
1
STATIC OPTIMIZATION

In this chapter we discuss optimization when time is not a parameter. The discus-
sion is preparatory to dealing with time-varying systems in subsequent chapters.
A reference that provides an excellent treatment of this material is Bryson and
Ho (1975), and we shall sometimes follow their point of view.

Appendix A should be reviewed, particularly the section that discusses matrix
calculus.

1.1 OPTIMIZATION WITHOUT CONSTRAINTS

A scalar performance index L(u) is given that is a function of a control or
decision vector u ∈ Rm. It is desired to determine the value of u that results in
a minimum value of L(u).

We proceed to solving this optimization problem by writing the Taylor series
expansion for an increment in L as

dL = LT
u du + 1

2
duTLuu du + O(3), (1.1-1)

where O(3) represents terms of order three. The gradient of L with respect to u

is the column vector
Lu

�= ∂L

∂u
, (1.1-2)

and the Hessian matrix is

Luu = ∂2L

∂u2
. (1.1-3)

1

CO
PYRIG

HTED
 M

ATERIA
L



2 STATIC OPTIMIZATION

Luu is called the curvature matrix . For more discussion on these quantities, see
Appendix A.

Note. The gradient is defined throughout the book as a column vector, which
is at variance with some authors, who define it as a row vector.

A critical or stationary point is characterized by a zero increment dL to first
order for all increments du in the control. Hence,

Lu = 0 (1.1-4)

for a critical point.
Suppose that we are at a critical point, so Lu = 0 in (1.1-1). For the critical

point to be a local minimum, it is required that

dL = 1

2
duTLuu du + O(3) (1.1-5)

is positive for all increments du . This is guaranteed if the curvature matrix Luu

is positive definite,
Luu > 0. (1.1-6)

If Luu is negative definite, the critical point is a local maximum; and if Luu is
indefinite, the critical point is a saddle point. If Luu is semidefinite, then higher
terms of the expansion (1.1-1) must be examined to determine the type of critical
point.

The following example provides a tangible meaning to our initial mathematical
developments.

Example 1.1-1. Quadratic Surfaces

Let u ∈ R2 and

L(u) = 1

2
uT

[
q11 q12
q12 q22

]
u + [s1 s2] u (1)

�= 1

2
uTQu + STu. (2)

The critical point is given by

Lu = Qu + S = 0 (3)

and the optimizing control is

u∗ = −Q−1S. (4)

By examining the Hessian
Luu = Q (5)

one determines the type of the critical point.
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The point u* is a minimum if Luu > 0 and it is a maximum if Luu < 0. If |Q| < 0,
then u* is a saddle point. If |Q| = 0, then u* is a singular point and in this case Luu

does not provide sufficient information for characterizing the nature of the critical point.
By substituting (4) into (2) we find the extremal value of the performance index to be

L∗ �=L(u∗) = 1

2
STQ−1QQ−1S − STQ−1S

= −1

2
STQ−1S. (6)

Let

L = 1

2
uT

[
1 1
1 2

]
u + [0 1] u. (7)

Then

u∗ = −
[
2 −1
1 1

] [
0
1

]
=

[
1

−1

]
(8)

is a minimum, since Luu > 0. Using (6), we see that the minimum value of L is L∗ = − 1
2 .

FIGURE 1.1-1 Contours and the gradient vector.
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The contours of the L(u) in (7) are drawn in Fig. 1.1-1, where u = [u1 u2]T. The
arrows represent the gradient

Lu = Qu + S =
[

u1 + u2

u1 + 2u2 + 1

]
. (9)

Note that the gradient is always perpendicular to the contours and pointing in the direction
of increasing L(u).

We shall use an asterisk to denote optimal values of u and L when we want to be
explicit. Usually, however, the asterisk will be omitted. �

Example 1.1-2. Optimization by Scalar Manipulations

We have discussed optimization in terms of vectors and the gradient. As an alternative
approach, we could deal entirely in terms of scalar quantities. To demonstrate, let

L(u1, u2) = 1

2
u2
1 + u1u2 + u2

2 + u2, (1)

where u1 and u2 are scalars. A critical point is present where the derivatives of L with
respect to all arguments are equal to zero:

∂L

∂u1
= u1 + u2 = 0,

∂L

∂u2
= u1 + 2u2 + 1 = 0. (2)

Solving this system of equations yields

u1 = 1, u2 = −1; (3)

thus, the critical point is (1, −1). Note that (1) is an expanded version of (7) in
Example 1.1-1, so we have just derived the same answer by another means.

Vector notation is a tool that simplifies the bookkeeping involved in dealing with
multidimensional quantities, and for that reason it is very attractive for our purposes. �

1.2 OPTIMIZATION WITH EQUALITY CONSTRAINTS

Now let the scalar performance index be L(x , u), a function of the control vector
u ∈ Rm and an auxiliary (state) vector x ∈ Rn. The optimization problem is
to determine the control vector u that minimizes L(x , u) and at the same time
satisfies the constraint equation

f (x, u) = 0. (1.2-1)
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The auxiliary vector x is determined for a given u by the relation (1.2-1). For a
given u, (1.2-1) defines a set of n scalar equations.

To find necessary and sufficient conditions for a local minimum that also
satisfies f (x, u) = 0, we proceed exactly as we did in the previous section, first
expanding dL in a Taylor series and then examining the first- and second-order
terms. Let us first gain some insight into the problem, however, by considering
it from three points of view (Bryson and Ho 1975, Athans and Falb 1966).

Lagrange Multipliers and the Hamiltonian

Necessary Conditions At a stationary point, dL is equal to zero in the first-order
approximation with respect to increments du when df is zero. Thus, at a critical
point the following equations are satisfied:

dL = LT
u du + LT

x dx = 0 (1.2-2)

and

df = fu du + fx dx = 0. (1.2-3)

Since (1.2-1) determines x for a given u , the increment dx is determined
by (1.2-3) for a given control increment du . Thus, the Jacobian matrix fx is
nonsingular and one can write

dx = −f −1
x fu du. (1.2-4)

Substituting this into (1.2-2) yields

dL = (
LT

u − LT
xf −1

x fu

)
du. (1.2-5)

The derivative of L with respect to u holding f constant is therefore given by

∂L

∂u

∣∣∣∣
df=0

= (
LT

u − LT
xf −1

x fu

)T = Lu − f T
u f −T

x Lx, (1.2-6)

where f −T
x means (f −1

x )T. Note that

∂L

∂u

∣∣∣∣
dx=0

= Lu. (1.2-7)

Thus, for dL to be zero in the first-order approximation with respect to arbitrary
increments du when df = 0, we must have

Lu − f T
u f −T

x Lx = 0. (1.2-8)
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This is a necessary condition for a minimum. Before we derive a sufficient
condition, let us develop some more insight by examining two more ways to
obtain (1.2-8). Write (1.2-2) and (1.2-3) as

[
dL

df

]
=

[
LT

x LT
u

fx fu

] [
dx

du

]
= 0. (1.2-9)

This set of linear equations defines a stationary point, and it must have a solution
[dxT duT]T. The critical point is obtained only if the (n + 1) × (n + m) coefficient
matrix has rank less than n + 1. That is, its rows must be linearly dependent so
there exists an n vector λ such that

[1 λT]

[
LT

x LT
u

fx fu

]
= 0. (1.2-10)

Then
LT

x + λTfx = 0, (1.2-11)

LT
u + λTfu = 0. (1.2-12)

Solving (1.2-11) for λ gives

λT = −LT
xf −1

x , (1.2-13)

and substituting in (1.2-12) again yields the condition (1.2-8) for a critical point.
Note. The left-hand side of (1.2-8) is the transpose of the Schur complement

of LT
u in the coefficient matrix of (1.2-9) (see Appendix A for more details).

The vector λ ∈ Rn is called a Lagrange multiplier , and it will turn out to be
an extremely useful tool for us. To give it some additional meaning now, let
du = 0 in (1.2-2), (1.2-3) and eliminate dx to get

dL = LT
xf −1

x df. (1.2-14)

Therefore,
∂L

∂f

∣∣∣∣
du=0

= (
LT

xf −1
x

)T = −λ, (1.2-15)

so that −λ is the partial of L with respect to the constraint holding the control
u constant. It shows the effect on the performance index of holding the control
constant when the constraints are changed.

As a third method of obtaining (1.2-8), let us develop the approach we shall use
for our analysis in subsequent chapters. Include the constraints in the performance
index to define the Hamiltonian function

H(x, u, λ) = L(x, u) + λTf (x, u), (1.2-16)
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where λ ∈ Rn is an as yet undetermined Lagrange multiplier. To determine x, u ,
and λ, which result in a critical point, we proceed as follows.

Increments in H depend on increments in x, u , and λ according to

dH = HT
x dx + HT

u du + HT
λ dλ. (1.2-17)

Note that
Hλ = ∂H

∂λ
= f (x, u), (1.2-18)

so suppose we choose some value of u and demand that

Hλ = 0. (1.2-19)

Then x is determined for the given u by f (x , u) = 0, which is the constraint
relation. In this situation the Hamiltonian equals the performance index:

H |f =0 = L. (1.2-20)

Recall that if f = 0, then dx is given in terms of du by (1.2-4). We should rather
not take into account this coupling between du and dx , so it is convenient to
choose λ so that

Hx = 0. (1.2-21)

Then, by (1.2-17), increments dx do not contribute to dH . Note that this yields
a value for λ given by

∂H

∂x
= Lx + f T

x λ = 0 (1.2-22)

or (1.2-13).
If (1.2-19) and (1.2-21) hold, then

dL = dH = HT
u du, (1.2-23)

since H = L in this situation. To achieve a stationary point, we must therefore
finally impose the stationarity condition

Hu = 0. (1.2-24)
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In summary, necessary conditions for a minimum point of L(x , u) that also
satisfies the constraint f (x , u) = 0 are

∂H

∂λ
= f = 0, (1.2-25a)

∂H

∂x
= Lx + f T

x λ = 0, (1.2-25b)

∂H

∂u
= Lu + f T

u λ = 0, (1.2-25c)

with H (x , u , λ) defined by (1.2-16). The way we shall often use them, these three
equations serve to determine x , λ, and u in that respective order. The last two of
these equations are (1.2-11) and (1.2-12). In most applications determining the
value of λ is not of interest, but this value is required, since it is an intermediate
variable that allows us to determine the quantities of interest, u , x , and the
minimum value of L.

The usefulness of the Lagrange-multiplier approach can be summarized as
follows. In reality dx and du are not independent increments, because of (1.2-4).
By introducing an undetermined multiplier λ, however, we obtain an extra degree
of freedom, and λ can be selected to make dx and du behave as if they were
independent increments. Therefore, setting independently to zero the gradients
of H with respect to all arguments as in (1.2-25) yields a critical point. By
introducing Lagrange multipliers, the problem of minimizing L(x , u) subject
to the constraint f (x , u) = 0 is replaced with the problem of minimizing the
Hamiltonian H (x , u , λ) without constraints .

Sufficient Conditions Conditions (1.2-25) determine a stationary (critical)
point. We are now ready to derive a test that guarantees that this point is a
minimum. We proceed as we did in Section 1.1.

Write Taylor series expansions for increments in L and f as

dL = [
LT

x LT
u

] [
dx

du

]
+ 1

2

[
dxT duT] [

Lxx Lxu

Lux Luu

] [
dx

du

]
+ O(3), (1.2-26)

df = [fx fu]

[
dx

du

]
+ 1

2

[
dxT duT] [

fxx fxu

fux fuu

] [
dx

du

]
+ O(3), (1.2-27)

where

fxu
�= ∂2f

∂u dx

and so on. (What are the dimensions of fxu?) To introduce the Hamiltonian, use
these equations to see that

[
1 λT] [

dL
df

]
= [

HT
x HT

u

] [
dx

du

]
+ 1

2

[
dxT duT] [

Hxx Hxu

Hux Huu

] [
dx

du

]
+ O(3).

(1.2-28)
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A critical point requires that f = 0, and also that dL is zero in the first-order
approximation for all increments dx, du . Since f is held equal to zero, df is also
zero. Thus, these conditions require Hx = 0 and Hu = 0 exactly as in (1.2-25).

To find sufficient conditions for a minimum, let us examine the second-order
term. First, it is necessary to include in (1.2-28) the dependence of dx on du .
Hence, let us suppose we are at a critical point so that Hx = 0, Hu = 0, and
df = 0. Then by (1.2-27)

dx = −f −1
x fu du + O(2). (1.2-29)

Substituting this relation into (1.2-28) yields

dL = 1

2
duT

[−f T
u f −T

x I
] [

Hxx Hxu

Hux Huu

] [−f −1
x fu

I

]
du + O(3). (1.2-30)

To ensure a minimum, dL in (1.2-30) should be positive for all increments du .
This is guaranteed if the curvature matrix with constant f equal to zero

Lf
uu

�= Luu|f = [−f T
u f −T

x I
] [

Hxx Hxu

Hux Huu

] [−f −1
x fu

I

]

= Huu − f T
u f −T

x Hxu − Huxf
−1
x fu + f T

u f −T
x Hxxf

−1
x fu (1.2-31)

is positive definite. Note that if the constraint f (x, u) is identically zero for all
x and u , then (1.2-31) reduces to Luu in (1.1-6). If (1.2-31) is negative definite
(indefinite), then the stationary point is a constrained maximum (saddle point).

Examples

To gain a feel for the theory we have just developed, let us consider some
examples. The first example is a geometric problem that allows easy visualization,
while the second involves a quadratic performance index and linear constraint.
The second example is representative of the case that is used extensively in
controller design for linear systems.

Example 1.2-1. Quadratic Surface with Linear Constraint

Suppose the performance index is as given in Example 1.1-1:

L(x, u) = 1

2
[x u]

[
1 1
1 2

] [
x

u

]
+ [0 1]

[
x

u

]
, (1)

where we have simply renamed the old scalar components u1, u2 as x, u , respectively.
Let the constraint be

f (x, u) = x − 3 = 0. (2)
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The Hamiltonian is

H = L + λTf = 1

2
x2 + xu + u2 + u + λ(x − 3), (3)

where λ is a scalar. The conditions for a stationary point are (1.2-25), or

Hλ = x − 3 = 0, (4)

Hx = x + u + λ = 0, (5)

Hu = x + 2u + 1 = 0. (6)

Solving in the order (4), (6), (5) yields x = 3, u = −2, and λ = −1. The stationary point
is therefore

(x, u)∗ = (3,−2). (7)

To verify that (7) is a minimum, find the constrained curvature matrix (1.2-31):

Lf
uu = 2. (8)

FIGURE 1.2-1 Contours of L(x, u), and the constraint f (x, u).
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This is positive, so (7) is a minimum. The contours of L(x, u) and the constraint (2) are
shown in Fig. 1.2-1.

It is worthwhile to make an important point. The gradient of f (x, u) in the (x, u)
plane is [

fx

fu

]
=

[
1

0

]
, (9)

as shown in Fig. 1.2-1. The gradient of L(x, u) in the plane is[
Lx

Lu

]
=

[
x + u

x + 2u + 1

]
(10)

(cf. (9) in Example 1.1-1). At the constrained minimum (3, −2), this has a value of[
Lx

Lu

]
=

[
1
0

]
. (11)

Note that the gradients of f and L are parallel at the stationary point. This means that the
constrained minimum occurs where the constraint (2) is tangent to an elliptical contour
of L. Moving in either direction along the line f = 0 will then increase the value of L. The
value of L at the constrained minimum is found by substituting x = 3, u = −2 into (1)
to be L* = 0.5. Since λ = −1, holding u constant at −2 and changing the constraint by
df (i.e., moving the line in Fig. 1.2-1 to the right by df ) will result in an increase in the
value of L(x, u) of dL = −λ df = df (see (1.2-15)). �

Example 1.2-2. Quadratic Performance Index with Linear Constraint

Consider the quadratic performance index

L(x, u) = 1

2
xTQx + 1

2
uTRu (1)

with linear constraint

f (x, u) = x + Bu + c = 0, (2)

where x ∈ Rn , u ∈ Rm , f ∈ Rn , λ ∈ Rn , Q , R, and B are matrices, and c is an n vector.
We assume Q > 0 and R > 0 (with both symmetric). This static linear quadratic (LQ)
problem will be further generalized in Chapters 2 and 3 to apply to time-varying systems.

The contours of L(x , u) are hyperellipsoids, and f (x , u) = 0 defines a hyperplane
intersecting them. The stationary point occurs where the gradients of f and L are parallel.

The Hamiltonian is

H = 1

2
xTQx + 1

2
uTRu + λT(x + Bu + c) (3)

and the conditions for a stationary point are

Hλ = x + Bu + c = 0, (4)

Hx = Qx + λ = 0, (5)

Hu = Ru + BTλ = 0. (6)
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To solve these, first use the stationarity condition (6) to find an expression for u in terms
of λ,

u = −R−1BTλ. (7)

According to (5)
λ = −Qx, (8)

and taking into account (4) results in

λ = QBu + Qc. (9)

Using this in (7) yields

u = −R−1BT(QBu + Qc) (10)

or
(I + R−1BTQB)u = −R−1BTQc,

(R + BTQB)u = −BTQc. (11)

Since R > 0 and BTQB > 0, we can invert R + BTQB and so the optimal control is

u = −(R + BTQB)−1BTQc. (12)

Using (12) in (4) and (9) gives the optimal-state and multiplier values of

x = −(I − B(R + BTQB)−1BTQ)c, (13)

λ = (Q − QB(R + BTQB)−1BTQ)c. (14)

By the matrix inversion lemma (see Appendix A)

λ = (Q−1 + BR−1BT)−1c (15)

if |Q| �= 0.
To verify that control (12) results in a minimum, use (1.2-31) to determine that the

constrained curvature matrix is

Lf
uu = R + BTQB, (16)

which is positive definite by our restrictions on R and Q . Using (12) and (13) in (1) yields
the optimal value

L∗ = 1

2
cT

[
Q − QB(R + BTQB)−1BTQ

]
c, (17)

L∗ = 1

2
cTλ, (18)

so that
∂L∗

∂c
= λ. (19)

�
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Effect of Changes in Constraints

Equation (1.2-28) expresses the increment dL in terms of df, dx , and du . In the
discussion following that equation we let df = 0, found dx in terms of du ,
and expressed dL in terms of du . That gave us conditions for a stationary point
(Hx = 0 and Hu = 0) and led to the second-order coefficient matrix L

f
uu in

(1.2-31), which provided a test for the stationary point to be a constrained
minimum.

In this subsection we are interested in dL as a function of an increment df in
the constraint. We want to see how the performance index L changes in response
to changes in the constraint f if we remain at a stationary point . We are therefore
trying to find stationary points near a given stationary point. See Fig. 1.2-2,
which shows how the stationary point moves with changes in f .

At the stationary point (u , x )* defined by f (x , u) = 0, the conditions
H λ = 0, Hx = 0, and Hu = 0 are satisfied. If the constraint changes by an
increment so that f (x , u) = df , then the stationary point moves to (u + du ,
x + dx ). The partials in (1.2-25) change by

dHλ = df = fx dx + fu du, (1.2-32a)

dHx = Hxx dx + Hxu du + f T
x dλ, (1.2-32b)

dHu = Hux dx + Huu du + f T
u dλ. (1.2-32c)

FIGURE 1.2-2 Locus of stationary points as the constraint varies.



14 STATIC OPTIMIZATION

In order that we remain at a stationary point, the increments dHx and dHu

should be zero. This requirement imposes certain relations between the changes
dx, du , and df , which we shall use in (1.2-28) to determine dL as a function
of df .

To find dx and du as functions of df with the requirement that we remain at
an optimal solution, use (1.2-32a) to find

dx = f −1
x df − f −1

x fu du, (1.2-33)

and set (1.2-32b) to zero to find

dλ = −f −T
x (Hxx dx + Hxu du). (1.2-34)

Now use these relations in (1.2-32c) to obtain

dHu = (
Huu − Huxf

−1
x fu − f T

u f −T
x Hxu + f T

u f −T
x Hxxf

−1
x fu

)
du

+ (
Hux − f T

u f −T
x Hxx

)
f −1

x df = 0

so that

du = − (
Lf
uu

)−1 (
Hux − f T

u f −T
x Hxx

)
f −1

x df
�= −C df. (1.2-35)

Using (1.2-35) in (1.2-33) yields

dx =
[
I + f −1

x fu

(
Lf
uu

)−1 (
Hux − f T

u f −1
x Hxx

)]
f −1

x df

= f −1
x (I + fuC) df. (1.2-36)

Equations (1.2-35) and (1.2-36) are the required expressions for the increments
in the stationary values of control and state as functions of df . If |Lf

uu| �= 0, then
dx and du can be determined in terms of df , and the existence of neighboring
optimal solutions as f varies is guaranteed.

To determine the increment dL in the optimal performance index as a function
of df , substitute (1.2-35) and (1.2-36) into (1.2-28), using Hx = 0, dHu = 0,
since we began at a stationary point (u , x )*. The result is found after some work
to be

dL = −λT df + 1

2
dfT

(
f −T

x Hxxf
−1
x − CTLf

uuC
)
df + O(3). (1.2-37)

From this we see that the first and second partial derivatives of L*(x , u) with
respect to f (x, u) under the restrictions dHx = 0, dHu = 0 are

∂L∗

∂f

∣∣∣∣
Hx,Hu

= −λ, (1.2-38)

∂2L∗

∂f 2

∣∣∣∣
Hx,Hu

= f −T
x Hxxf

−1
x − CTLf

uuC. (1.2-39)



PROBLEMS 15

Equation (1.2-38) allows a further interpretation of the Lagrange multiplier; it
indicates the rate of change of the optimal value of the performance index with
respect to the constraint.

1.3 NUMERICAL SOLUTION METHODS

Analytic solutions for the stationary point (u , x )* and minimal value L* of
the performance index cannot be found except for simple functions L(x, u) and
f (x, u). In most practical cases, numerical optimization methods must be used.
Many methods exist, but steepest descent or gradient (Luenberger 1969, Bryson
and Ho 1975) methods are probably the simplest.

The steps in constrained minimization by the method of steepest descent are
(Bryson and Ho 1975)

1. Select an initial value for u .
2. Determine x from f (x , u) = 0.
3. Determine λ from λ = −f −T

x Lx .
4. Determine the gradient vector Hu = Lu + f T

u λ.
5. Update the control vector by �u = −αHu, where K is a positive scalar

constant (to find a maximum use �u = αHu).
6. Determine the predicted change in the value of L, �L = HT

u �u =
−αHT

u Hu. If �L is sufficiently small, stop. Otherwise, go to step 2.

There are many variations to this procedure. If the step-size constant K is too
large, then the algorithm may overshoot the stationary point (u , x )* and con-
vergence may not occur. The step size should usually be reduced as (u , x )*
is approached, and several of the existing variations differ in the approach to
adapting K .

Many software routines are available for unconstrained optimization. The
numerical solution of the constrained optimization problem of minimizing
L(x, u) subject to f (x , u) = 0 can be obtained using the MATLAB function
constr.m available under the Optimization Toolbox. This function takes in the
user-defined subroutine funct.m , which computes the value of the function, the
constraints, and the initial conditions.

PROBLEMS

Section 1.1

1.1-1. Find the critical points u* (classify them) and the value of L(u*) in
Example 1.1-1 if

a. Q =
[−1 1
1 −2

]
, ST = [0 1].
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b. Q =
[−1 1
1 2

]
, ST = [0 1].

Sketch the contours of L and find the gradient Lu.

1.1-2. Find the minimum value of

L(x1, x2) = x2
1 − x1x2 + x2

2 + 3x1. (1)

Find the curvature matrix at the minimum. Sketch the contours, showing the
gradient at several points.

1.1-3. Failure of test for minimality. The function f (x, y) = x2 + y4 has a
minimum at the origin.
a. Verify that the origin is a critical point.
b. Show that the curvature matrix is singular at the origin.
c. Prove that the critical point is indeed a minimum.

Section 1.2

1.2-1. Ship closest point of approach. A ship is moving at 10 miles per hour
on a course of 30◦ (measured clockwise from north, which is 0◦). Find its closest
point of approach to an island that at time t = 0 is 20 miles east and 30 miles
north of it. Find the distance to the island at this point. Find the time of closest
approach.

1.2-2. Shortest distance between two points. Let P1 = (x1, y1) and P2 =
(x2, y2) be two given points. Find the third point P3 = (x3, y3) such that
d1 = d2 is minimized, where d1 is the distance from P3 to P1 and d2 is the
distance from P3 to P2.

1.2-3. Meteor closest point of approach. A meteor is in a hyperbolic orbit
described with respect to the earth at the origin by

x2

a2
− y2

b2
= 1. (1)

Find its closest point of approach to a satellite that is in such an orbit that it has
a constant position of (x1, y1). Verify that the solution indeed yields a minimum.

1.2-4. Shortest distance between a parabola and a point. A meteor is moving
along the path

y = x2 + 3x − 6. (1)

A space station is at the point (x , y) = (2, 2).
a. Use Lagrange multipliers to find a cubic equation for x at the closest point of

approach.
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b. Find the closest point of approach (x , y), and the distance from this point
to (2, 2).

1.2-5. Rectangles with maximum area, minimum perimeter
a. Find the rectangle of maximum area with perimeter p. That is, maximize

L(x, y) = xy (1)

subject to
f (x, y) = 2x + 2y − p = 0. (2)

b. Find the rectangle of minimum perimeter with area a2. That is, minimize

L(x, y) = 2x + 2y (3)

subject to
f (x, y) = xy − a2 = 0. (4)

c. In each case, sketch the contours of L(x, y) and the constraint. Optimization
problems related like these two are said to be dual .

1.2-6. Linear quadratic case. Minimize

L = 1

2
xT

[
1 0
0 2

]
x + 1

2
uT

[
2 1
1 1

]
u

if

x =
[
1
3

]
=

[
2 2
1 0

]
u.

Find x*, u*, λ*, L*.

1.2-7. Linear quadratic case. In the LQ problem define the Kalman gain

K
�=(BTQB + R)−1BTQ (1)

a. Express u*, λ*, x*, and L* in terms of K .
b. Let

S0
�= Q − QB(BTQB + R)−1BTQ (2)

so that L* = cTS0c/2. Show that

S0 = Q(I − BK) = (I − BK)TQ(I − BK) + KTRK. (3)

Hence, factor L* as a perfect square. (Let
√

Q and
√

R be the square roots
of Q and R.)
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c. Show that

S0 = (Q−1 + BR−1BT)−1. (4)

1.2-8. Geometric mean less than or equal to arithmetic mean
a. Show that the minimum value of x2y2z 2 on the sphere x2 + y2 + z 2 = r2 is

(r2/3)3.
b. Show that the maximum value of x2 + y2 + z 2 on the sphere x2y2z 2 =

(r2/3)3 is r2.
c. Generalize part a or b and so deduce that, for ai > 0,

(a1a2 · · · an)
1/n ≤ (a1 + a2 + · · · + an)/n.

Note: The problems in parts a and b are dual (Fulks 1967).

1.2-9. Find the point nearest the origin on the line 3x + 2y + z = 1,
x + 2y − 3z = 4.

1.2-10. Rectangle inside Ellipse
a. Find the rectangle of maximum perimeter that can be inscribed inside an

ellipse. That is, maximize 4(x + y) subject to constraint x2/a2 + y2/b2 = 1.
b. Find the rectangle of maximum area 4xy that can be inscribed inside an ellipse.
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