
P a r t

I
Getting Started

In This Part

Chapter 1: ETL Primer
Chapter 2: Kettle Concepts
Chapter 3: Installation and Configuration
Chapter 4: An Example ETL Solution—Sakila

635179c01.indd 1 8/11/10 7:06:19 PM

CO
PYRIG

HTED
 M

ATERIA
L

635179c01.indd 2 8/11/10 7:06:19 PM

3

C h a P t e r

1

ETL Primer

The introduction of this book described the need for data integration. This chapter
provides a starting point to the wonderful world of data integration and explains the
differences and similarities among the three main forms of data integration: ETL, ELT,
and EII. To fully understand the reasoning behind using a data warehouse and an
ETL solution to load and update data, we start by explaining the differences between
a transaction and an analysis database.

OLTP versus Data Warehousing

The first question one might ask is how source data systems differ from business intel-
ligence (BI) systems (sometimes still called decision support systems or DSS). An individual
transaction system, often denoted by the acronym OLTP (short for OnLine Transaction
Processing), needs to be able to very quickly retrieve a single record of information. When
multiple records are needed they are usually tied to a single key that has been retrieved
before. Think of an order with the accompanying order lines in an order entry system
or a personnel record with all salary and bonus information in an HR system. What’s
more: this data often needs to be updated as well, usually just one record at a time.

The biggest difference between an OLTP and a BI database (the data warehouse, or DWH)
is the amount of data analyzed in a single transaction. Whereas an OLTP handles many
concurrent users and queries touching only a single record or limited groups of records
at a time, a data warehouse must have the capability to operate on millions of records to

635179c01.indd 3 8/11/10 7:06:19 PM

4 Part I n Getting Started

answer a single query. Table 1-1 shows an overview of the major differences between an
OLTP and a data warehouse.

Table 1-1: OLTP versus Data Warehouse

CharaCTerISTIC OLTP DaTa WarehOuSe

System scope/view Single business process Multiple business subjects

Data sources One Many

Data model Static Dynamic

Dominant query type Insert/update Read

Data volume per
transaction

Small Big

Data volume Small/medium Large

Data currency Current timestamp Seconds to days old

Bulk load/insert/update No Yes

Full history available No Yes

Response times < 1 second < 10 seconds

System availability 24/7 8/5

Typical user Front office Staff

Number of users Large Small/medium

Of course, it’s not as black and white as this table might indicate. The distinctions listed
are a rather classic way of looking at the two types of systems. More and more often, busi-
ness intelligence systems are being used as part of the primary business process. A call
center agent might have a screen in front of her with not only customer details such as
name and address, but also information about order and payment history retrieved from an
operational data store (ODS) or a data warehouse. Many CRM systems are already capable of
showing a credit or customer score on-the-fly, items that have been pre-calculated in the data
warehouse and are available on demand for front office workers. This means that the more
the data warehouse is used for operational purposes, the more the same requirements apply
as for OLTP systems, especially regarding system availability and data currency.

Probably the most discussed characteristic of the data warehouse is the required
response time. Ten years ago, it wasn’t a problem when a report query took one or two
minutes to retrieve and display its data. Nowadays users expect response times similar
to what they’re accustomed to when using a search engine. More than ten seconds and
users get impatient, start clicking refresh buttons (which will sometimes re-issue the
query, making the problem even worse), and eventually avoid using the data warehouse
because it’s so slow. On the other hand, when the data warehouse is used for data min-
ing purposes, analysts find a response time of several hours totally acceptable, as long
as the result to their inquiry is valuable.

635179c01.indd 4 8/11/10 7:06:20 PM

 Chapter 1 n eTL Primer 5

What Is ETL?

You know of course that ETL is short for extract, transform, and load; no secrets here.
But what exactly do we mean by ETL? A simple definition could be “the set of processes
for getting data from OLTP systems into a data warehouse.” When we look at the roots
of ETL it’s probably a viable definition, but for modern ETL solutions it grossly over-
simplifies the term. Data is not only coming from OLTP systems but from websites,
flat files, e-mail databases, spreadsheets, and personal databases such as Access as
well. ETL is not only used to load a single data warehouse but can have many other
use cases, like loading data marts, generating spreadsheets, scoring customers using
data mining models, or even loading forecasts back into OLTP systems. The main ETL
steps, however, can still be grouped into three sections:

 1. Extract: All processing required to connect to various data sources, extract the data
from these data sources, and make the data available to the subsequent process-
ing steps. This may sound trivial but can in fact be one of the main obstacles in
getting an ETL solution off the ground.

 2. Transform: Any function applied to the extracted data between the extraction
from sources and loading into targets. These functions can contain (but are not
limited to) the following operations:

Movement of data■n

Validation of data against data quality rules■n

Modification of the content or structure of the data■n

Integration of the data with data from other sources■n

Calculation of derived or aggregated values based on processed data■n

 3. Load: All processing required to load the data in a target system. As we show
in Chapter 5, this part of the process consists of a lot more than just bulk load-
ing transformed data into a target table. Parts of the loading process include, for
instance, surrogate key management and dimension table management.

The remainder of this section examines how ETL solutions evolved over time and
what the main ETL building blocks look like.

The Evolution of ETL Solutions
Data integration needs have existed as long as data has been available in a digital format.
In the early computing days, before ETL tools existed, the only way to get data from
different sources and integrate it in one way or another was to hand-code scripts in
languages such as COBOL, RPG, and later in Perl or PL/SQL. Although this is called
the first generation of ETL solutions, it may surprise you that today, about 45 percent
of all ETL work is still conducted by using hand-coded programs/scripts. This might
have made sense in the days when ETL tools had a six-figure price tag attached to them,
but currently there are many open source and other low-cost alternatives available

635179c01.indd 5 8/11/10 7:06:20 PM

6 Part I n Getting Started

so there’s really no point in hand-coding ETL jobs anymore. The main drawbacks of
hand-coding are that it is:

Error prone■n

Slow in terms of development time■n

Hard to maintain■n

Lacking metadata■n

Lacking consistent logging/error handling■n

The second generation of ETL tools (actually the first if we’re talking about “tools”
rather than the broader “solutions”) tried to overcome these weaknesses by generat-
ing the required code based on the design of an ETL flow. In the early 1990s, products
such as Prism, Carlton, and ETI emerged but most were acquired later by other ETL
vendors. ETI is probably the only independent vendor left from those early days that
still offers a code-generating solution. The fact that code generators are listed here as
second-generation ETL solutions doesn’t necessarily mean they are outdated. It’s rather
the contrary; code generators are alive and kicking, with Oracle’s Warehouse Builder
arguably being the most well-known product in this category. The popular open source
tool Talend is another example of a code-generation solution.

Code generators have their pros and cons; the biggest disadvantage is that most code
generators can work with only a limited set of databases for which they can generate
code. Soon after the code generators came into use, a third generation of ETL tools
emerged. These were based on an engine where all the data processing took place,
and a set of metadata that stored all the connection and transformation rules. Because
engines have a generic way of working and all the transformation logic is independent
from both the source and the target data stores, engine-based ETL tools, in general,
are more versatile than code-generating tools. Kettle is a typical example of an engine-
based tool; other familiar names in this area are Informatica Powercenter and SQL
Server Information Services.

Both code generators and engine-based tools offer some help in discovering the
structure of the underlying data sources and the relationships between them, although
some tools are more capable in doing this than others. They also require that a target
data model is developed either before or during the design of the data transformation
steps. After this design phase, the target schema has to be mapped against the source
schema(s). This whole process is still very time consuming, and as a result, a new gen-
eration of data warehouse tools emerged that are model driven. MDA tools (for Model
Driven Architecture) try to automate the data warehouse and data mart design process
from the ground up by reading the source data model and generating both the target
schema and all required data mappings to populate the target tables. There are only
a few such tools on the market, with Kalido and BIReady being the most well known.
They are no silver bullets, however; MDA tools still require a skilled data warehouse
architect to reap the benefits from them. Although they cannot solve every data integra-
tion challenge they can be a huge time (and thus money) saver.

635179c01.indd 6 8/11/10 7:06:20 PM

 Chapter 1 n eTL Primer 7

DaTa WarehOuSe verSuS DaTa MarT

In this book, the terms data warehouse and data mart are often used as if
they are interchangeable items. They’re not, and they differ widely in scope,
model, and applicability. A data warehouse is meant to be the single, inte-
grated storehouse of (historical) data that can be used for supporting an orga-
nization’s decision process. As such, it contains data covering a wide range
of topics and business processes, for instance finance, logistics, marketing,
and customer support. Often, a data warehouse cannot be accessed directly
by end user tools. A data mart, in contrast, is meant for direct access by end
users and end user tools, and has a limited specific analytical purpose, for
instance Retail Sales or Customer Calls.

ETL Building Blocks
The best way to look at an ETL solution is to view it as a business process. A business
process has input, output, and one or more units of work, the process steps. These steps
in turn also have inputs and outputs, and perform an operation to transform the input
into the output. Think, for example, of a claims department at an insurance company.
There’s a big sign on the door that says Claims Department, which tells the purpose
and main process of the department: handling claims. Within the department, each
desk or sub-department might have its own specialty: health insurance claims, car
insurance claims, travel insurance claims, and so on. When a claim is received at the
office, it is checked to find out to which desk it should be sent. The claims officer can
then determine whether all required information to handle the claim is available and
if not, send it back with further instructions to the submitter. Each day at 9 a.m. this
process of handling claims starts, and it runs until 5 p.m.

This example is a lot like an ETL process: data arrives or is retrieved and a validation
step determines what kind of data it is. The data is then sent to a specific transforma-
tion that is designed to handle that specific data. When the transformation can process
the data, it’s delivered to the next transformation or a destination table, and in the case
of errors, it is transferred to an error handling routine. Each night at 3 a.m., the job is
started by a scheduler and it ends when all data is processed.

You might now have a global feeling of how ETL processes are designed. From the
preceding examples you can deduce that there must be some mechanism to control
the overall process flow, and other more specific parts of the process that do the actual
transformation. The first part is called a job in Kettle terminology, and the latter part
consists of transformations. Jobs are the traffic agents of an ETL solution, and transforma-
tions are the basic building blocks. Individual transformations can be chained together
in a logical order, just like a business process, to form a job that can be scheduled and
executed. A transformation in turn can also consist of several steps. A step is the third
basic building block of a Kettle solution, and the connection between steps and trans-
formation is formed by hops. You’ll read a lot more about jobs, transformations, steps,

635179c01.indd 7 8/11/10 7:06:20 PM

8 Part I n Getting Started

and hops in the remainder of this book, but these four building blocks enable you to
develop any imaginable ETL solution. Chapter 2 provides a more detailed introduction
to these four concepts.

ETL, ELT, and EII

The term data integration encompasses more than just ETL. With ETL, data is extracted
from one or more source systems and, possibly after one or more transformation steps,
physically stored in a target environment, usually a data warehouse. To be able to dis-
tinguish between ETL and other forms of data integration, we need a way of classifying
and describing these other mechanisms.

Figure 1-1 shows a classic example of a data warehouse architecture. In this figure
there are multiple source systems, a staging area where data is extracted to, a central
warehouse for storing all historical data, and finally data marts that enable end users
to work with the data. Between each of these building blocks a data integration process
is used, as shown by the ETL blocks.

Files

DBMS

ERP

DBMS
CSV
Files

DBMS

Staging
Area

Central Warehouse and
Data Marts

ETL ETL ETL

Sources ETL Process Data Warehouse End User Layer

Figure 1-1: Classic data warehouse architecture

This is an architecture that has been used for the past 20 years and has served us
well. In fact, many current data warehouse projects still use an architecture similar to
the one shown in Figure 1-1. This picture clearly shows that ETL tools are used not only
to extract data and load a data warehouse, but also to populate data marts and possibly
other databases like an operational data store (not present in the diagram).

Figure 1-1 also shows that there is an intermediate step between the source systems
and the data warehouse, called the staging area. This part of the overall architecture
is merely a drop zone for data; it serves as an intermediate area to get data out of the
source systems as quickly as possible. A staging area doesn’t necessarily need to be a
database system; in many cases, using plain ASCII files to stage data works just as well
and is sometimes a faster solution than first inserting the data into a database table.

635179c01.indd 8 8/11/10 7:06:21 PM

 Chapter 1 n eTL Primer 9

NON-eTL uSe FOr eTL TOOLS

ETL tools are used for more than data warehouse purposes alone. Because
they offer a wide range of connectivity and transformation options, another
often seen use case is data migration. With the help of a tool like Kettle it is
fairly easy to connect to database A and migrate all the data to database B. In
fact, Kettle has two wizards (Copy Table and Copy Tables) that will handle this
for you automatically, including generating the new target tables using the
target database SQL syntax.

A third and more complex use case is data synchronization, meaning that
two (or more) databases are being kept in sync using ETL tools. Although this
can be achieved to a certain level, it is not the most common way of using ETL.
Usually there are time constraints (changes made in database A need to be
available in database B within the shortest achievable amount of time), which
make the batch orientation of most ETL tools an unlikely choice for synchroni-
zation purposes.

ELT
ELT (short for extract, load, and transform) is a slightly different approach to data
integration than ETL. In the case of ELT, the data is first extracted from the source(s),
loaded into the target database, and then transformed and integrated into the desired
format. All the heavy data processing takes place inside the target database. The advan-
tage of this approach is that in general, a database system is better suited for handling
large workloads where hundreds of millions of records need to be integrated. Database
systems are also usually optimized for I/O (throughput), which helps to process data
faster, too.

There is a big “but” here: In order to benefit from an ELT approach, the ELT tool
needs to know how to use the target database platform and the specific SQL dialect
being used. This is the reason there aren’t a lot of ELT solutions on the market and why
a general-purpose ETL tool such as Kettle lacks these capabilities. Nevertheless, most of
the traditional closed source ETL vendors augmented their tools with pushdown SQL
capabilities, basically resulting in supporting ETLT (extract, transform, load, transform)
scenarios, where transformation can take place either within the engine (especially for
operations not supported by the target database), or after loading inside the database.
Leading database vendors such as Microsoft (SQL Server Integration Services) and
Oracle (Oracle Warehouse Builder) have a headstart here and have had ETLT capabilities
by design because their tools were already tightly integrated with the database. Oracle
even bought Sunopsis some time ago, a company that created one of the few special-
ized ELT solutions on the market (now available as Oracle Data Integrator). Others,
like Informatica and Business Objects, have added pushdown SQL capabilities to their
products in later releases. An excellent overview of the pros and cons of ETL and ELT
can be found in this blog by Dan Linstedt, the inventor of the Data Vault data ware-
house modeling technique: http://www.b-eye-network.com/blogs/­linstedt/
archives/2006/12/etl_elt_-_chall.php.

635179c01.indd 9 8/11/10 7:06:21 PM

10 Part I n Getting Started

A special product that should be mentioned here is LucidDB. This open source colum-
nar BI database took the ETL and ELT concepts one step further and is capable of han-
dling all the ETL functionality inside the database using extensions to standard ANSI
SQL. To do this, LucidDB uses so called wrappers around different data sources. After
a wrapper is defined for a source (which could be a database, a text file, or even a Web
service), the source can be accessed using standard SQL to perform any operation that
the SQL language supports. This architecture, of course, makes LucidDB also capable
of acting as a lightweight EII solution (Enterprise Information Integration), which we
cover in the next section.

EII: Virtual Data Integration
Both ETL and ELT move or copy data physically to another data store, from the OLTP
to the data warehouse system. The reasons for using a separate data warehouse and
hence, moving the data to that datastore, were explained in the earlier section “OLTP
versus Data Warehousing.” In more and more cases, however, there is no need to move
or copy data. In fact, most users don’t even care whether there is an ETL process and
a data warehouse complemented with data marts: They just want access to their data!
In a way, the data warehouse architecture displayed in Figure 1-1 is like the kitchen of
a restaurant. As a customer, I don’t really care how my food is prepared—I just want
it served in a timely matter and it should taste great. Whatever happens behind those
swinging doors is really none of my business. The same applies to a data warehouse:
Users don’t really care how their data is processed; they just want to access it quickly
and easily.

So instead of physically integrating data, it is virtually integrated, making the data
accessible in real time when it is needed. This is called enterprise information integration,
or EII; other terms such as data federation and data virtualization are used as well and have
the same meaning. The main advantage of this approach is, of course, the fact that data
is always up-to-date. Another advantage is that there is no extra storage layer and no
extra data duplication. Some data warehouse environments copy the same data three or
four times: once in a staging area, then an operational data store (ODS), the data ware-
house itself, and finally the data marts. By using virtual data integration techniques,
the data is accessible for an end user as if it were a data mart, but in reality the EII tool
takes care of all the translations and transformations in the background.

Although EII sounds like a winning strategy, it does have some drawbacks. Table 1-2
highlights the differences between using a physical and virtual data integration
approach.

You can draw some conclusions from Table 1-2. One is that managing large volumes
of cleansed, current data using a virtual approach will be challenging, if not impossible.
Another conclusion might be that ETL is a tool that typically belongs in the physical
integration category, but as you will see in Chapter 22, Pentaho Reporting can be used
to invoke Kettle data integration jobs as a data source on an ad-hoc basis, offering some
of the advantages of a virtual data warehouse solution combined with all the function-
ality of a full-fledged ETL tool.

635179c01.indd 10 8/11/10 7:06:21 PM

 Chapter 1 n eTL Primer 11

Table 1-2: Virtual versus Physical Data Integration

CharaCTerISTIC PhySICaL vIrTuaL

Data currency  

Query performance/latency  

Frequency of access  

Diversity of data sources  

Diversity of data types  

Non-relational data sources  

Transformation and cleansing  

Performance predictability  

Multiple interfaces to same data  

Large query/data volume  

Need for history/aggregation  

Legend: =Weak, =Acceptable, =Strong

©Mark Madsen, Third Nature, Inc., 2009. All Rights Reserved. Used with Permission.

Data Integration Challenges

Data integration typically poses a number of challenges that need to be addressed and
resolved before your solution is up and running. These challenges can be of a political,
organizational, functional, or technical nature.

First and foremost, you’ll need to find out which data is needed to answer the ques-
tions that your organization wants answered and build a solid business case and project
plan for delivering that required information. Without a proper business case for start-
ing a business intelligence project, you’ll likely fail to get the necessary sponsorship.
Technological barriers can be challenging but are in most cases removable; organiza-
tional barriers are much harder to take away. Although we won’t cover these topics
further in this book we just wanted to raise awareness about this important topic.

note For more information, see Ralph Kimball’s Data Warehouse Lifecycle
Toolkit (2nd edition). Chapter 3 addresses gathering business requirements.

A good plan and a business case might get you the necessary support to start a
project, but they are not enough to deliver successful solutions. For this, a solid meth-
odology is needed as well, and of course a team of bright and experienced people won’t
hurt either. For many years IT projects were run using a waterfall approach where a
project had its initiation phase, followed by design, development, testing, and moving

635179c01.indd 11 8/11/10 7:06:21 PM

12 Part I n Getting Started

to production. For business intelligence projects, of which ETL is an important part, this
never worked quite well. As you’ll see in the following section, a more agile approach
fits the typical steps in a BI project much better.

On a more detailed level, you need to face the ETL design challenges, and define
how your jobs and transformations will be built, not in a pure technical sense, but in a
more functional way. There are many ways in which an ETL tool can be used to solve a
specific problem, and no matter which approach is taken, it’s mandatory that the same
conceptual design is used to tackle similar problems. For instance, if the team decides
to stage data to files first, stick to that and don’t mix in staging data to a database for
some parts of the solution, unless absolutely necessary.

After solving the organizational, project, and design challenges, the first technical
issue is finding out where to get the data from, in what format it is available, and what
exactly makes up the data you’re interested in. Not only might it be a challenge to get
access to the data, but connecting to the systems that host the data can be a major issue,
too. A lot of the data available in enterprise information systems resides on mainframe
computers or other hard-to-access systems such as older proprietary UNIX editions.

Large data volumes are also a challenge. Extracting all the data from the source sys-
tems every time you run an ETL job is not feasible in most circumstances. Therefore you
need to resolve the issue of identifying what has changed in your source systems to be
able to retrieve only the data that has been inserted, updated, or deleted. In some cases,
this issue cannot be gracefully resolved and a brute force approach needs to be taken
that compares the full source data set to the existing data set in the data warehouse.

Other challenges have to do with the way the data needs to be integrated; suppose
there are three different systems where customer data is stored, and the information
in these systems is inconsistent or conflicting? Or how do you handle incomplete,
inconsistent, or missing data?

Methodology: Agile BI
One of the first challenges in any project is to find a good way to build and deliver the
solution, including proper documentation. This holds true for any software package,
not only for ETL. Over the years, many project management and software develop-
ment methodologies have seen the light of day. Maybe you remember the days of the
structured analysis and design methodologies, as developed in the 70s by people like
Ed Yourdon and Tom DeMarco. These approaches all had a so-called waterfall model
in common, meaning that one step in the analysis or design phase needs to be complete
before you can move on to the next one. You can find more background information about
these methods at http://en.wikipedia.org/wiki/Structured_Analysis.

During the 80s and 90s, developers found that these structured, waterfall-based meth-
ods weren’t always helpful, especially when requirements changed during the project. To
cope with these changing requirements, different “agile” development methods emerged,
with Scrum arguably being the best-known example. What’s so special about agile devel-
opment? To make that clear, the founders and proponents of agile methodologies came
up with the Agile Manifesto, which declares the values of the agile methodology:

Individuals and interactions over processes and tools■n

635179c01.indd 12 8/11/10 7:06:21 PM

 Chapter 1 n eTL Primer 13

Working software over comprehensive documentation■n

Customer collaboration over contract negotiation■n

Responding to change over following a plan■n

The Agile Manifesto (full text available on http://agilemanifesto.org) also
contains 12 guiding principles that define what Agile is. In short, it’s about:

Early and frequent delivery of working software■n

Welcoming changing requirements■n

Business and IT working closely together■n

Reliance on self-motivated developers and self-organizing teams■n

Frequent, face-to-face conversations to discuss issues and progress■n

Keeping it simple: maximizing the amount of work not done■n

note There is an abundant amount of information about agile development
and the Scrum methodology available online. A good place to start is http://
en.wikipedia.org/wiki/Scrum_(development).

Now what has all this to do with business intelligence, and more specifically, ETL?
Well, in the case of Pentaho and Kettle: everything! Pentaho has always embraced
agile development methods (especially Scrum) to incrementally develop and release
new versions of their BI platform and components. Development phases are measured
and communicated in Sprints and Milestones, which is also reflected in the download
versions you can obtain from the CI (Continuous Integration) repositories. During
2009, Pentaho decided to translate the experience the company had with using agile
development methods into an agile BI approach. The intention is not only to support
BI developers with a solid methodology, but also to adapt the Pentaho BI suite and all
constituent components in such a way that they enforce, enable, and support an agile
way of working. The first part of the BI suite that was changed and extended is Kettle,
which is the reason we introduced the agile concepts here. You’ll see more about the
agile capabilities of Kettle later in the book, but as you might already wonder how
Kettle supports an agile way of working, here’s a look at the basic capabilities Kettle
has to offer.

Once you’ve installed Kettle, it will take only a couple of minutes before you have con-
nected to a data source, read some data, added a transformation, and delivered the data
to a destination table. Because Kettle is an engine-based solution, it automatically takes
care of a lot of things for you, which helps speed up the process. Kettle also contains a
vast (and perhaps at first glance overwhelming) number of standard components and
transformation steps. These are prebuilt code blocks that also help in minimizing the
development effort and maximizing the speed of solution delivery. Changes in data
fields or data types are automatically propagated to subsequent steps in the process,
and Kettle can also generate the change scripts needed to alter the final destination
table. The integrated modeling and ad-hoc visualization tools enable you to directly
show the results of your work to the end user and play with the data in an iterative

635179c01.indd 13 8/11/10 7:06:21 PM

14 Part I n Getting Started

way. Developers and business users can therefore work closely together using the same
toolset. Deviations from plan or from the user’s expectations can be taken into account
immediately and the jobs and transformations can be changed accordingly.

Because Kettle is tightly linked to the Agile BI initiative by Pentaho, it might be
worthwhile to read up on the methodology and how Kettle supports it on the Agile
BI wiki. You can find this info at http://wiki.pentaho.com/display/AGILEBI/­
Welcome+to+Agile+Business+Intelligence.

ETL Design
Even when (or perhaps, especially when) an agile approach is taken, your ETL process
needs to be designed in one way or another. Because an ETL solution in many respects
resembles a workflow or business process, it might make sense to use a flowchart
drawing tool to create a high-level design before you start building. Most users will be
familiar with flowchart diagrams and can comment and help make your design better.
On a more detailed level, it is important to define which parts of the solution are to be
reusable and which are not. For instance, creating a date dimension is usually a one-
time effort within a data warehouse project. So for an individual project it makes sense
to not spend too much time developing a flexible and database-independent solution
and just develop a standard script for this. On the other hand, when you’re a consultant
working for many different customers, it absolutely makes sense to have a generic date
dimension generator in your toolbox.

From this discussion, it’s easy to see what the most important question is when you
start building a data transformation: Should it be reusable in other parts of the solu-
tion or not? Depending on the answer, you might spend some extra time in making
the transformation generic, for instance by adding extra parameters that enable you
to choose a type of database, a date/time format, or other things that change between
different solutions.

Data Acquisition
As explained earlier, getting access to and retrieving data from source systems is the first
challenge you encounter when an ETL project is started. Don’t automatically assume that
this is only a technical problem; in many cases not being able to access data directly is
caused by internal politics or guidelines. ERP vendors also try to make it difficult or even
impossible to access the data in their systems directly. The widely used SAP/R3 system,
for instance, has specific clauses in the software license that prohibit direct connections to
the underlying database other than by the means provided by SAP. Most financial institu-
tions that run their mission-critical systems on a mainframe also won’t let you access these
systems directly so you’re dependent on data feeds delivered by FTP or via a web service.
This isn’t necessarily a disadvantage; the SAP system consists of more than 70,000 tables so
finding the ones with the data you’re interested in might be a very time-consuming task.
For situations like this, you need tools that are able to interpret the ERP metadata, which
displays a business view of the data. Fortunately, Kettle not only contains a standard data
input step for acquiring data from SAP/R3, but also for getting data out of Salesforce.com,
arguably the most used and advanced online CRM application. For other standard ERP

635179c01.indd 14 8/11/10 7:06:21 PM

 Chapter 1 n eTL Primer 15

and CRM solutions such as SugarCRM, OpenERP, ADempiere, or Peoplesoft, you might
have to revert to third-party solutions or build your own input step. The capability to read
data from a mainframe directly is unfortunately not available so in those cases it’s best to
have this data delivered from the system in a readable format such as ASCII or UniCode
(older mainframe systems still use EBCDIC). More information about accessing ancient
Cobol systems and the specific file format challenges involved can be found at http://
jymengant.ifrance.com/jymengant/jurassicfaq.html.

Beware of Spreadsheets

A major challenge in the field of data acquisition has to do with the way and the format
in which the data is delivered. A notorious troublemaker in this area is Excel, so the
best advice we can give is to just never accept a data delivery in Excel, unless you can
be sure it’s system-generated and that it’s created on the same machine by a process
that’s owned by the same user. Excel data problems occur frequently when different
internationalization settings are used, causing dates and numeric fields to change from
one session to another. As a result, your carefully designed and tested transformation
will fail, or at least will generate incorrect results (which is basically the same but harder
to track). Most problems, however, are caused by users who will tell you they haven’t
changed anything but who did, perhaps even unknowingly.

Design for Failure

Even if access to the data isn’t a problem and the solution you’ve built looks rock solid,
you always need to make sure that the data source is available before you kick off a
process. One basic design principle is that your ETL job needs to be able to fail gracefully
when a data availability test fails. Kettle contains many features to do this. You can:

Test a repository connection.■n

Ping a host to check whether it’s available.■n

Wait for a SQL command to return success/failure based on a row count ■n

condition.

Check for empty folders.■n

Check for the existence of a file, table, or column.■n

Compare files or folders.■n

Set a timeout on FTP and SSH connections.■n

Create failure/success outputs on every available job step.■n

It’s also a good idea to add error handling at the job and transformation level. When
loading a data warehouse, dependencies often exist between tables. A good example
is that a fact table cannot be loaded before all dimension loads have completed. When
one of the dimension loads fails, the complete job should fail, too. A good design then
lets you correct the errors and enables you to restart the job where only the failed and
not-yet-run parts will execute.

635179c01.indd 15 8/11/10 7:06:21 PM

16 Part I n Getting Started

Change Data Capture

The first step in an ETL process is the extraction of data from various source systems
and passing the data to the next step in the process. A best practice here is the inter-
mediate storage of the extracted data in staging tables or files to make restarts possible
without the need of retrieving all data again. This seems like a trivial task, and in the
case of initially loading a data warehouse it usually is, apart from challenges incurred
from data volumes and slow network connections. But after the initial load, you don’t
want to repeat the process of completely extracting all data again. This wouldn’t be
of much use anyway because you already have an almost complete set of data, and it
only needs to be refreshed to reflect the current status. All you’re interested in is what
has changed since the last data load, so you need to identify which records have been
inserted, modified, or even deleted. The process of identifying these changes and only
retrieving records that are different from what you already loaded in the data ware-
house is called Change Data Capture or CDC.

Basically, there are two main categories of CDC processes, intrusive and non-intrusive.
By intrusive, we mean that a CDC operation has a possible performance impact on the
system the data is retrieved from. It is fair to say that any operation that requires execut-
ing SQL statements in one form or another is an intrusive technique. The bad news is
that most available methods to capture changed data are intrusive, leaving only one
non-intrusive option. CDC is covered in depth in Chapter 6.

Data Quality
Much of what is said in the previous section applies here as well: you have to assume
that there are quality problems in your data and therefore need to design your transfor-
mations to handle these problems. In fact, this isn’t entirely true: data quality problems
need to be resolved in the source systems, not in the ETL process. However, fixing data
quality issues before starting a data warehouse project is a luxury that not many orga-
nizations can afford. There’s always a pressing need to deliver a solution quickly, and
even if serious data quality problems are discovered during the project, they are usually
dealt with later or not at all. Hence knowing what’s wrong with your data and knowing
what to do about it are essential parts of the ETL developer’s job description.

Two categories of tools are available to deal with data quality problems. First, you’ll
need to define a baseline by profiling the data and investigating how good the qual-
ity actually is, using a data profiling tool. The purpose of this exercise is twofold: to
communicate the results of this exercise back to the data owner (hopefully a business
manager with the authority to do something about it), and to serve as input for the data
validation steps in the ETL jobs. Second, there are data quality tools that constantly
monitor and augment the data based on business and quality rules. In Kettle, the Data
Validation step serves as a built-in data quality tool.

Data Profiling

One of the first things to do when starting an ETL project is profile the source data.
Profiling will tell you how much data there is and what it looks like, both technically

635179c01.indd 16 8/11/10 7:06:21 PM

 Chapter 1 n eTL Primer 17

and statistically. The most common form of profiling is column profiling, where for each
column in a table the appropriate statistics are created. Depending on the data type
this will give you insight into things like the following:

Number of NULL or empty values■n

Number of distinct values■n

Minimum, maximum, and average value (numeric fields)■n

Minimum, maximum, and average length (string fields)■n

Patterns (for example, ###-###-#### for phone numbers)■n

Data distribution■n

Although most of these operations can be performed using Kettle transformations or
just plain SQL, it’s better to use a specialized tool such as Data Cleaner from eobjects.
Chapter 6 covers data profiling in more detail.

warning Data profiling will only get you so far; logical and/or cross-
 system quality issues cannot be detected by most data profiling tools, and in
order to detect them, a global business glossary and metadata system needs to
be in place first. These systems are still very rare.

Data Validation

Profiling is meant for reporting and setting a baseline, while validation is part of the
regular ETL jobs. A simple example is as follows: Some column in a source system
can technically contain NULL values, but there is a business rule stating that this is a
required field. Profiling revealed that there are several records with a NULL value in
this column. To cope with this situation, a validation step is needed that contains the
rule NOT­NULL for this column, and when the column does contain a NULL value, an
alternative action should be started. This could be omitting the record and writing it to
an error table, replacing the NULL value with a default value such as Unknown, flagging
the record as unreliable, or any other action that is deemed necessary.

ETL Tool Requirements

While this book is specifically about Kettle, it’s useful to have an overview of the
required features and functionality of an ETL tool in general. This will enable you to
decide whether Kettle is the right tool for the job at hand. Each of the following sections
first describes the requirement in general and then explains how Kettle provides the
required functionality or feature.

Connectivity
Any ETL tool should provide connectivity to a wide range of source systems and data
formats. For the most common relational database systems, a native connector (such

635179c01.indd 17 8/11/10 7:06:22 PM

18 Part I n Getting Started

as OCI for Oracle) should be available. At a minimum, the ETL should be able to do
the following:

Connect to and get data from the most common relational database systems ■n

including Oracle, MS SQL Server, IBM DB/2, Ingres, MySQL, or PostgreSQL.

Read data from ASCII files in a delimited or fixed format.■n

Read data from XML files (XML is the lingua franca of data interchange).■n

Read data from popular Office formats such as Access databases or Excel ■n

spreadsheets.

Get files from external sites using FTP, SFTP, or SSH (preferably without ■n

scripting).

In addition to this, there might be the need to read data using a web service, or to read
an RSS feed. In case you need to get data from an ERP system such as Oracle E-Business
Suite, SAP/R3, PeopleSoft, or JD/Edwards, the ETL tool should provide connectivity
options for these systems as well.

Out of the box, Kettle has input steps for Salesforce.com and SAP/R3. For other ERP
or financial systems, an alternative or additional solution might be required. Of course
it’s always possible to have these systems export a data set to an ASCII file and use
that as a source.

Platform Independence
An ETL tool should be able to run on any platform and even a combination of different
platforms. Maybe a 32-bit operating system works for the initial development phase,
but when data volumes increase and available batch windows decrease, a more power-
ful solution is required. In other cases, development takes place on a Windows or Mac
development PC, but production jobs run on a Linux cluster. You shouldn’t have to take
special measures to accommodate for this in your ETL solution.

Scalability
Scalability is a big issue; data volumes increase year after year and your systems needs
to be able to handle this. Three options should be available for processing large amounts
of data:

Parallelism: ■n Enables a transformation to run many streams in parallel, thus utiliz-
ing modern multi-core hardware architectures

Partitioning: ■n Enables the ETL tool to take advantage of specific partitioning
schemes to distribute the data over the parallel streams

Clustering: ■n Enables the ETL process to divide the workload over more than one
machine

This last option especially can be cost prohibitive with proprietary ETL solutions
that are licensed per server or per CPU.

635179c01.indd 18 8/11/10 7:06:22 PM

 Chapter 1 n eTL Primer 19

Kettle, being a Java-based solution, runs on any computer that has a Java Virtual
Machine installed. Any step in a transformation can be started multiple times in par-
allel to speed up processing. Kettle will then determine how the data is distributed
over the different streams. For better control, a partitioning scheme can be used to
make sure that each parallel stream contains data with the same characteristics. This
resembles how database partitioning works, but Kettle has no specific facilities to work
with database partitions. (The benefit of having such a capability is debatable because
the database itself is probably better capable of distributing data over the partitions
than an ETL tool would be.)

The most advanced scalability feature arguably is the clustering option, which lets
Kettle spread the workload over as many machines as deemed necessary. Part IV of this
book covers all these scalability features in depth, but a good source to whet your appe-
tite is the white paper written by one of the technical reviewers of this book, Nicholas
Goodman of Bayon Technologies. It can be found at http://www.bayontechnologies­
.com/bt/ourwork/pdi_scale_out_whitepaper.php.

Design Flexibility
An ETL tool should provide a developer the freedom to use any desirable flow design
and should not limit people’s creativity or design requirements by offering only a
fixed way of working. ETL tools can be classified as either process- or map-based. A
map-based tool offers a fixed set of steps between source and target data, thus severely
limiting the freedom to design jobs. Map-based tools are often easy to learn and get
you started very quickly, but for more complex tasks, a process-based tool is most
likely the better choice. With a process-based tool like Kettle, you can always add
additional steps or transformations if needed because of changes in the data or busi-
ness requirements.

Reuse
Being able to reuse existing parts of your ETL solution is also an indispensable feature.
An easy way of doing this is to copy and paste or duplicate existing transformation
steps, but that’s not really reuse. The term reuse refers to the capability to define a step or
transformation once and call the same component from different places. Within Kettle
this is achieved by the Mapping step, which lets you reuse existing transformations
over and over as subcomponents in other transformations. Transformations themselves
can be used multiple times in multiple jobs, and the same applies to jobs which can be
reused as subjobs in other jobs as well.

Extensibility
There isn’t a single ETL tool in the world that offers everything that’s needed for every
imaginable data transformation task, not even Kettle. This means that it must be pos-
sible to extend the basic functionality of the tool in some way or another. Almost all
ETL tools offer some kind of scripting option to programmatically perform complex

635179c01.indd 19 8/11/10 7:06:22 PM

20 Part I n Getting Started

tasks not available in the program itself. Only a few ETL tools, however, offer the option
to add standard components yourself by offering an API or other means to extend the
toolset. In between these options is a third way that lets you define functions that can
be written using a script language and called from other transformations or scripts.

With Kettle, you get it all. Scripting is provided by the Java Script step, and by saving
this as a transformation it can be reused in a mapping, resulting in a standard reusable
function. In fact, any transformation can be reused in a mapping so creating standard
components this way isn’t limited to scripting alone. And Kettle is, of course, built with
extensibility in mind, offering a plugin-enabled platform. The plugin architecture makes
it possible for third parties to develop additional components for the Kettle platform.
Several examples of these additional plugins are covered in this book, but it’s impor-
tant to note that all components you find in Kettle, even the ones that are available
by default, are actually plugins. The only difference between built-in and third-party
plugins could be the available support: If you buy a third-party plugin (for instance a
SugarCRM connector), support is provided by the third party, not by Pentaho.

Data Transformations
A good deal of the work involved with an ETL project has something to do with trans-
forming data. Between acquisition and delivery, the data needs to be validated, joined,
split, combined, transposed, sorted, merged, cloned, de-duplicated, filtered, deleted,
replaced, and whatnot. It’s hard to tell what the minimum set of available transforma-
tions should be because data transformation requirements differ greatly between organi-
zations, projects, and solutions. Nevertheless, there seems to be a common denominator
of basic functions that most of the leading ETL tools (including Kettle) offer:

Slowly Changing Dimension support■n

Lookup values■n

Pivot and unpivot■n

Conditional split■n

Sort, merge, and join■n

Aggregate■n

The only difference between tools is the way these transformations need to be
defined. Some tools, for instance, offer a standard SCD (Slowly Changing Dimension)
transformation in a single step, while others generate the needed transformations with
a wizard. Even Kettle doesn’t cover all transformation requirements out of the box. A
good example of a missing component is a hierarchy flattener. By hierarchy we mean
a single table that refers to itself, for instance an employee table where each employee
record has an employee ID and a manager ID. The manager ID in the employee record
points to an employee ID of another employee who is the manager. Oracle has had a
standard “connect by prior” function to cope with this for ages and some ETL tools
have a similar feature; in Kettle you’d have to manually handle this issue.

635179c01.indd 20 8/11/10 7:06:22 PM

 Chapter 1 n eTL Primer 21

Testing and Debugging
This requirement hardly needs further explanation. Even though an ETL solution is
not (at least, we hope not) written in a program language such as Java or C++, it can
be looked at as such. This means that what applies to application programming also
applies to ETL development: Testing should be an integral part of the project. To be able
to test, you need test cases that cover any possible (or at least, the most likely) scenario
in a “what if” kind of way. The following are some examples of such scenarios:

What if we don’t get the data delivered on time?■n

What if the process breaks halfway through the transformation?■n

What if the data in column XYZ contains NULL values?■n

What if the total number of rows transformed doesn’t match the total number ■n

of rows extracted?

What if the result of this calculation doesn’t match the total value retrieved from ■n

another system?

Again, the message here is to design for failure. Don’t expect that things will work;
just assume that things will fail at some point. When designing tests, it’s important to
differentiate between black box testing (also known as functional testing) and white box
testing. In case of the former, the ETL solution is considered a black box where the inner
workings are not known to the tester. The only known variables are the inputs and the
expected outputs. White box testing (also known as structural testing), on the other hand,
specifically requires that the tester knows the inner workings of the solution and devel-
ops tests to check whether specific transformations behave as expected. Both methods
have their advantages and disadvantages, which are covered in Chapter 11.

Debugging is an implicit part of white box testing and enables a developer or tester
to run a program step by step to investigate what exactly goes wrong at what point.
Not all ETL tools offer extensive debugging functionality where you can step through a
transformation row by row, inspecting individual rows and variable allocations. Kettle
offers extensive debugging features for both jobs and transformations, as covered in
Chapter 11.

Lineage and Impact Analysis
A mandatory feature of any ETL tool is the ability to read the metadata to extract
information about the flow of data through the different transformations. Data lineage
and impact analysis are two related features that are based on the ability to read this
metadata. Lineage is a backward-looking mechanism that will show for any data item
where it came from and which transformations were applied to it. This would include
calculations and new mappings, such as when price and quantity are used as input
fields to calculate revenue. Even if the field’s price and quantity are omitted from
further processing, the data lineage function should reveal that the field revenue is
actually based on price and quantity.

635179c01.indd 21 8/11/10 7:06:22 PM

22 Part I n Getting Started

Impact analysis works the other way around: Based on a source field, the impact on
the subsequent transformations and ultimately, destination tables is revealed. You can
find in-depth coverage of these subjects in Chapter 14.

Logging and Auditing
The data in the data warehouse needs to be reliable and trustworthy because that’s one
of the purposes of a data warehouse: provide an organization with a reliable source
of information. To guarantee this trustworthiness and have a system of record for all
data transformations, the ETL tool should provide facilities for logging and auditing.
Logging takes care of recording all the steps that are executed when an ETL job is run,
including the exact start and end timestamps for every step. Auditing facilities create
a complete trace of the actions performed on the data, including number of rows read,
number of rows transformed, and number of rows written. This is a topic where Kettle
actually leads the market, as you will see in Chapters 12 and 14.

Summary

This chapter introduced ETL and its history, and explained why data integration is needed.
The basic building blocks of a Kettle solution were introduced briefly to give you a feel-
ing for what will be covered in the rest of the book. We also explained the difference and
similarities between ETL, ELT, and EII and showed the advantages of each method.

We presented the major challenges you might face when developing ETL solutions:

Getting business sponsorship and creating a business case■n

Choosing a good methodology to guide your work■n

Designing ETL solutions■n

Data acquisition and the problem with spreadsheets■n

Handling data quality issues using profiling and validation■n

Finally, we highlighted the general requirements of an ETL tool and briefly described
how Kettle meets the requirements for the following:

Connectivity■n

Platform independence and scalability■n

Design flexibility and component reuse■n

Extensibility■n

Data transformations■n

Testing and debugging■n

Lineage and impact analysis■n

Logging and auditing■n

All the topics introduced in this chapter are covered extensively in the rest of this
book.

635179c01.indd 22 8/11/10 7:06:22 PM

