Bismuth, Bi Rhombic 1.14
Tin, Sn BC tetra 2.14

Note. FCC, face-centered-cubic; BCC, body-centered-cubic; HCP, hexagonal close-packed.

The parameter γG is the Grüneisen constant [Grüneisen, 1926]. Some typical
values for the Grüneisen constant are given in Table 1-2.

The bulk modulus and density for a metal are not strongly dependent on
temperature. If the Grüneisen constant were truly independent of temperature (it
does actually depend on temperature in certain temperature ranges), then eq. (1-9)
indicates that the thermal expansion coefficient would vary in the same manner
with temperature as the specific heat does. The temperature variation of some
metals is given in Appendix C. For a pure crystalline solid at low temperatures,
the thermal expansion coefficient is proportional to T 3. At temperatures around
ambient temperature and above ambient temperature, the thermal expansion coef-
ficient is practically proportional to temperature, and is much less dependent on
temperature than is the case at very low temperatures.

There are some cases, particular at cryogenic temperatures, that the thermal
expansion coefficient cannot be treated as a constant, within acceptable accuracy.
The cryogenic temperature range is defined [Scott, 1959] as temperatures less than
123 K or −150◦C (−238◦F). In this temperature region, we may use the thermal
strain parameter et , defined by the following expression:

et (T ) =
∫ T

0
α dT (1-11)

The average thermal expansion coefficient between two temperature limits, T1
and T2, is given by

α = et (T2) − et (T1)

T2 − T1
(1-12)
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The thermal strain parameter et is tabulated in Appendix C for some metals.
The parameter may be found for other materials by (a) fitting the thermal expan-
sion coefficient to an analytical expression, using the least-squares curve-fitting
technique, and then carrying out the integration analytically, or (b) carrying out
the integration of the tabular or experimental thermal expansion coefficient data
numerically.

Example 1-2 The density of silver at 300 K (80◦F) is 10,500 kg/m3 (0.379 lbm/
in3), and the bulk modulus for silver is 92.82 GPa (13.46 × 106 psi). The vibra-
tional energy contribution to the specific heat (Debye specific heat) is 0.216 kJ/
kg-K (0.0517 Btu/lbm−◦F) [Gopal, 1966]. It may be noted that the total spe-
cific heat for silver is 0.236 kJ/kg-K (0.0564 Btu/lbm−◦F). Determine the linear
thermal expansion coefficient from the Grüneisen relationship.

The value of the Grüneisen constant is found from Table 1-2 for silver:

γG = 2.40

The volumetric thermal expansion coefficient is found from eq. (1-9):

βt = (2.40)(0.216 × 103)(10,500)

(92.82 × 109)
= 58.6 × 10−6 K−1

The linear thermal expansion coefficient is found from eq. (1-6):

α = (58.6 × 10−6)/(3) = 19.5 × 10−6 K−1 (10.8 × 10−6 ◦F−1)

The measured value for the linear thermal expansion coefficient is in excellent
agreement with this calculated value [Corruccini and Gniewek, 1961]:

α(measured) = 19.3 × 10−6K−1

1.5 YOUNG’S MODULUS

Young’s modulus gives a measure of the flexibility of a material, so this is another
material property of importance in determining thermal stresses. Young’s modu-
lus is usually measured under isothermal (constant temperature) conditions. The
mathematical definition of Young’s modulus (specifically, the tangent modulus) is

E =
(

∂σ

∂ε

)
T

(1-13)

The stress level σ is below the proportional limit for the material. The quantity
ε is the mechanical strain caused by the stress σ . Values for Young’s modulus
for several materials are given in Appendix B.

Young’s modulus is related primarily to the forces between atoms in a mate-
rial. A typical interatomic force curve is shown in Figure 1-5. The value of
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Figure 1-5. Interatomic force curve for the force between two atoms. Young’s modulus
is related to the slope of this curve.

Young’s modulus is determined from the slope of the interatomic force curve at
the equilibrium spacing r0 of the atoms. One theoretical relationship for Young’s
modulus is as follows [Ruoff, 1973]:

E = 9Z2e2

16πε0r
4
0

(1-14)

The quantity Z is the valence of the atomic ion, e is the electron charge
(e = 0.1601 × 10−18 C), ε0 is the permittivity of free space (ε0 = 8.8542 ×
10−12 F/m), and r0 is the equilibrium spacing of the atoms.

Example 1-3 The equilibrium spacing of the silver atoms in the metal is
0.288 nm, and the valence of silver is +1. Estimate the value of Young’s modulus
for silver.

Using these values in eq. (1-14), we find the following value of Young’s
modulus:

E = (9)(1)2(0.1601 × 10−18)2

(16π)(8.8542 × 10−12)(0.288 × 10−9)4
= 75.3 × 109 Pa = 75.3 GPa
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The experimental value of Young’s modulus for silver is 72.4 GPa (10.6 ×
106 psi) [Bolz and Tuve, 1970].

1.6 POISSON’S RATIO

When the atoms of a material are pulled apart by a force applied in a certain
direction, there is a corresponding contraction of the material in the lateral direc-
tion, perpendicular to the applied force. Poisson’s ratio μ is the magnitude of
the ratio of the lateral strain to the strain in the direction of the applied force.
For a force applied in the x -direction, Poisson’s ratio may be written as follows:

μ = −εy

εx

(1-15)

The quantity εy is the mechanical strain in the y-direction when a force is applied
in the x -direction, and εx is the mechanical strain in the x -direction (the direction
of the applied force). The negative sign is introduced because the strain in the
transverse direction will be a contraction (negative strain) if the force causes
an elongation (positive strain) in the x -direction. Numerical values of Poisson’s
ratio for several materials are given in Appendix B.

The effect of application of a tensile force on the volume of a material may be
examined. Suppose we have a bar with a length L, and cross-sectional dimensions
a × b. The initial volume V0, with the bar unloaded, is

V0 = Lab

The final volume V1, after a tensile load has been applied in the lengthwise
direction, is related to the original dimensions and Poisson’s ratio:

V1 = (L + εxL)(a + εya)(b + εzb)

If we introduce Poisson’s ratio from eq. (1-15) and expand the expression for
the final volume, we obtain

V1 = Lab(1 + εx)(1 − μεx)(1 − μεx) = V0(1 + εx)(1 − 2μεx + μ2ε2
x)

The fractional change in volume may be found as follows, where we have
omitted the terms involving ε2

x and ε3
x , because these values are negligible for

small strains:
�V

V
= V1 − V0

V0
= εx(1 − 2μ) (1-16)

For a homogeneous isotropic material, the value of Poisson’s ratio is between
zero and 1

2 . If Poisson’s ratio were greater than 1
2 , a pressure applied to the

material would cause the volume of the material to increase, and this behavior is
not observed in engineering materials. For a material with Poisson’s ratio μ = 1

2 ,
the volume does not change as a tensile or compressive force is applied.
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Figure 1-6. Poisson’s ratio for a material with a face-centered-cubic or hexagonal close-
packed lattice structure.

Poisson’s ratio is a property that depends primarily on the geometry or arrange-
ment of the atoms in the material. Because of this characteristic, Poisson’s ratio
is practically independent of temperature. It may be shown that Poisson’s ratio
for a metal having a face-centered-cubic (FCC) or hexagonal close-packed (HCP)
lattice arrangement should be μ = 1

3 . From Figure 1-6, we observe the following:

x2 + y2 = r2
0 = constant

For small displacements u and v, the displacements may be found as follows:

2xu + 2yv ≈ 2xdx + 2ydy = 0

or
v

u
= yεy

xεx

= −x

y

Poisson’s ratio is defined by eq. (1-15):

μ = −εy

εx

=
(

x

y

)2

= tan2(30◦
) =

(
1√
3

)2

= 1

3

1.7 OTHER ELASTIC MODULI

In addition to Young’s modulus and Poisson’s ratio, several other elastic moduli
have been defined. For an isotropic material, only two of the elastic moduli are
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independent. In this text, we will usually choose Young’s modulus and Poisson’s
ratio as the independent properties.

The modulus of elasticity in shear G is defined as the ratio of the shearing
stress τ to the shear strain γ for a material in the elastic region (stresses less
than the proportional limit). This property is also called the shear modulus and
the modulus of rigidity :

G = τ

γ
(1-17)

The shear modulus is related to Young’s modulus and Poisson’s ratio for an
isotropic material by the following relationship:

G = E

2(1 + μ)
(1-18)

For a material with Poisson’s ratio μ = 1
3 , the shear modulus is G = 3

8E.
The isothermal bulk modulus B is defined as the change in pressure per

unit volumetric strain (change in volume per unit volume) of a material under
constant-temperature conditions. The bulk modulus has also been called the
volume modulus of elasticity :

B = V

(
∂p

∂V

)
T

(1-19)

The bulk modulus is related to Young’s modulus and Poisson’s ratio for an
isotropic material by the following relationship:

B = E

3(1 − 2μ)
(1-20)

For a material with Poisson’s ratio μ = 1
3 , the bulk modulus is B = E. Note that

the bulk modulus is infinite for a material having a Poisson’s ratio μ = 1
2 . As

mentioned in Section 1.6, materials having a Poisson’s ratio of 1
2 experience no

volume change (zero volumetric strain) when a pressure is applied.
To obtain a relationship between B , G , and E , let us combine eqs. (1-18) and

(1-20) as follows:

1

B
+ 3

G
= 3(1 − 2μ)

E
+ (3)(2)(1 + μ)

E
= 9

E
(1-21)

The Lamé elastic constant λL is defined by the following relationship:

λL = μE

(1 + μ)(1 − 2μ)
= 3μB

1 + μ
(1-22)

For a material with Poisson’s ratio μ = 1
3 , the Lamé constant is λL = 3

4E.
Using eq. (1-18), we may write the following relationship for the Lamé con-
stant in terms of the shear modulus and the bulk modulus for any value of
Poisson’s ratio:

λL + 2
3G = B (1-23)
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Values for the elastic moduli may be found from the data in Appendix B and
the relationships given in this section.

Example 1-4 Determine the elastic moduli for 304 stainless steel at 300 K
(80◦F). Young’s modulus and Poisson’s ratio are found from Appendix B for
304 stainless steel: E = 193 MPa (28.0 × 106 psi) and μ = 0.305.

The shear modulus is found from eq. (1-18):

G = (193)

(2)(1 + 0.305)
= 73.9 GPa (10.7 × 106 psi)

The bulk modulus is found from eq. (1-20):

B = (193)

(3)[1 − (2)(0.305)]
= 165 GPa (23.9 × 106 psi)

Finally, the Lamé constant is found from eq. (1-22):

λL = (0.305)(193)

(1 + 0.305)[1 − (2)(0.305)]
= 115.7 GPa (16.8 × 106 psi)

1.8 THERMAL DIFFUSIVITY

In many situations involving thermal stresses, transient or time-dependent tem-
perature distributions are involved. In these cases, the temperature distribution
and the thermal stress distribution are dependent on a material property called the
thermal diffusivity κ . The thermal diffusivity is defined in terms of the material
thermal conductivity kt , density ρ, and specific heat c:

κ ≡ kt

ρc
(1-24)

The units for the thermal diffusivity in the SI system are {m2/s}, and typical
units in the conventional system are {ft2/hr}.

The value of the thermal diffusivity gives a measure of how rapidly energy
may be conducted into a solid material. A large value of thermal diffusivity
means that energy may diffuse rapidly into the material, and steep temperature
gradients (large temperature changes over small distances) will not be developed.
This behavior tends to result in lower thermal stresses in the transient situation
than the case of a material with a small thermal diffusivity.

One relationship for the thermal diffusivity of a solid material is as follows
[Berman, 1976]:

κ = 1
3vλm (1-25)

The quantity v is the velocity of the “energy carriers” (electrons, lattice vibrational
waves or phonons, etc.), and λm is the average distance traveled by the carriers
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between collisions, or the mean free path for the energy carriers. For metals at
ambient temperature and higher, the thermal diffusivity is relatively constant with
temperature change. At very low temperatures, the thermal diffusivity of metals
is strongly dependent on temperature and varies as T −3 to T −4. The temperature
dependence of the thermal diffusivity of some selected materials is displayed
in Appendix C.

1.9 THERMAL SHOCK PARAMETERS

Thermal shock occurs when a material is subjected to rapidly changing temper-
atures in the environment around the material. Some examples of thermal shock
situations include space vehicle reentry into the atmosphere, start-up of a cold
automobile engine, and quenching of a metal part. Under identical environmental
conditions, some materials are more resistant to thermal shock than others. Brittle
materials exhibit small mechanical strains before rupture, so thermal shock can
be a serious problem for such materials. Ductile materials can withstand larger
mechanical strains before rupture; however, thermal shock may cause yielding
for ductile materials. In addition, repeated thermal shock can result in a thermal
fatigue failure for ductile materials.

The strength–weight ratio Sy/ρ is an important parameter in selection of
materials to withstand a specified tensile load for minimum weight of the part.
Similarly, a thermal shock parameter would be a convenient material property to
assist the designer in selection of materials that would resist thermal shock for a
given temperature change. Schott and Winkelmann suggested one of the original
thermal shock parameters in 1894 [Richards, 1961]:

TSP = Su

√
κ

αE
(1-26)

The quantity Su is the ultimate tensile strength of the material, and κ is the
thermal diffusivity for the material.

A material with a high value of ultimate tensile strength would be able to
withstand a higher stress level than a material with a low ultimate tensile strength.
A material with a low thermal expansion coefficient α would develop smaller
thermal strains (and correspondingly lower thermal stresses) than a material that
expands by a large amount when the material temperature is changed. A material
with a small Young’s modulus E would be more flexible and able to accommodate
thermal strains better than a material with a large Young’s modulus. Finally,
a material with a large thermal diffusivity κ would tend to develop smaller
temperature gradients than a material with small κ , because thermal energy can
be spread out throughout the high-κ material more rapidly.

In summary, a material that would have good thermal shock resistance should
have a large ultimate tensile strength Su, a small thermal expansion coefficient α, a
small Young’s modulus E , and a large thermal diffusivity κ . These characteristics
are brought together in the thermal shock parameter TSP. A material having a
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TABLE 1-3. Values of the Thermal Shock Parameter TSP and Thermal Stress
Ratio TSR for Several Materials at 300 K (27◦C or 80◦F)

TSP = S uκ1/2/αE ,
Material αE , MPa/K TSR = S u /αE , K K-m/s1/2

Aluminum, 2024-T3 1.652 280 1.94
Aluminum, 3003-H12 1.553 83.7 0.68
Aluminum, 6061-T6 1.615 192 1.57
Beryllium copper 2.208 521 2.59
Brass, 70/30 1.210 291 1.70
Bronze, UNS-22000 1.833 202 0.60
Copper/10% Ni 2.009 179 0.67
Inconel, 600 2.795 229 0.68
Invar 0.387 1660 2.81
Monel, K-500 2.516 380 0.84
Gray cast iron, Class 20 0.880 160 0.65
Gray cast iron, Class 40 1.339 218 0.88
Steel, C1020, annealed 2.440 180 0.77
Steel, 4340 2.397 422 1.19
Steel, 9% Ni 2.230 384 1.03
Stainless steel, 304 3.088 167 0.34
Stainless steel, 416 1.980 258 0.69
Titanium, Ti–5Al–2.5Sn 1.066 819 1.57
Concrete, 1:21/2:31/4 0.224 7.7a 0.006a

Glass, silicate 7740 0.282 35.4a 0.02a

Glass, Pyrex 0.205 134a 0.09a

Nylon 0.252 241 0.33
Teflon 0.050 366 0.13

aStrength values in tension.

large value of TSP would have good thermal shock resistance. The values for
the thermal shock parameter for several materials are listed in Table 1-3.

Under steady-state conditions, the transient thermal properties do not influence
the thermal stresses. In these cases, the thermal stress ratio TSR is an important
material property for use in assessing the material resistance to thermal stresses
[Gatewood, 1957]:

TSR = Su

αE
(1-27)

Values for the thermal stress ratio for several materials are also tabulated in
Table 1-3. Generally, a material with a large thermal stress ratio will have good
resistance to thermal stresses.

Example 1-5 Tubes made of red brass (UNS-C2300, 85% Cu, 15% Zn) having
a 05105 temper are to be used in a steam condenser. The ultimate tensile strength
for the material is 305 MPa (44,200 psi), and Young’s modulus for the red brass
is 90 GPa (13 × 106 psi). The thermal expansion coefficient for the material is
18 × 10−6 K−1 (10 × 10−6 ◦F−1), and the thermal diffusivity is 18.0 mm2/s.



HISTORICAL NOTE 19

Determine the thermal stress ratio and thermal shock parameter for the red brass
tubing.

The thermal stress ratio is found from eq. (1-27):

TSR = (305)(106)

(18)(10−6)(90)(109)
= 188.3 K

The thermal shock parameter is found from eq. (1-26):

TSP = (188.3)(18.0 × 10−6)1/2 = 0.799 K-m/s1/2

It is noted from Table 1-3 that these values are slightly lower than the corre-
sponding values for 70/30 brass.

Example 1-6 In the design of a heat exchanger, the engineer has a choice of
the following materials for use as the heat exchanger tubing: red brass, copper
(Cu/10% Ni), and aluminum (2024-T3). Which material should be selected from
a thermal stress resistance standpoint?

From Table 1-3 and Example 1.5, we find the following values for the thermal
stress ratio and thermal shock parameter:

Material TSR, K TSP, K-m/s1/2

Aluminum, 2024-T3 280 1.94
Red brass 188 0.80
Copper (Cu/10% Ni) 179 0.67

When the fluid is suddenly introduced into the heat exchanger, originally at
ambient temperature, the tubing may experience thermal shock. The aluminum
has the largest TSP, so aluminum would be the best material for thermal shock
resistance. In addition, the TSR for aluminum is largest of the three materials,
so aluminum would also be best for steady-state thermal stress resistance.

We may conclude that the engineer should select aluminum (2024-T3) as the
best of the three materials from a thermal stress standpoint.

1.10 HISTORICAL NOTE

People have known about thermal stresses from the time that the first person broke
a clay vessel by heating the vessel too rapidly. It wasn’t until the 1800s, however,
that the first analytical analysis was made for thermal stresses [Timoshenko,
1983].

Robert Hooke (1635–1703) worked with Robert Boyle on perfecting an air
pump at Oxford. Boyle recommended Hooke as the curator of the experiments
of the Royal Society in England, of which Hooke was a charter member. In the
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1670s Hooke conducted experiments with elastic bodies, and in 1678 he published
the first technical paper in which elastic properties of materials were examined.
Based on his experiments with springs and other elastic bodies, Hooke concluded
in his paper “De Potentiâ Restitutiva” (“Of Springs”) in 1678: “It is very evident
that the Rule or Law of Nature in every springing body is, that the force or
power thereof to restore itself to its natural position is always proportional to the
distance or space it is removed therefrom, whether it be by rarefaction, or the
separation of the parts the one from the other, or by Condensation, or crowding
of those parts together.” In less formal words, Hooke’s law may be stated in
the form: “There is a linear relationship between the force and deformation for
bodies at stresses below the proportional limit.” This principle is the beginning
point for all elastic analyses, including thermoelastic analysis.

Thomas Young (1778–1829) (Figure 1-7) originally studied medicine and
received his doctor’s degree from Göttingen University in 1796. A few years
later while at Cambridge (in 1796) he became interested in the physical sciences,
including acoustics and optics. In 1802 he was appointed a professor of natural
philosophy (the forerunner of today’s physics and other scientific areas) by the
Royal Institution. Many of his main contributions to mechanics of materials were
presented in his course on natural philosophy during the year he taught at the
Royal Institution. He introduced the concept of the modulus of elasticity, which
is called Young’s modulus today (although Young’s definition was somewhat
different from that used now). In his lecture notes entitled A Course of Lectures
on Natural Philosophy and the Mechanical Arts , published in 1807,Young stated:
“The modulus of elasticity of any substance is a column of the same substance,
capable of producing a pressure on its base which is to the weight causing a

Figure 1-7. Thomas Young (From S. P. Timoshenko, 1983. Used by permission of Dover
Publications, Inc.)
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certain degree of compression as the length of the substance is to the diminution
of its length.” The modulus defined by Young was essentially the product of
Young’s modulus and the cross-sectional area in present-day terminology.

C.L.M.H. Navier (1785–1836) published a book on strength of materials in
1826, in which he defined the modulus of elasticity for tension or compression
as the ratio of the force per unit cross-sectional area to the elongation per unit
length. This modulus is the property that is denoted as Young’s modulus today.
Navier actually measured the Young’s modulus for the iron that was used in the
construction of the Pont des Invalides in Paris.

S. D. Poisson (1781–1840) (Figure 1-8) taught mathematics at the École
Polytechnique, and he applied his mathematical skills in solving several problems
involving the theoretical strength of materials. He was interested in the theory
of elasticity based on molecular force considerations. In his memoir, Mémoire
sur l’équilibre et le mouvement des corps élastiques , published in 1829, Poisson
applies general elasticity equations that he had developed to isotropic materials.
He found that, for simple tension of a rod or bar, the axial elongation produces a
lateral contraction. Poisson’s relationships yielded a value of the ratio of lateral
strain to axial strain, called Poisson’s ratio today, to have a universal value of
μ = 1

4 . As discussed in Section 1.6, Poisson’s ratio for isotropic materials may
have values between 0 and 1

2 .
Gabriel Lamé (1795–1870) (Figure 1-9) graduated from the École Polytech-

nique in 1818 and worked with a then-new Russian engineering school, the
Institute of Engineers of Ways of Communication in St. Petersburg. Lamé taught
applied mathematics and physics at the school and helped with the design of

Figure 1-8. S. D. Poisson (From S. P. Timoshenko, 1983. Used by permission of Dover
Publications, Inc.)
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Figure 1-9. Gabriel Lamé (From S. P. Timoshenko, 1983. Used by permission of Dover
Publications, Inc.)

several suspension bridges built in the St. Petersburg area. In 1852, Lamé pro-
duced the first book on the theory of elasticity, entitled Leçons sur la Théorie
Mathématique de l’Élasticité des Corps Solides. He concluded that to define the
elastic properties of an isotropic material, only two different elastic constants were
required. In Lamé’s general elasticity equations, he selected the two constants as
Lamé’s elastic modulus λL and the modulus of elasticity in shear G .

J. M. Constant Duhamel (1797–1872) also graduated from Éçole Polytech-
nique in 1816 and, after studying for law and teaching mathematics in some
other schools, he joined the faculty at Éçole Polytechnique in 1830. After pub-
lishing several papers in the area of conduction heat transfer, Duhamel made
some basic contributions to the theory of elasticity. In 1835 he published the
paper “Mémoir sur le calcul des actions moléculaires développées par les change-
ments du température dans les corps solids.” In this paper he developed the basic
partial differential equations for stress equilibrium conditions, including stresses
produced by temperature variation. This paper was the first to give an analytical
treatment of thermal stresses.

Duhamel applied the general equations to several problems of practical inter-
est. He obtained a solution for the stress distribution in the wall of a hollow
spherical vessel and a hollow cylindrical vessel in which the temperature varies
across the wall of the vessel. Duhamel was one of the first investigators to use
the principle of superposition in thermal stress analysis.

Franz Neumann (1798–1895) (Figure 1-10) began service in the German
Army when he was only 17 years old. After a year in the military service,
he returned Berlin to complete his high school education and to study at Berlin
University. He studied mineralogy and was awarded a faculty position to teach
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Figure 1-10. Franz Neumann (From S. P. Timoshenko, 1983. Used by permission of
Dover Publications, Inc.)

mineralogy at the University of Königsberg after receiving his doctorate. In 1843,
Neumann published an extensive memoir dealing with double refraction of light,
in which he presents the basic principles used in experimental photoelastic stress
analysis. Based on stress equilibrium equations similar to those developed by
Duhamel, Neuman solved the stress distribution problem for a sphere with radi-
ally varying temperature. He also conducted photoelastic tests and experimentally
measured the thermal stresses in the sphere, and found that the experimental and
theoretical data were in satisfactory agreement. This is the first time that ther-
mal stresses were measured in the laboratory. Neumann analyzed the problem of
thermal stresses in circular plates in which the temperature varies in the radial
direction in the plate, but is constant in the thickness direction. He also solved
the plate thermal bending problem for a circular plate in which the temperature
was a function of the axial coordinate only.

PROBLEMS

1-1. A part is to be constructed using 9-percent nickel steel, for which the aver-
age ultimate strength is 856 mPa (124,200 psi) and the standard deviation
of the ultimate strength data is 42.9 MPa (6220 psi). If an ultimate strength
of 756 MPa (109,600 psi) is used in the design, determine the probability
that the actual ultimate strength of the material used is less than 756 MPa.

1-2. In a certain design, 6061-T6 aluminum is used, for which the average yield
strength is 275 MPa (39,890 psi) and the standard deviation for the yield
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strength data is 20 MPa (2900 psi). A factor of safety of 1.50, based on the
yield strength for a 99.99 percent survival rate, is to be used in the design.
Determine the design stress that should be used.

1-3. At room temperature, Young’s modulus and Poisson’s ratio for constantan
(cupronickel, 55% Cu/45% Ni) are E = 165 GPa (23.9 × 106 psi) and μ =
0.325. The specific heat and density for constantan are cv = 0.409 kJ/kg-K
(0.0977 Btu/lbm−◦F) and ρ = 8922 kg/m3 (0.322 lbm/in3) at room temper-
ature. Determine the linear thermal expansion coefficient α for constantan
at room temperature, if the Grüneisen constant for constantan is γG = 1.91.

1-4. Niobium is a material used in superconducting magnets, which operate
at cryogenic temperatures. The properties of niobium at 4.2 K (−269◦C
or 7.6◦R or −452◦F) are density, 8580 kg/m3 (0.310 lbm/in3); Young’s
modulus, 68.9 GPa (10.0 × 106 psi); Poisson’s ratio, 0.270; and Grüneisen
constant, 1.57. The specific heat of niobium for temperatures below 22 K
is given by

cv = C0(T /θD)3

The factor C0 = 20.921 kJ/kg-K, T is the absolute temperature, and θD =
265 K (477◦R) = the Debye temperature for niobium. Determine the linear
thermal expansion coefficient for niobium at 4.2 K.

1-5. Using the data from Problem 1-4, determine the total change in length of
a niobium wire having an initial length of 800 m (2625 ft) when the wire
is cooled from 20.3 to 4.2 K. The properties, except the thermal expansion
coefficient, may be treated as constant.

1-6. Platinum has a valence of +2, and the equilibrium spacing of the atoms in
platinum is 0.28 nm. Determine the value of Young’s modulus for platinum
predicted by the theoretical expression, eq. (1-14). How does this value
compare with the measured value of Young’s modulus for platinum, E =
146.9 GPa?

1-7. Determine the shear modulus, bulk modulus, and Lamé constant for (a)
2024-T3 aluminum and (b) C1020 steel.

1-8. The shear modulus and Lamé constant for platinum are G = 55.5 GPa
(8.05 × 106 psi) and λL = 103.0 GPa (14.94 × 106 psi). Determine the
value of Young’s modulus and Poisson’s ratio for platinum.

1-9. In a particular application involving transient thermal stresses, it is desired
to select the best material for thermal shock resistance from the following:
(a) 3003-H12 aluminum, (b) copper/10% nickel, and (c) 304 stainless steel.
Determine the thermal shock parameter for each of these materials and
select the one that would have the best shock resistance characteristics.

1-10. In a steady-state situation involving thermal stresses, the designer has a
choice of the following three materials: C1020 carbon steel, annealed;
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6061-T6 aluminum; and a nickel alloy (α = 11.3 × 10−6 K−1 = 6.28 ×
10−6 ◦F−1;E = 220 GPa = 31.9 × 106 psi; Su = 955 MPa = 138,500 psi).
Determine the thermal stress ratio for each material and select the one
that would have the best thermal stress resistance.
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