
Chapter 1

INTRODUCTION

AND OVERVIEW

LEARNING OBJECTIVES

� Understand the purpose of the book and the structure of
the book.

� Review independent, dependent, and extraneous variables
and their scales of measurement.

� Review measures of central tendency and variability.

� Review visual representations of data, including the normal
distribution.

� Review descriptive and inferential statistical applications of
the normal distribution.
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The purpose of this book is to provide a hands-on approach for
students to understand and apply procedural steps in completing
quantitative studies. The book emphasizes a step-by-step guide using

research examples for students to move through the hypothesis-testing process
for commonly used statistical procedures and research methods. Statistical
and research designs are integrated as they are applied to the examples.
The structure of each chapter covers the following nine quantitative research
procedural steps:

1. A description of a research problem, taking the student through identifying
research questions and hypotheses.

2. A method of identifying, classifying, and operationally defining the study
variables.

3. A discussion of appropriate research designs.

4. A procedure for conducting an a priori power analysis.

5. A discussion of choosing an appropriate statistic for the problem.

6. A statistical analysis of a data set.

7. A process for conducting data screening and analyses (IBM SPSS) to test null
hypotheses.

8. A discussion of interpretation of the statistics.

9. A method of writing the results related to the problem.

The underlying philosophy of the book is to view the quantitative research
process from a more holistic and sequential perspective. Concepts are discussed as
they are applied during the procedural steps. It is hoped that after completion of
the book readers will be better able to plan research and conduct statistical
analyses using several commonly used statistical and research designs. The
quantitative methodological tools learned by students can actually be applied to
their own research, hopefully with less oversight by faculty.

The use of statistical software is an essential tool of researchers. Psychological,
educational, social, and behavioral areas of research typically have multifactor
or multivariate explanations. Statistical software provides a researcher with
sophisticated techniques to analyze the effects and relationships among
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many independent variables (factors) and dependent variables (variates) in vari-
ous combinations all at once and instantly. We will use IBM SPSS statistical
software, which has been developed over many decades and is one of the most
widely used statistics programs in the world.

Statistical techniques may have more meaning, understandability, and rele-
vance when learned within the context of research. One needs to have an
understanding of statistical analyses to consume and construct professional
research competently. Knowledge of quantitative research methods is especially
important today because of the emphasis on evidence-based practice in psy-
chology (EBPP) to improve clinical work with clients. EBPP refers to using the
best available research with clinical expertise in the context of patient char-
acteristics, culture, and preferences (American Psychological Association, 2006).

Ideally, the goal is to help a student achieve self-efficacy in understanding,
planning, and conducting actual independent research. Information and skills
grow, leading to advanced understanding. We next present a review of founda-
tional information related to research and statistics that will be useful to review
prior to completing the chapters that follow.

REVIEW OF FOUNDATIONAL RESEARCH CONCEPTS

A review of foundational concepts related to research and statistics is presented
next. Quantitative research involves the interplay among variables after they have
been operationalized, allowing a researcher to measure study outcomes. Essential
statistical methods used to assess scores of variables include central tendency,
variability, and the characteristics of the normal distribution.

Independent, Dependent, and Extraneous Variables

At the core of quantitative research is studying and measuring how variables
change. Kerlinger and Pedhazur (1973) stated, “It can be asserted that all the
scientist has to work with is variance. If variables do not vary, if they do not have
variance, the scientist cannot do his work” (p. 3). Even the father of modern
statistics, Sir Ronald Fisher (1973), said, “Yet, from the modern point of view,
the study of the causes of variation of any variable phenomenon, from the yield of
wheat to the intellect of man, should be begun by the examination and mea-
surement of the variation which presents itself ” (p. 3).
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An independent variable (IV) in a study is the presumed cause variable. In
experimental research, the IV is designed and employed to influence some other
variable. It is an antecedent condition to an observed resultant behavior. Changes
in the independent variable produce changes in the dependent variable.

All variables need to be able to vary. Kerlinger and Lee (2000) identified two
types of independent variables: active and attribute. An active independent variable
is one that is manipulated by the researcher. For example, a researcher designs a
study with an IV that has a researcher-specified treatment condition compared to
a no-treatment control condition. Other terms used for an active IV are stimulus
variable, treatment variable, experimental variable, intervention variable, and
X variable.

A second type of IV is called an attribute independent variable, which is not
manipulated but is ready-made or has preexisting values such as gender, age, or
ethnocultural grouping.Other terms used are organismic or personological variables.

The terms classification variable and categorical variable are often used as an IV
label. They can be used as either active or attribute types. For example, a
manipulated IV that has a treatment condition and a control condition could be
called a classification variable. Also, an attribute variable such as gender (male or
female) may be referred to as a classification or categorical variable.

A dependent variable (DV) is the presumed resulting outcome in research. It is
usually observed and measured in response to an IV. We look for changes in a DV
caused by an IV. A DV is also referred to as a response variable or a Y variable.

An extraneous variable (EV) is an unwanted and contaminating variable. An
EV acts on a dependent variable like an independent variable does but in a
confounding way that confuses an understanding of how the IV is changing the
DV. An extraneous variable is undesired noise in a research study. A researcher
wants to control an extraneous variable to neutralize its effects.

Variables need to be assigned meaning by specifying activities or operations
necessary to measure the variable, which is known as an operational definition
(OD). A comprehensive operational definition entails all of the activities and
operations that define the variable. For example, an active IV psychotherapy
approach might have two conditions (Gestalt therapy and control condition). We
can say there are two operational definitions for the IV psychotherapy approach
for the sake of brevity. However, each condition has a detailed, comprehensive
operational definition that is clearly and fully specified. A brief operational def-
inition of a dependent variable of depressive symptomatology may be scores on
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the Beck Depression Inventory (BDI). However, the comprehensive OD would
detail key psychometric research used in validating the BDI.

In correlations research, an independent variable is often called a predictor
variable (PV), and a dependent variable is called a criterion variable (CV).

Scales of Measurement of Variables

Variables can be assigned scales of measurement. A variable does not have an
absolute scale of measurement. The scale of measurement of a variable can change
depending on how the variable is being used in different studies and even within
the same study. Therefore, there is a research contextual consideration that
helps determine the scale of measurement of a variable. The process of thinking
through the connection between scales of measurement and variables helps
the researcher more clearly see how variables can be measured in a study. Also, the
scales of measurement assigned to a variable can be useful in selecting appropriate
statistics to use in research.

There are two general classifications of scales of measurement, each having
two subcategories; they are discrete scale (nominal and ordinal) and continuous
scale (interval and ratio).

A variable using a discrete-nominal scale of measurement has mutually
exclusive categories. For example, gender has mutually exclusive categories of
male or female, and political affiliation has categories of Republicans, Democrats,
or independents. A discrete-ordinal scale of measurement variable has ordering
along some continuum. It is rank scaled. For example, the order (first, second,
third, etc.) in which runners complete a race reflects an ordinal scale.

A continuous-interval scale of measurement variable has numerical distances
on a scale that are considered approximately equal numerical distances of the
attribute being measured. There is no true zero point on the scale; it is considered
arbitrary. For example, scores on the Wechsler IQ test are considered interval
scaled, and there is an arbitrary zero, but the test does not measure a total absence
(true zero) of intelligence. A continuous-ratio scale of measurement variable has a
true zero point, and the numerical distances on the scale are equal to the attribute
being measured. Weight is an example of a ratio-scaled variable. A zero number of
pounds is meaningful, and 100 pounds is one-third as heavy as 300 pounds.
Other examples of ratio-scaled variables include height, length, and time.

There are times when ordinal-scaled variables such as Likert-type scales are
statistically analyzed as a continuous-interval variable (Tabachnick & Fidell,
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2007). Howell (2010) states, “We do our best to ensure that our measures relate
as closely as possible to what we want to measure, but our results are ultimately
only the numbers we obtain and our faith in the relationship between those
numbers and the underlying objects or events” (p. 8). A more important gauge of
understanding the meaning of scores on dependent variables in a study has to do
with their distributions. Measures of central tendency and variability of scores of
distributions are discussed next.

REVIEW OF FOUNDATIONAL STATISTICAL
INFORMATION

One of the most important tasks of quantitative researchers is to understand the
data they are working with. Researchers need to assess their data for issues
including dishonest data, cases with atypical scores, and noncompliance with
appropriate use of statistical requirements. Also, it is important for researchers to
understand the uniqueness of their data sets by examining typical scores, vari-
ability among scores, and characteristics and shapes of distributions of scores
related to variables in a data set.

Measures of Central Tendency

Measures of central tendency are values that represent typical scores in a distri-
bution or set of scores. We will be using the data in Table 1.1 to demonstrate
how to calculate the three most common measures of central tendency: mode,
median, and mean.

TABLE 1.1 Values Used to Illustrate Measures of Central
Tendency and Variability

XðN ¼ 6Þ X2 ðX � XÞ ðX � XÞ2

48 2,304 48249¼�1 1

43 1,849 43249¼�6 36

52 2,704 52249¼3 9

50 2,500 50249¼ 1 1

48 2,304 48249¼�1 1

53 2,809 53249¼4 16

ΣX ¼ 294 ΣX2 ¼ 14,470 ΣðX � XÞ ¼ 0 ΣðX � XÞ2 ¼ 64
ðΣXÞ2 ¼ ð294Þ2 ¼ 86,436
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Mode (Mo)

The mode (Mo) is the score that occurs most often in a set of scores. The mode is
the highest point on a graph such as a frequency distribution or a histogram and
is referred to as unimodal. If there are two scores in a sample that are equally the
most frequently occurring, then the distribution is called bimodal. The column
headed by X (individual score) and N¼ 6 represents six individual scores in the
distribution of scores example. The only score that is represented more than once
is 48. Thus, the Mo¼ 48 and it is a unimodal distribution.

Median (Mdn)

The median (Mdn ) is a value in the set of which 50 percent of cases fall below and
50 percent above. If the number of a set of ordered scores from low to high is
odd, then the score that has half of the other scores below it and half above
it is the median. For example, in the set of numbers 4, 5, 7, 8, and 9, the number
7 is the median.

In the set in Table 1.1, the number of scores is even. The six scores ordered
are 43, 48, 48, 50, 52, 53. To obtain the median requires calculating the average
value between the score at N/2 and the score at (N/2)1 1. So, N/2¼ 6/2¼ 3
(i.e., the third score) and (N/2)1 1¼ 31 1¼ 4 (i.e., the fourth score). The third
score in the set is 48 and the fourth score is 50. The average of 48 and 50 is
(481 50)/2¼ 98/2¼ 49. So, the median of the data set in Table 1.1 is 49.

Mean (X or M)

The mean (X or M ) is the sum of individual scores (ΣX ) in a data set divided by
the number of scores (N ). The mean is typically a more precise measure of central
tendency than the mode or the median, because the specific value of each score is
used to calculate the mean. Also, the mean has the properties of being contin-
uously scaled as an interval or a ratio. The mean is more stable than the mode or
median when it is used as a sample measure of central tendency drawn from a
population. On the downside, when a sample has extreme scores (skewed), the
mean is drawn way from the clustered scores toward the extreme scores. In these
situations, the mean may not be the most typical score in a data set. For example,
an analysis of salaries of company employees that includes the high salaries of
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executives can produce a company employee mean salary that the vast majority of
employees are well below. The median might be a better indication of the typical
employee salary in the company. Presented next is the calculation of the mean of
our sample data in Table 1.1.

X ¼ ΣX
N

¼ 294
6

X ¼ 49:00

where

ΣX¼ sum of the individual scores

N¼ number of scores

Measures of Variability (Dispersion) of Scores

Foundational to quantitative research is the study of the measures of variability
(dispersion) of scores in a sample data set. Here we review common measures of
range, mean deviation scores, sum of squares, variance, and standard deviation
using the data set from Table 1.1.

The range of scores in a data set is simply the difference between the highest
and lowest scores (scorehighest2 scorelowest). In the example data in Table 1.1, the
highest score is 53 and the lowest score is 43; 532 43¼ 10, which is the range.

A measure of variability that is used as a component in many statistical
formulas that are used in fundamental statistics is called the total sum of squares,
which is the sum of squared differences of all scores in the data set from their

overall mean, ΣðX � X Þ2.

Variance of the Sample (s2)

The variance of the sample (s2) is the total sum of squares divided by the number of

scores, ΣðX � X Þ2
N . The symbol of the variance of the population is sigma squared

(σ2). If all the cases are the same value, the variance will equal zero. The larger the
variance value, the more the values are spread out in the distribution.
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We will be using N2 1 as the denominator rather than N since the primary
focus of this book is to use samples to estimate populations. The use of N2 1 is a
more accurate estimate (unbiased estimate) of a population parameter. We do not
know what the population mean is, so the sample values have less variability.
We use the sample mean instead and with N2 1 as a compensation for not
knowing the population mean. This use of N2 1 also is referred to as degrees of
freedom (df ), a practice used in most statistical analyses. As Hays (1963) states,
“Thus we say that there are N2 1 degrees of freedom for a sample variance,
reflecting the fact that only N2 1 deviations are ‘free’ to be any number, but that
given these free values, the last deviation is completely determined” (p. 311). If the
goal of studying a sample is to describe the sample and not to estimate a popu-
lation, then N may be used and not N2 1. The variance is calculated next using
the data from Table 1.1.

s2 ¼ ΣðX � X Þ2
N � 1

¼ 64
5

s2 ¼ 12:80

Standard Deviation of the Sample (s)

The standard deviation of the sample (s) is the square root of the variance. The
symbol for the standard deviation of the population is σ. The standard deviation
is a more useful explanatory measure of variability when compared to the variance
because it is in the same units as the original data. For example, when presenting
the mean and the standard deviation together, they are both in the same metric.

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣðX � X Þ2
N � 1

s

¼
ffiffiffiffiffi
64
5

s

¼ ffiffiffiffiffiffiffiffiffiffiffi
12:80

p

s ¼ 3:58
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Coefficient of Variation (C)

The coefficient of variation (C) is a ratio of the standard deviation divided by the
mean. The coefficient of variation can be used to compare the variability of
different variables as well as the means of the variables. Using the s¼ 3.58 and
X ¼ 49 from the data in Table 1.1, the coefficient of variation is calculated here
as a ratio and as a percentage:

C ¼ s
X

¼ 3:58
49

C ¼ :073
C 3 100 ¼ 7:30%

The coefficient of variation for the DV is 0.073, and converted to a percentage it is
7.30 percent. The standard deviation is approximately 7.30 percent of the mean.

Visual Representations of a Data Set

There aremany charts available to assist researchers inmore fully understanding their
data. Illustrations of a bar chart, histogram, and normal Q-Q plot are presented.

A data set of scores on a dependent variable of depressive symptoms is pre-
sented in a frequency distribution in Table 1.2. There are scores from 145 par-
ticipants and there are no missing data. Hence, the data set has complete scores
and the values in the Percent and Valid Percent columns are the same. The values
in the first column are the scores representing depressive symptoms. For example,
the score of 17 has a frequency of nine scores (9/145¼ 6.2%) in the data set. The
value 17 represents a cumulative percentage of 49.7 percent, which is the closest
value to the 50th percentile rank of the distribution of scores.

This data can be shown as a bar chart (see Figure 1.1). The horizontal line of
the bar chart is called the abscissa or x-axis, and in this example each number
represents a value for depressive symptoms in the data set. The vertical line, also
called the ordinate or y-axis, represents the frequency of scores by participants at
each value for depressive symptoms in the data set. For example, you can see the
most frequently scored value (16) and the least frequently scored values (5, 7, 9,
35) by participants in the sample.
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TABLE 1.2 Frequency Distribution of Scores of Depressive Symptoms

Statistics

DV

N Valid 145

Missing 0

DV

Frequency Percent Valid Percent Cumulative Percent

Valid 5 1 0.7 0.7 0.7

7 1 0.7 0.7 1.4

8 4 2.8 2.8 4.1

9 1 0.7 0.7 4.8

10 7 4.8 4.8 9.7

11 5 3.4 3.4 13.1

12 11 7.6 7.6 20.7

13 6 4.1 4.1 24.8

14 7 4.8 4.8 29.7

15 5 3.4 3.4 33.1

16 15 10.3 10.3 43.4

17 9 6.2 6.2 49.7

18 13 9.0 9.0 58.6

19 2 1.4 1.4 60.0

20 7 4.8 4.8 64.8

21 6 4.1 4.1 69.0

22 4 2.8 2.8 71.7

23 6 4.1 4.1 75.9

24 3 2.1 2.1 77.9

25 4 2.8 2.8 80.7

26 4 2.8 2.8 83.4

27 4 2.8 2.8 86.2

28 3 2.1 2.1 88.3

29 5 3.4 3.4 91.7

30 2 1.4 1.4 93.1

32 7 4.8 4.8 97.9

33 2 1.4 1.4 99.3

35 1 0.7 0.7 100.0

Total 145 100.0 100.0
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A histogram of the data set is presented in Figure 1.2. In a histogram the x-axis
depicts intervals of scores and the y-axis still represents frequencies of scores.
However, the scores on the x-axis are reported as falling within intervals. In this
graph, the intervals are 10-point intervals, so all scores in the data set between 0
and 9 are represented by bars in this interval. Using Table 1.1 for assistance,
the scores by frequencies in the data set interval 0�9 are score 5 (frequency¼ 1
score), score 7 (frequency¼ 1 score), score 8 (frequency¼ 4 scores), and score 9
(frequency¼ 1 score). Therefore, a total of seven scores in the data set are within
the range of 0�9. The total numbers of scores within the intervals are interval
0�9 (seven scores), interval 10�19 (80 scores), interval 20�29 (46 scores), and
interval 30�39 (12 scores).

A histogram of a data set provides the researcher with a quick visual
inspection of the shape of the distribution of scores. For example, we can see

FIGURE 1.1 Bar Chart of Scores of Depressive Symptoms

15

10

5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 32 33 35

Fr
eq

ue
nc

y

DV

DV

5

0

c01 19 June 2012; 13:59:28

12 � CHAPT E R 1



that scores cluster around the mean and there is reasonable symmetry (balance) of
scores on either side of the mean. Also, there appear to be no extreme scores to
the negative side (left) or the positive side (right) of the distribution.

The same histogram of the data set is presented in Figure 1.3 with a normal
curve superimposed on the graph. This provides additional information about
how well the sample distribution of scores fits a normal curve. If the data set
scores were a perfect fit to the normal curve, then the bars would fit fully within
the superimposed normal curve.

An example of a useful plot to assess normality of a data set is called a Q-Q
(quantile-quantile) plot (see Figure 1.4). The Q-Q plot is derived by first sub-
tracting each observed score from the group mean. Then, these residuals

FIGURE 1.2 Histogram of Scores of Depressive Symptoms
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(differences) are plotted against the expected observed scores if the data are from a
normal distribution (Norusis, 2003). Normality exists in the sample distribution of
scores if the points on the Q-Q plot fall on or near the straight line. In this example,
it appears that the data set shows reasonable normality among the scores.

THE NORMAL DISTRIBUTION

The normal distribution (bell curve) is themost studied andwidely used curve in the
field of probability (Tabak, 2005). Many measurements of human activities have
been shown to be normally distributed. A great deal has been discovered about the
normal curve over the past 300 years since Abraham de Moivre formulated a

FIGURE 1.3 Normal Curve Superimposed on Histogram of Scores of
Depressive Symptoms
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mathematical proof of the normal distribution. The normal distribution has useful
properties. If two random variables have a normal distribution, their sum has a
normal distribution. In general, all kinds of sums and differences of normal variables
have normal distributions. So, many statistics derived from normal variates are
themselves normally “distributed” (Salsburg, 2001). The normal distribution has
two parameters (constants): the population mean (μ) and the population standard
deviation (σ). There are many different normal curves that are based on these two
parameters (Snedecor & Cochran, 1967).

Characteristics of the Normal Distribution

The normal distribution has a peak (highest point on the curve), tails (the extreme
left and right points of the curve) and shoulders (the left and right sections of
the curve between the peak and the tails) (see Figure 1.5). The right side of the

FIGURE 1.4 Q-Q Plot of Scores of Depressive Symptoms
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FIGURE 1.5 The Normal Distribution and Standardized Scores

99%

95%

0.13%

�4σ �3σ �2σ �1σ �1σ �2σ �3σ �4σ0

0.13%2.14%13.59% 13.59%34.13%

0.1% 2.3%
2%

1 5

�4.0 �4.0�3.0

20 30 40 50 60 70 80

�3.0�2.0 �2.0�1.0 �1.00

MdQ1 Q3

10 20 30 40 50 60 70 80 90 95 99

15.9%
16%

50.0%
50%

84.1%
84%

97.7%
98%

99.9%

34.13%

F
re

q
ue

nc
y

Standard
Deviations

Percentile
Equivalents

Typical Standard Scores
z-scores

T-scores

CEEB scores

Stanines

Subtests

Deviation IQs

Percent in stanine

Wechsier Scales

Cumulative Percentages
Rounded

�2.58

�1.96

�2.58

�1.96

200

4% 7% 12% 17% 20% 17% 12% 7% 4%

300

1 2 3 4 5 6 7 8 9

400 500 600 700 800

1 4 7 10 13 16 19

55 70 85 100 115 130 145

Percent of cases
under portions of
the normal curve

2.14%

Source: H. D. Seashore, ed., “Methods of Expressing Test Scores,” Test Service Notebook 148, January 1955. Reprinted
from The Psychological Corporation, NCS Pearson, Inc.

c01 19 June 2012; 13:59:29

16 � CHAPT E R 1



curve is also called the positive side of the curve, and the left side is referred to as
the negative side.

The base of the curve is called the abscissa (horizontal axis, x-axis) and sec-
tions off measurements in standard deviation units of constant percentages such
as percentile ranks, z-scores, and T-scores. The height of the normal curve is
called the ordinate (vertical axis, y-axis), which represents the percentage of cases
under portions of the normal curve.

The area within the normal curve is referred to as a density of 100 percent or
a unit of 1.0 for using probability. While the tails on both sides of the normal
curve extend to infinity (N) and never touch the abscissa, 991 percent of
the curve falls within 63 standard deviations of the curve. Most of the area is
in the middle of the curve at the highest point where 68.26 percent is between
61 standard deviation of the normal curve. The percentage of the area under the
curve decreases as the shape of the curve moves toward the tails.

The normal distribution is symmetrical, and each half of the curve is exactly
50 percent density. The mean, median, and mode of the normal curve are the
same, as represented by 0 at the midpoint of the curve. Illustrations of using
the normal curve in descriptive statistical analyses are discussed next.

Descriptive Statistical Applications of the Normal Distribution

We will assess an individual’s measured IQ score compared to the IQ scores of
others who are part of a normative sample of individuals whose scores reflect a
normal curve. Bob has a measured IQ score on a standardized IQ test that is 80.
The population mean of the normative sample is μ¼ 100, and the standard
deviation is σ¼ 15.

A z-score can be used with this information to compare Bob’s score with the
normative sample. A z-score is a standard score that shows the relative standing of
a raw score in a normal distribution. The formula for a z-score is z¼X2 μ/σ, where
X is an individual score, μ is the population mean, and σ is the population standard
deviation. The z-score of Bob’s individual IQ score is z¼ 802 100/15¼�1.33.
One can visualize where z¼�1.33 is placed on the normal curve in Figure 1.5.

Next we will find the percentile rank of Bob’s z-score¼�1.33 (raw score of
80). A percentile rank is the score that indicates what percentage of persons being
measured fall equal to or below the particular score. The exact percentages in the
normal curve associated with z-scores are found using an online statistics calculator.
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1. Go to www.danielsoper.com, where there are several free statistics calculators.

2. On the home website. click on Statistics Calculator. scroll down and click
on the Normal Distribution button. click on the Cumulative Area Under the
Normal Curve Calculator.

3. Type in Bob’s z-score of �1.33. click on the Calculate button. the
Cumulative area: is .09175914.

If you take .09175914 times 100 or move the decimal two places to the right,
you obtain 9.175914, which is approximately 9.18%. So a z-score¼�1.33
indicates that equal to or less than 9.18 percent of the norm group obtain an IQ
score of 80, when the mean is 100 and the standard deviation is 15. Bob’s
percentile rank is 9.18.

In another example, Jean scored 105 on the same IQ test. Jean’s z-score¼
1052 100/15¼1.33. A z-score¼1.33 is to the right of the center point mean.

1. Go to www.danielsoper.com, where there are several free statistics calculators.

2. On the home website. click on Statistics Calculator. scroll down and click
on the Normal Distribution button. click on the Cumulative Area Under the
Normal Curve Calculator.

3. Type in Jean’s z-score of .33. click on the Calculate button. the Cumu-
lative area: is .62930002.

If you take .62930002 times 100 or move the decimal place two places to
the right, you obtain 62.930002, which is approximately 62.93 percent. So a
z-score¼ .33 indicates that equal to or less than 62.93 percent of the norm group
obtain an IQ score of 105, when the mean is 100 and the standard deviation
is 15. Jean’s IQ score of 105 represents a percentile rank of 62.93.

Inferential Statistical Applications of the Normal Distribution

We just showed how the normal curve can be used in a descriptive statistical
analysis. The normal curve also plays a key role in inferential statistics, which
involves inferring information about samples to generalize to populations.
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Inferential probability statements made about populations’ characteristics
(parameters) from analysis of sample characteristics (statistics) is statistical
inference. Parameters are any measurable characteristic of a population, and
statistics are any measurable characteristic of a sample. Inferential statistics
are estimators in the sense that they estimate parameters. When a random
sample is selected from a population with the purpose to understand the
population, there is likely to be a difference between the population mean (μ)
and the sample mean (X ). The difference between a population parameter and
a sample statistic is sampling error. If you were able to select an infinite number
of sample means from a population, the mean of the sample means would
equal the population mean. The infinite number of sample means forms a
sampling distribution of the mean that is distributed as a normal curve. This is
the foundation of one of the most important theorems in statistics. The central
limit theorem says that “whatever the shape of the frequency distribution of the
original population of X ’s, the frequency distribution of X in repeated random
samples of size n tends to become normal as n increases” (Snedecor & Cochran,
1967, p. 51). Thus, all that is known about the normal distribution can be
applied to the sampling distribution of the mean, including the probability of
obtaining a mean by chance and testing hypotheses. The z-test is used to test
hypotheses when the parameters (μ and σ) are known. A sample mean can be
compared to these parameters to see if it belongs to that population. One use of
a z-test is in situations using test norms where σ and μ are identified in the
standardization process.

For example, a researcher wants to determine if a sample of adults who have a
learning disability in math would have an average full-scale (FS) IQ score that is
different from the normative sample of the Wechsler Adult Intelligence Scale�IV
(WAIS-IV). The WAIS-IV norms are: mean¼ 100 and standard deviation¼ 15.
Since the researcher is not indicating a direction as to whether the average FS IQ
score will be higher or lower than the normative sample, it is referred to as
nondirectional and we can designate the alternative hypothesis as Ha: μ 6¼ 100. The
null hypothesis is tested, and it is written as H0: μ¼ 100. The population mean
symbol (μ) is used because we are using the sample mean as an estimator of the
population mean in the hypothesis.

A random sample of 50 adults who have a learning disability in math have a
mean FS IQ score of 86 on the WAIS-IV. We want to test the null hypothesis
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that 50 adults with a learning disability in math are a random sample from
a population of adults represented by the standardized norm sample of the
WAIS-IV.

A criterion (critical value) is identified to compare to a calculated z-test sta-
tistic before calculating the z-statistic. We will use a commonly used alpha level of
α¼ .05. This is a two-tailed test since there is no specification that the outcome
will show that the sample mean is higher or lower than the norm mean. We will
therefore be using both the left (negative) and right (positive) sides of the normal
curve to find significance. In this case, if the z-statistic produces a negative value,
then we would look in the negative side of the distribution; and if a positive value
is found, then we would look in the positive side. Since we are using α¼ .05 and
the alternative hypothesis is nondirectional, creating a two-tailed test, we need to
distribute half of the alpha (.025) in each tail of the normal curve. We are going
to find a z critical value that is located on the abscissa (horizontal axis) of the
normal curve where .025 of the curve density falls beyond at either end of
the normal curve. We are going to use an online calculator to find the z critical
value at .025 in the left tail and right tail of the normal curve using the following
directions.

Go to www.danielsoper.com. click on Statistics Calculators. scroll down
and click on Normal Distribution. click on Standard Normal Disribution
z-score Calculator. beside Cumulative probability level: type 0.025.
click the Calculate! button and the answer is z-score: �1.95996398.

Rounded, the z-value is �1.96, corresponding to the α¼ .025 on the neg-
ative or left side of the curve. The other half of the α¼ .05 is on the positive or
right side of the normal curve since it is a two-tailed test. So, if you followed the
same online calculator directions but typed in .975 (12 .025), you would get a
rounded11.96 that is a positive value. Thus, the critical value that we will use to
compare to the calculated z-statistic is zcv¼61.96 (α¼ .05, two-tailed). The
formula and calculations of the z-statistic are presented next. The numerator of
the formula σ=

ffiffiffi
n

p
is the standard error of the mean that is the index reflecting the

sampling distribution of the mean.
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z-statistic ¼ X � μ
σ=

ffiffiffi
n

p

¼ 86� 100

15=
ffiffiffiffiffi
50

p

¼ �14
15=7:07

¼ �14
15=7:07

¼ �14
2:12

z-statistic ¼ �6:60

The z-statistic¼�6.60 is greater than zcv¼�1.96, so there is a significant
difference in FS IQ between the sample mean (86) of adults who have a learning
disability and the mean (100) of the normative sample. The 50 adults with a
learning disability in math are not a random sample from a population of adults
represented by the standardized norm sample of the WAIS-IV.

One-Sample t-Test (Student’s t-Test)

The z-statistic is not often used since we rarely know the population parameters.
A more commonly used statistic that evolved from the z-statistic is used more
often and is known as the one-sample t-test (Student’s t-test). The originator of
the t-test was William Gossett, who worked for the Guinness Brewing Company.
He used the pseudonym Student when he wrote the seminal scientific article titled
“The Probable Error of the Mean,” published in the 1908 issue of Biometrika
(Student, 1908). Gossett had to use the pseudonym Student since, to protect
proprietary interests, it was against company policy for employees to publish
studies about Guinness.

Gossett developed a new probability distribution called the t-distribution that
he assumed had an initial normal distribution. In large samples the t-distribution is
nearly normal, but it is less so when the sample is less than 30. The t-distribution
works well with all sample sizes as long as statistical assumptions are present. Not
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only is the t distribution useful for small samples, but the sample standard
deviation and mean can also be used to estimated population parameters.

The one sample t-statistic is very similar to the z-test except that the sample
standard deviation (s) is substituted for the known σ and the t-distribution is used
to identify probability estimates to compare to obtained statistical values.

For example, a school district wants to assess whether third graders in a
particular school perform in reading similarly to all third graders in the school
district. The average score on a reading achievement test of third graders in the
school district is 105. The sample of 25 third graders from the particular school
had an average score of X ¼ 124 and standard deviation of s¼ 13. The one-
sample t-test is used next to test the null hypothesis that H0: μ¼ 105 at α¼ .01.
The alternative hypothesis is nondirectional, Ha: μ 6¼ 105. First, we will obtain a
critical value using an online calculator to compare to the calculated one-sample t-
test. The degrees of freedom N2 1 (24) and alpha (α¼ .01) are needed to
identify the critical value.

Go to www.danielsoper.com. click on Statistics Calculators. scroll down
and click on t-Distribution. click on Student t-Value Calculator. type
in 24 beside Degrees of freedom:. click 0.01 next to Probability level:.
click on Calculate! and the answer is t-value (two-tailed): 62.79693951.

Rounding the t critical value for the two-tailed test is 2.797. Next, the one-
sample t-test is calculated.

t ¼ X � μ
s=

ffiffiffiffiffi
N

p

¼ 124� 105

13=
ffiffiffiffiffi
25

p

¼ 19
13=5

¼ 19
2:6

t ¼ 7:31

The obtained t-value¼ 7.31 is larger than the critical value¼ 2.797, so we
reject the null hypothesis ( p, .01). We conclude that 25 third graders from a
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particular school had a significantly higher average score on reading achievement
when compared to the average reading achievement score of all school district
third-grade students.

The t-distribution also is used for two commonly used statistics to compare two
means for differences, which are the dependent t-test and the independent t-test.

Dependent t-Test

A comparison is made between two sets of dependent scores when a dependent
t-test (paired-sample t-test) is used. The pairs of scores between the two sets are
linked together. A dependent t-test is used in the following four situations.

1. A comparison of the pretest and posttest scores of the same participants.

2. A comparison of the scores of one group of participants with another group
of participants who are matched on one or more extraneous variables.

3. A comparison of the scores of the same group of participants under two
different conditions.

4. A comparison of the scores of naturally occurring correlated pairs, like twins.

We will illustrate the use of the dependent t-test related to research that
compares pretest scores with posttest scores on self-compassion from the same
16 participants who received a mindfulness treatment program. Self-compassion
is measured by the Self-Compassion Scale (SCS; Neff, 2003), and high scores
reflect higher self-compassion. The alternative hypothesis is Ha: μpreSCS 6¼
μpostSCS and the null hypothesis to be tested is H0: μpreSCS¼ μpostSCS.

We start by obtaining a t critical value to compare to an obtained t-value
using the online calculator.

Go to www.danielsoper.com. click on Statistics Calculators. scroll down
and click on t-Distribution. click on Student t-Value Calculator. type in
15 beside Degrees of freedom:. click 0.05 next to Probability level:. click
on Calculate! and the answer is t-value (two-tailed): 62.13144955.

The rounded value is tCV¼62.131 using an α¼ .05 with 15 df (Npairs2 1,
162 1¼ 15). The scores and difference measures used for the analysis are in
Table 1.3.
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Dependent t-test ¼ Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΣD2 � ðΣDÞ2

N

N ðN � 1Þ

vuut

¼ �26:13ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15,334� ð�418Þ2

16

16ð16� 1Þ

vuut

¼ �26:13ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15,334� 10,920

240

s

¼ �26:13ffiffiffiffiffiffiffiffiffiffiffi
18:39

p

¼ �26:13
4:29

t ¼ �6:09

TABLE 1.3 Scores and Difference Measures for Dependent t Analysis

ID Number Pretest Posttest Difference (D) D2

1 65 114 �49 2,401

2 106 120 �14 196

3 45 74 �29 841

4 116 129 �13 169

5 75 105 �30 900

6 46 97 �51 2,601

7 54 95 �41 1,681

8 79 103 �24 576

9 55 109 �54 2,916

10 99 101 �2 4

11 52 94 �42 1,764

12 73 76 �3 9

13 51 77 �26 676

14 88 98 �10 100

15 76 86 �10 100

16 68 88 �20 400

Xpre ¼ 71:75 Xpost ¼ 97:88
D ¼ 71:75� 97:88
D ¼ �26:13

ΣD¼�418 ΣD2¼ 15,334
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The calculated dependent t¼�6.09 is greater than the tCV 6 2.131, so the
null hypothesis is rejected and we conclude that there is a significant difference
between the pretest and posttest self-compassion scores. The pretest X pre ¼ 71:75

and the posttest X post ¼ 97:88. Since a high score represents higher self-compassion,
we conclude that there was a significant gain in self-compassion following the
mindfulness treatment.

Independent t-Test

The independent t-test is used to test if two sample means are significantly dif-
ferent from each other from two independent samples. This is a between group
analysis. We are testing whether the two means from independent samples
are from different populations. The sample means as estimators of the popula-
tion parameters based upon the sampling distribution of differences between
means.

An independent t-test analysis will be demonstrated comparing a randomly
assigned group of 16 participants who received a psychotherapy intervention on
their changes in thought suppression to a control group (n¼ 16) who received
the treatment later. Thought suppression is measured using the White Bear
Suppression Inventory (WBSI) (Wegner & Zanakos, 1994), and high scores
represent higher perceived thought suppression. The alternative hypothesis is Ha:
μpschotherapy 6¼ μcontrol and the null hypothesis is H0: μpsychotherapy¼ μcontrol.
The mean and variance of WBSI scores and group sizes for the psychotherapy
group of participants were X ¼ 39:75, s2¼ 95.67, n¼ 16, and for the control
group X ¼ 53:06, s2¼ 130.73, n¼ 16.

First, we obtain a t critical value.

Go to www.danielsoper.com. click on Statistics Calculators. scroll down
and click on t-Distribution. click on Student t-Value Calculator. type in
30 beside Degrees of freedom:. click 0.01 next to Probability level:. click
on Calculate! and the answer is t-value (two-tailed): 62.74999566.

The rounded value is tCV¼62.750 using an α¼ .01 with 30 df ([n12 1]1
[n22 1], [162 1]1 [162 1]¼ 30).
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Independent t-test ¼ X 1 � X 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

þ s22
n2

s

¼ 39:75� 53:06ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
95:67
16

þ 130:73
16

r

¼ �13:31ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:98þ 8:17

p

¼ �13:31
3:76

t ¼ �3:54

The calculated independent t¼�3.54 is greater than the tCV¼62.750, so
we reject the null hypothesis of no differences. The treatment group showed
significantly lower thought suppression scores than control group participants
who did not receive the treatment ( p, .01).

We used equal-sized groups in this example of an independent t-test.

A pooled variance, S2p ¼ S21 ðn1 � 1Þ þ S22 ðn2 � 1Þ
n1 þ n2 � 2 , is used if the sizes of groups are

unequal and the independent t formula becomes t ¼ X 1�X 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2p

1
n1

þ 1
n2

� �r .

SUMMARY

This chapter has presented the purpose of the book and information related to
the foundations of research and statistics. Several commonly used statistics are
covered in the book that are linked to the normal distribution, including: (1) one-
way analysis of variance, (2) repeated-measures analysis of variance, (3) factorial
analysis of variance, (4) analysis of covariance, and (5) correlation coefficient and
multiple regression analysis. Nonparametric statistics are covered later in the book
that have less distribution requirements and are referred to as distribution-free
statistics. The nonparametric statistics that are covered are Kruskal-Wallis one-
way analysis of variance, Mann-Whitney U statistic, Friedman’s rank test for k
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correlated samples, and the Wilcoxon’s matched-pairs signed-ranks test. Each
statistic is demonstrated using the hypothesis-testing process that is the subject of
the next chapter.

PROBLEM ASSIGNMENT

Review information was presented in this chapter related to measures of central
tendency, variability, visual representations of data, and the normal distribution.
Moreover, applications of descriptive and inferential statistics of the normal
distribution were illustrated. Review problems are presented on the companion
website for you to practice on. Use the examples presented in this chapter to
guide you as you complete the assignment. Your instructor will evaluate your
completed worksheet when it is finished.

KEY TERMS

abscissa

active independent variable

alpha level

alternative hypothesis

attribute independent variable

bar chart

bimodal

categorical variable

central limit theorem

classification variable

coefficient of variation (C)

continuous scale

continuous-interval scale

continuous-ratio scale

criterion variable (CV)

critical value

degrees of freedom (df)

dependent t-test

dependent variable (DV)

discrete scale

discrete-nominal scale

discrete-ordinal scale

extraneous variable (EV)

frequency distribution

histogram

independent t-test

independent variable (IV)

inferential statistics

mean (X)

mean deviation scores
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measures of central tendency

measures of variability (dispersion)

of scores

median (Mdn )

mode (Mo)

negative side

nondirectional

normal distribution

null hypothesis

one-sample t-test (Student’s t-test)

operational definition (OD)

ordinate

parameters

peak

percentile rank

positive side

predictor variable (PV)

Q-Q (quantile-quantile) plot

range

residuals

sampling distribution

of the mean

sampling error

shoulders

standard deviation of the

sample (s)

standard error of the mean

statistics

sum of squares

symmetry

tails

two-tailed test

unbiased estimate

unimodal

variance of the sample (s2)

x-axis

y-axis

z-score
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