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    1.0    INTRODUCTION 

 This chapter is devoted to the development of kinematic models for 
two types of wheeled robots. The kinematic equations are developed 
along with the basic geometrical properties of achievable motion. The 
two confi gurations considered here do not exhaust the myriad of pos-
sible confi gurations for wheeled robots; however, they serve as an 
adequate test bed for the development and discussion of the principals 
involved.  

   1.1    VEHICLES WITH FRONT - WHEEL STEERING 

 The fi rst type of mobile robot to be considered is the one with front -
 wheel steering. Here the vehicle is usually powered via the rear wheels, 
and the steering is achieved by way of an actuator for turning the front 
wheels. 

 In Figure  1.1  we have a diagram for a four - wheel front - wheel - steered 
robot. The equations would also apply for the case of a single front 
wheel. The angle the front wheels make with respect to the longitudinal 
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axis of the robot,   yrobot, is defi ned as   α , measured in the counter - clockwise 
direction . The angle that the longitudinal axis,   yrobot, makes with respect 
to the   yground axis is defi ned as   ψ , also measured in the counter - clockwise 
direction. The instantaneous center about which the robot is turning is 
the point of intersection of the two lines passing through the wheel 
axes.   

 From geometry we have

    
L
R

= tanα  

which may be solved to yield the instantaneous radius of curvature for 
the path of the midpoint of the rear axle of the robot.

    R
L=

tanα
    (1.1)   

 From geometry we also have

    v R
d
dt

Rrear wheel = =( )ψ ψ�  

     Figure 1.1     Schematic Diagram of the Front - Wheel Steered Robot  

L 

a

a

y

y

d 

R

groundy
roboty

groundx

robotx



VEHICLES WITH FRONT-WHEEL STEERING  3

or

    �ψ =
v

R
rear wheel  

which can be written as

    �ψ
α

α= =
v

L

v

L
rear wheel rear wheel

/ tan
tan     (1.2)   

 If one held the steering angle   α  constant, the trajectory would result 
in a circle whose radius is dictated by the robot length and the actual 
steering angle used per equation  (1.1) . 

 Now the instantaneous curvature itself is defi ned as the ratio of 
change in angle divided by change in distance or change in angle per 
distance traveled. It is given by

    κ
ψ ψ ψ= = =∆

∆
∆ ∆
∆ ∆s

t
s t vrear wheel

/
/

�
 

which is the inverse of the instantaneous radius of curvature. Thus the 
radius of curvature may be interpreted as

    R
v ds

d
rear wheel= = =1

κ ψ ψ�
 

i.e., the change in distance traveled per radian change in heading angle. 
 The complete set of kinematic equations for the motion in robot 

coordinates are

    vx = 0     (1.3a)  

    v vy rear wheel=     (1.3b)  

    �ψ α=
v

L
rear wheel tan     (1.3c)   

 Converted to earth coordinates these become

    �x vrear wheel= − sinψ     (1.4a)  

    �y vrear wheel= cosψ     (1.4b)  
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    �ψ α=
v

L
rear wheel tan     (1.4c)   

 This form of the equations is quite simple: however, it should be 
noted that these equations are nonlinear. Also see Dudek and Jenkin. 

 Now if we wish to take into account the fact that steering angle and 
velocity cannot change instantaneously, we may defi ne as control signals 
the derivatives or rates of these variables, i.e.

    �α = u1     (1.5a)  

and

    �v urear wheel = 2     (1.5b)   

 The system of equations for this model is now fi fth order. The equa-
tions provide the correct kinematic relationships among the variables 
for motion and rotation in the  xy  plane but do not include the complex-
ity of suspension or motor dynamics. Also not included in this model 
are robot pitch and roll. 

 It may be desirable to form a discrete - time model from these equa-
tions. This would be useful for discrete - time simulation as well as other 
applications. Clearly these equations are nonlinear. Therefore, the 
methods used for converting a linear continuous - time system to a 
discrete - time representation are not applicable. One approach is to use 
the Euler integration method. This method is a fi rst - order, Taylor - series 
approximation to integration and says that the derivative may be 
approximated by a fi nite difference

    �x t
x t t x t

t
( )

( ) ( )≈ + −∆
∆

  

 This can be re - arranged to yield

    x t t x t x t t( ) ( ) ( )+ ≈ +∆ ∆�   

 Setting   t kT=  and the sampling interval   ∆t T=  and applying this to 
the above equations we have

    x k T x kT Tv kT kTrear wheel(( ) ) ( ) ( )sin ( )+ = −1 ψ     (1.6a)  
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    y k T y kT Tv kT kTrear wheel(( ) ) ( ) ( )cos ( )+ = +1 ψ     (1.6b)  

    ψ ψ α(( ) ) ( )
( )

tan ( )k T kT T
v kT

L
kTrear wheel+ = +1     (1.6c)  

    α α(( ) ) ( ) ( )k T kT Tu kT+ = +1 1     (1.6d)  

and

    v k T v kT Tu kT(( ) ) ( ) ( )+ = +1 2     (1.6e)   

 Here the sampling interval   T  must be chosen suffi ciently small 
depending on the dynamics of the original differential equations, i.e., 
the behavior of the discrete - time model must match up with that of the 
original system. For a linear system, this corresponds to selecting the 
sampling interval to be approximately one - fi fth of the smallest time 
constant of the system or smaller depending on the degree of precision 
required. For nonlinear systems, it may be necessary to determine this 
limiting size empirically. This discrete - time model may be used for 
analysis, control design, estimator design and simulation. 

 It should be noted that more sophisticated and more robust methods 
exist for converting continuous - time dynamic system models to discrete -
 time models. For more information on this topic the reader is referred 
to  “ Digital Simulation of Dynamic Systems ”  by Hartley, Beale and 
Chicatelli. 

 From time to time, it will be convenient to interpret speed expressed 
in various units. For this reason the following equalities are 
presented.

    10 2 778 9 1134 6 2137kilometers/hr meters/ feet/ mph= = =. sec . sec .    

   1.2    VEHICLES WITH DIFFERENTIAL - DRIVE STEERING 

 Another common type of steering used for mobile robots is differential -
 drive steering illustrated in Figure  1.2 . Here the wheels on one side of 
the robot are controlled independently of the wheels on the other side. 
By coordinating the two different speeds, one can cause the robot to 
spin in place, move in a straight line, move in a circular path, or follow 
any prescribed trajectory.   

 The equations of motion for the robot steered via differential wheel 
speeds are now derived. Let R represent the instantaneous radius of 
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curvature of the robot trajectory. The width of the vehicle, i.e., spacing 
between the wheels, is designated as W. From geometrical consider-
ations we have:

    v R Wleft = −�ψ( / )2     (1.7a)  

and

    v R Wright = +�ψ( / )2     (1.7b)   

 Now subtracting the two above equations yields

    v v Wright left− = �ψ  

so we obtain for the angular rate of the robot

    �ψ =
−v v

W
right left     (1.8)   

 Solving for the instantaneous radius of curvature, we have:

    R
v Wleft= +
�ψ 2

 

     Figure 1.2     Schematic Diagram of Differential - Drive Robot  
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or

    
R

v
v v

W

Wleft

right left
= − +

2  

or fi nally

    R
W v v

v v
right left

right left

=
+
−2

    (1.9)   

 This results in the expression for velocity along the robot ’ s longitu-
dinal axis:

    v R
v v

W
W v v

v v

v v
y

right left right left

right left

right lef= =
− +

−
=

+�ψ
2

tt

2
  

 In summary, the equations of motion in robot coordinates are:

    vx = 0     (1.10a)  

    v
v v

y
right left=

+
2

    (1.10b)  

and

    �ψ =
−v v

W
right left     (1.10c)   

 If we convert to earth coordinates these become:

    �x
v vright left= −

+
2

sinψ     (1.11a)  

    �y
v vright left=

+
2

cosψ     (1.11b)  

and

    �ψ =
−v v

W
right left     (1.11c)   
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 As we did in the case for the robot with front - wheel steering, we may 
wish to account for the fact that velocities cannot change instanta-
neously. Thus, we would introduce as the control variables the velocity 
rates:

    �v uright = 1     (1.12a)  

and

    �v uleft = 2     (1.12b)   

 The system of equations for this kinematic model is now fi fth order. 
 Again we can use the Euler integration method for obtaining a 

discrete - time model for this system of nonlinear equations,

    x k T x kT T
v kT v kT

kTright left(( ) ( )
( ) ( )

sin ( )+ = −
+

1
2

ψ     (1.13a)  

    y k T y kT T
v kT v kT

kTright left(( ) ) ( )
( ) ( )

cos ( )+ = +
+

1
2

ψ     (1.13b)  

    ψ ψ(( ) ) ( )
( ) ( )

k T kT T
v kT v kT

W
right left+ = +

−
1     (1.13c)  

    v k T v kT Tu kTright right(( ) ) ( ) ( )+ = +1 1     (1.13d)  

and

    v k T v kT Tu kTleft left(( ) ) ( ) ( )+ = +1 2     (1.13e)   

 More sophisticated and more accurate methods for obtaining 
discrete - time models exist; however, this Euler model may be quite 
useful if the sampling interval is set suffi ciently small. These discrete -
 time models may be used for system analysis, for controller design, for 
estimator design and for system simulation. More complex models for 
mobile robots could also include pitch, roll and vertical motion. 

  EXERCISES 

       1.    A front - wheel steered robot is to turn to the left with a radius of 
curvature equal to 20 meters. The robot is 1 meter wide and 2 meters 
long. What should the steering angle be?   
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    2.    A differential wheel steered robot is to turn to the left with a radius 
of curvature equal to 20 meters and is to travel at 1 meter per second. 
The width is 1 meter and the length is 2 meters. What should be the 
velocities of the right side and the left side?   

    3.    Using the discrete - time model presented, perform a digital 
simulation of the front - wheel steered robot using a steering 
angle of forty fi ve degrees, a length of 1.5 meters and a speed of 2.778 
meters per second. Experiment with the sample interval, T and fi nd 
the maximum allowable value that yields consistent results.   

    4.    Develop a digital simulation for the steered wheel robot modeled 
in Chapter  1 . Assume that the width from wheel to wheel is 1 meter 
and that the length, axle to axle is 2 meters. A sequence of speeds 
and steering angles will be inputs. Include limits in your model so 
that steering angle will not exceed  +  or  − 45 degrees regardless of the 
command. Simulate the robot for straight line motion and for motion 
when the steering angle is held constant at 45 degrees and then 
constant at  − 45 degrees. Simulate several seconds of motion. Use the 
Euler formula for integration and experiment with the sampling 
interval. Then use a sampling interval of 0.1 second and see if this 
sampling interval yields correct results. Plot x vs t, y vs t, heading vs 
t, and y vs x.   

    5.    Develop a digital simulation for the differential drive robot, modeled 
in Chapter  1 . Assume that the width from wheel to wheel is 1 meter 
and that the length, axle to axle is 2 meters. A sequence of right side 
speeds and left side speeds will be the inputs. Simulate for straight 
line motion and for motion when the right side speed is 10% above 
the average speed, (right speed    +    left speed)/2, and the left side 
speed is 10% below the average speed. Simulate several seconds of 
motion. Use the Euler formula for integration and experiment with 
the sampling interval. Then use a sampling interval of 0.1 second and 
see if this sampling interval yields correct results. Plot x vs t, y vs t, 
heading vs t, and y vs x.      
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